[医学]磁共振常用脉冲序列及其临床应用-翁强
合集下载
核磁共振实验中三种基本脉冲序列的特点和应用

有180°回波产生脉冲的IR序列的射频脉冲时序
包含SE序列的IR序列的射频脉冲时序
Thank you!
反转恢复序列(IR)
Inversion-Recovery
特点: 射频激励脉冲 信号测量脉冲
180°脉冲 90°脉冲
反转恢复法测纵向弛豫时间T1
Mz(t)=Mo[1—2e-t/T1]
自旋回波序列(SE)
Spin-Echo
特点: 一个周期内有90°脉冲和 180°脉冲 其中180°脉冲为相位反转脉冲 (回波形成脉冲)
θ=180° 180°脉冲 θ=90° 90°脉冲 τ:射频脉宽 硬脉冲 τ较小 软脉冲 τ较大
驰豫过程 非平衡态 →平衡态
纵向弛豫:磁化强度的纵向分量从某个 Mz向它的最大值Mo增长的过程。 横向弛豫:磁化强度的横向分量从某个 Mxy向它的最小值零衰减的过程。
什么是脉冲序列?
产生并测量MR信号所需要的一组周期 性重复的射频脉冲的组合方式和定时 关系。
回波信号的产生
t 0时
t 2 时
M XY M 0
M XY M 0e2 /T 2
t 时 180°脉冲使自旋绕x轴旋转180°
自旋回波法测横向弛豫时间T2
M XY (M 0e
2 /T2
)e
( t 2 )/T2
缺点: 花费时间长,每测一个回波要等Mz恢复到Mo, 每个周期要花5个T1 分子自扩散引起信号损失,使回波峰值达不到 应有高度,使得T2 偏小
核磁共振实验中三种基本 脉冲序列的特点和应用
Nuclear Magnetic Resonance Magnetic Resonance Imaging
07300300061 武帅 B0
包含SE序列的IR序列的射频脉冲时序
Thank you!
反转恢复序列(IR)
Inversion-Recovery
特点: 射频激励脉冲 信号测量脉冲
180°脉冲 90°脉冲
反转恢复法测纵向弛豫时间T1
Mz(t)=Mo[1—2e-t/T1]
自旋回波序列(SE)
Spin-Echo
特点: 一个周期内有90°脉冲和 180°脉冲 其中180°脉冲为相位反转脉冲 (回波形成脉冲)
θ=180° 180°脉冲 θ=90° 90°脉冲 τ:射频脉宽 硬脉冲 τ较小 软脉冲 τ较大
驰豫过程 非平衡态 →平衡态
纵向弛豫:磁化强度的纵向分量从某个 Mz向它的最大值Mo增长的过程。 横向弛豫:磁化强度的横向分量从某个 Mxy向它的最小值零衰减的过程。
什么是脉冲序列?
产生并测量MR信号所需要的一组周期 性重复的射频脉冲的组合方式和定时 关系。
回波信号的产生
t 0时
t 2 时
M XY M 0
M XY M 0e2 /T 2
t 时 180°脉冲使自旋绕x轴旋转180°
自旋回波法测横向弛豫时间T2
M XY (M 0e
2 /T2
)e
( t 2 )/T2
缺点: 花费时间长,每测一个回波要等Mz恢复到Mo, 每个周期要花5个T1 分子自扩散引起信号损失,使回波峰值达不到 应有高度,使得T2 偏小
核磁共振实验中三种基本 脉冲序列的特点和应用
Nuclear Magnetic Resonance Magnetic Resonance Imaging
07300300061 武帅 B0
脉冲序列及其应用

第一节 脉冲序列的分类及参数
一、 脉冲序列的分类 二、 脉冲序列的参数
常用脉冲序列及其应用
*脉冲序列:是指具有一定宽度、一定幅度的射
频脉冲与梯度脉冲组成的脉冲序列。MR检查中 反复施加射频脉冲RF(radio frequence pulse)的 顺序。它控制着系统施加RF脉冲、梯度和数据采 集的方式,并由此决定图像的加权、图像质量以 及对病变显示的敏感性。
T1
长TR
TR
T2 长TE
TE
长TR: 2000 ~ 4000ms 短TE: 10 ~ 20ms
质子加权像
SSE
=f(H)g(V)(1-e-—TT—1R—
)e
-TE T2
TR
TE
常用脉冲序列及其应用
常规SE脉冲序列的特点:
优点:
——— 临床上用途最广泛的标准成像序列
☆ T1加权具有较高的信噪比,显示解剖结构 ☆ T1加权是增强检查的常规序列,因为顺磁性对 比剂具有短 T1增强效应 ☆ T2加权易于显示水肿和液体,成高信号。 ☆ PD加权显示血管结构。
又恢Y复到接近90°RF脉冲后的强度,这时产Y 生自旋回波信号。 180°脉冲
Z
Z
90°RF激励脉冲的作用:质子吸收能量,纵向磁化减少
氢质子开始同相进动产生横X向磁化
X
Y
Y
90°RF脉冲
TR
单次180°脉冲
单次自旋回波
TE
90°RF脉冲
常用脉冲序列及其应用
SE序列组织的信号强度(S)可用 Bloch方程表示:
向,其偏离的角度称为翻转角。翻转角的大小是由RF强度
(能量)所决定的。
B0 Z B1产生翻转力
Z 900脉冲
MRI常用序列及其应用

FSE序列特殊参数
回波链长
– Echo Train Length,ETL
– 90度脉冲后用180度脉冲所采集回波的数目
– 也称时间因子
回波间隙
– echo space, ES
– 回波链中,两个回波中点的时间间隔称为回
波间隙
FSE序列回波链中各回波的强度及TE不同
180° 180° 180° 180° 180° 90° 90°
•激发角度越大,纵向弛豫所需时间越长 •激发角度越大,T1成分越大,T1对比越大 •90度脉冲能产生最大的横向磁化矢量 •180度脉冲产生反向的纵向磁化矢量
纵 向 磁 化 矢 量 Time (ms) 90度脉冲后的纵向弛豫
纵 向 磁 化 矢 量
Time (ms) 180度脉冲后的纵向弛豫
与90度脉冲相比,180度脉冲能将组织的纵向 弛豫差别增加1倍,也就是说T1对比增加1倍
屏气 TE=152ms
3、单次激发FSE
Single Shot FSE(SS-FSE)
不同公司的名称 SIEMENS---SS-TSE
PHILIPS--- SSh-TSE
GE----- SS-FSE
FSE
SS-FSE
单次激发FSE
一次90度脉冲激发后利用连续的聚焦脉冲采集填充 K空间所需的全部回波信号 只能用于T2WI,不能进行T1WI 成像参数
TE
目标组织T2+30%
FSE序列重要参数改变产生的效果
ETL越长
成像越快 图像SNR越低 图像T2对比越差 图像的模糊效应越重 脂肪信号越亮 SAR值越高
ES越小
图像对比增加 图像模糊效应减轻 允许的更长的ETL 磁化转移效应增加 脂肪信号越高 SAR值越高
MRI磁共振脉冲序列与临床应用

• 层面选择梯度
1 RF频率增加,层面向梯度场高移动 2 RF带宽增加,层厚增厚 3 BW不变,梯度场强增加,层厚变薄
• 层面内编码:频率编码和相位编码
1 频率编码和相位编码梯度场互相垂直 2 频率编码梯度在信号采集同时施加,相位编码梯
度在信号采集前施加 3 每个信号的频率编码梯度场相同,相位编码梯度
SE序列
180°
90
°
RF
Gs
FID
S
Gp
Gr
TE/2
TE/2 TR
• 以90 射频脉冲作为激发脉冲,180 射频脉冲作 为重聚脉冲,获得自旋回波信号。
2020/2/24
Title or job number
14
SE序列特点及临床应用:
• 序列结构简单,信号变化易于解释 • 图像组织对比好,信号噪比高 • 对磁场不均敏感性低,磁化伪影轻 • 采用180度重聚脉冲,去除主磁场不均性影响,能获
经过的时间
T1值:宏观纵向磁化矢量从零恢复到最在值的63%所经过的时间
不同组织的T1、T2时间不同
主磁场:1.5T
组织
T2(ms)
T1 (ms)
脂肪
80
260
肝
20
500
肌肉
20
870
白质
90
780
灰质
100
920
脑脊液
280
2400
2020/2/24
Title or job number
8
磁共振的空间定位 2D
16
Fast Spin Echo FSE
1800 900
1800
1800
1800
T2 衰减曲线 T2* 衰减曲线
1 RF频率增加,层面向梯度场高移动 2 RF带宽增加,层厚增厚 3 BW不变,梯度场强增加,层厚变薄
• 层面内编码:频率编码和相位编码
1 频率编码和相位编码梯度场互相垂直 2 频率编码梯度在信号采集同时施加,相位编码梯
度在信号采集前施加 3 每个信号的频率编码梯度场相同,相位编码梯度
SE序列
180°
90
°
RF
Gs
FID
S
Gp
Gr
TE/2
TE/2 TR
• 以90 射频脉冲作为激发脉冲,180 射频脉冲作 为重聚脉冲,获得自旋回波信号。
2020/2/24
Title or job number
14
SE序列特点及临床应用:
• 序列结构简单,信号变化易于解释 • 图像组织对比好,信号噪比高 • 对磁场不均敏感性低,磁化伪影轻 • 采用180度重聚脉冲,去除主磁场不均性影响,能获
经过的时间
T1值:宏观纵向磁化矢量从零恢复到最在值的63%所经过的时间
不同组织的T1、T2时间不同
主磁场:1.5T
组织
T2(ms)
T1 (ms)
脂肪
80
260
肝
20
500
肌肉
20
870
白质
90
780
灰质
100
920
脑脊液
280
2400
2020/2/24
Title or job number
8
磁共振的空间定位 2D
16
Fast Spin Echo FSE
1800 900
1800
1800
1800
T2 衰减曲线 T2* 衰减曲线
MRI常用序列及其应用课件

CHAPTER 03
MRI常用序列的应用场景
FSE序列在脑部成像中的应用
总结词
FSE序列在脑部成像中主要用于观察脑部结构,如灰质、白质 和脑沟等。
详细描述
FSE(快速自旋回波)序列通过快速切换的梯度磁场和射频脉冲, 产生高分辨率的图像,能够清晰地显示脑部结构,常用于脑部 疾病的诊断和鉴别诊断。
EPI序列在功能成像中的应用
缺点
图像质量相对较差,容易出现变形和伪影,对钙化灶和出血性病变 的显示也不够理想。
IR序列的优缺点
总结词
01
反转恢复序列
优点
02
对T1加权成像效果较好,对骨皮质和钙化灶的显示较为清晰。
缺点
03
成像速度较慢,对脑部和脊髓等软组织的显示效果不如度回波序列
MRI技术具有高分辨率、多平面成像 、无辐射损伤等特点,广泛应用于临 床诊断、治疗和科研。
MRI工作原理
MRI系统主要由磁体、射频脉冲发生 器和接收器、计算机等部分组成。
计算机通过处理这些信号来重建图像。
磁体产生一个强大的静磁场,使人体 内的氢原子磁化。射频脉冲发生器和 接收器用于激励和接收氢原子的磁化 信号。
详细描述
在血管成像中,GRE序列能够提供高分辨率的图像,清晰 显示血管结构和血流情况。它对于血管疾病的诊断具有重 要价值,如动脉粥样硬化、血管狭窄等。
总结词
GRE序列在磁敏感加权成像中具有重要价值,能够显示组 织中的磁敏感效应。
详细描述
在磁敏感加权成像中,GRE序列能够提供高分辨率的图像 ,清晰显示组织中的磁敏感效应。它对于脑部疾病的诊断 具有重要价值,如脑出血、脑
在脑部功能成像中,EPI序列能够提供高分辨率的图像, 清晰显示大脑活动状态。它对于神经科学研究和临床诊断 具有重要价值,如癫痫病灶定位、认知功能评估等。
MRI常用序列及其应用

相质子的相位重聚,产生自旋回波。
实用文档
•
复 相 脉 冲 的 作 用 模 拟
实用文档
T2*与T2的差别
•用180度复相脉冲采集回波(MR信号)的 序列称为自旋回波序列(SE序列)
实用文档
•SE序列结构
180 90
回波
180
90
回波
TE TR
实用文档
TE:回波时间 TR:重复时间
•TR决定图像的T1成分 •TE决定图像的T2成分
实用文档ห้องสมุดไป่ตู้
时间(ms)
长TR (>2000ms) 短TE(<20ms)
PD
实用文档
PDWI
180 90
回波
180
90 回波
实用文档
短TR(200-500ms)、短TE(<20ms) 长TR(>2000ms)、长TE(>50ms) 长TR (>2000ms) 、短TE(<20ms)
T1WI T2WI PD
90°
ES
回波1 回波2 回波3 回波4 回波5
有效TE
ETL=5 TR
回波1 回波2 回波3 回波4 回波5
实用文档
K相位 K频率
FSE序列特殊参数
回波链长
–Echo Train Length,ETL –90度脉冲后用180度脉冲所采集回波的数目 –也称时间因子
回波间隙
–echo space, ES –回波链中,两个回波中点的时间间隔称为回
•很长的TR--所有的组织T1完全弛豫 -剔除图像的T1弛豫差别
•很短的TE可基本剔除图像的T2成分
实用文档
长TR(>2000ms) 长TE(>50ms)
实用文档
•
复 相 脉 冲 的 作 用 模 拟
实用文档
T2*与T2的差别
•用180度复相脉冲采集回波(MR信号)的 序列称为自旋回波序列(SE序列)
实用文档
•SE序列结构
180 90
回波
180
90
回波
TE TR
实用文档
TE:回波时间 TR:重复时间
•TR决定图像的T1成分 •TE决定图像的T2成分
实用文档ห้องสมุดไป่ตู้
时间(ms)
长TR (>2000ms) 短TE(<20ms)
PD
实用文档
PDWI
180 90
回波
180
90 回波
实用文档
短TR(200-500ms)、短TE(<20ms) 长TR(>2000ms)、长TE(>50ms) 长TR (>2000ms) 、短TE(<20ms)
T1WI T2WI PD
90°
ES
回波1 回波2 回波3 回波4 回波5
有效TE
ETL=5 TR
回波1 回波2 回波3 回波4 回波5
实用文档
K相位 K频率
FSE序列特殊参数
回波链长
–Echo Train Length,ETL –90度脉冲后用180度脉冲所采集回波的数目 –也称时间因子
回波间隙
–echo space, ES –回波链中,两个回波中点的时间间隔称为回
•很长的TR--所有的组织T1完全弛豫 -剔除图像的T1弛豫差别
•很短的TE可基本剔除图像的T2成分
实用文档
长TR(>2000ms) 长TE(>50ms)
头部磁共振常用序列临床应用简介

9
孤立病灶
DTI
孤立病灶DTI显示局部纤维中断 DTI显示双侧放射冠及 胼胝体的纤维走行
10
常规头部MR序列
T1W-信噪比高,灰白质对比强,对解剖结构的 显示好
T2W FSE(TSE)-常规T2像,用于一般病变的检 出,如梗塞灶、肿瘤等
T2W Flair-水抑制技术,显示被CSF高信号掩 盖的脑和脊髓的稍高或高信号病
消除伪影来源 显示被脂肪信号掩盖的病灶 与MHb、含蛋白液体鉴别
5
• CNS相关的成像技术 反转恢复(IR) 序列(3) FLAIR序列—衰减液体信号的反转恢复 (fluid attenuated inversion recovery,FLAIR) 序列—黑水序列 有效抑制CSF(游离水)信号—水抑制技术 F和L脊AI髓R序的列稍T高2W或I,高显信示号被病C灶SF高信号掩盖的脑 病变相对较小且靠近CSF 如大脑皮层病变、脑室旁病变
16
几种组织或成分的MR信号特点
钙化:因其内氢质子含量通常非常少,在T1WI及 T2WI上均表现为低信号
脂肪:有较高的质子密度,在T1WI及T2WI上均表现 为高信号。STIR
铁质沉积:MRI对铁含量的变化非常敏感 • 生理性沉积:苍白球、红核、黑质、壳核、尾状核和
丘脑部位可见明显的低信号(T2WI) • 病理性沉积:早老性痴呆(大脑皮质铁沉积增多)、
7
பைடு நூலகம்
CNS相关的成像技术(功能成像) MR扩散加权成像(2) DWI的临床应用 DWI主要用于超急性期缺血性脑梗死的诊断 和鉴别诊断 该期脑梗死主要引起细胞毒性水肿,与常规 T号1W异I常和,可T2提W早I相到比病,D后W2小I能时更之早内发现梗死区信
8
CNS相关的成像技术 MR扩散加权成像(3) DWI的临床应用、影像学表现 超急性/急性期缺血性脑梗死表现为高 信号 MS的活动病灶、部分肿瘤、血肿及 脓肿等也可能表现为高信号 利用DTI技术进行脑白质束成像,显示 肿瘤对周围白质束的影响
孤立病灶
DTI
孤立病灶DTI显示局部纤维中断 DTI显示双侧放射冠及 胼胝体的纤维走行
10
常规头部MR序列
T1W-信噪比高,灰白质对比强,对解剖结构的 显示好
T2W FSE(TSE)-常规T2像,用于一般病变的检 出,如梗塞灶、肿瘤等
T2W Flair-水抑制技术,显示被CSF高信号掩 盖的脑和脊髓的稍高或高信号病
消除伪影来源 显示被脂肪信号掩盖的病灶 与MHb、含蛋白液体鉴别
5
• CNS相关的成像技术 反转恢复(IR) 序列(3) FLAIR序列—衰减液体信号的反转恢复 (fluid attenuated inversion recovery,FLAIR) 序列—黑水序列 有效抑制CSF(游离水)信号—水抑制技术 F和L脊AI髓R序的列稍T高2W或I,高显信示号被病C灶SF高信号掩盖的脑 病变相对较小且靠近CSF 如大脑皮层病变、脑室旁病变
16
几种组织或成分的MR信号特点
钙化:因其内氢质子含量通常非常少,在T1WI及 T2WI上均表现为低信号
脂肪:有较高的质子密度,在T1WI及T2WI上均表现 为高信号。STIR
铁质沉积:MRI对铁含量的变化非常敏感 • 生理性沉积:苍白球、红核、黑质、壳核、尾状核和
丘脑部位可见明显的低信号(T2WI) • 病理性沉积:早老性痴呆(大脑皮质铁沉积增多)、
7
பைடு நூலகம்
CNS相关的成像技术(功能成像) MR扩散加权成像(2) DWI的临床应用 DWI主要用于超急性期缺血性脑梗死的诊断 和鉴别诊断 该期脑梗死主要引起细胞毒性水肿,与常规 T号1W异I常和,可T2提W早I相到比病,D后W2小I能时更之早内发现梗死区信
8
CNS相关的成像技术 MR扩散加权成像(3) DWI的临床应用、影像学表现 超急性/急性期缺血性脑梗死表现为高 信号 MS的活动病灶、部分肿瘤、血肿及 脓肿等也可能表现为高信号 利用DTI技术进行脑白质束成像,显示 肿瘤对周围白质束的影响
脉冲序列原理及临床应用(WQ)

通过检测回波信号的强度和相 位信息,可以重建出图像。
03
临床应用
脉冲序列在医学影像诊断中的应用
核磁共振成像
脉冲序列用于产生核磁共振信号, 通过信号处理和重建算法形成高 质量的医学影像,用于诊断肿瘤、
血管病变等。
超声成像
利用脉冲回声技术,通过发射超 声波并接收回声信号,生成人体 内部结构的二维或三维图像,用 于观察器官形态、血流状况等。
环境监测
通过分析脉冲信号的传播特性,监 测土壤湿度、地下水分布等环境参 数。
04
脉冲序列的优缺点
优点
成像速度快
脉冲序列可以显著提高 成像速度,从而减少成 像时间,减轻患者的不
适感。
空间分辨率高
通过精确控制脉冲的参 数,脉冲序列可以实现 高分辨率的图像重建。
对比度分辨率高
通过优化脉冲序列,可 以在图像中获得更好的 对比度,从而提高病变
的检出率。
灵活性高
脉冲序列可以根据不同 的临床需求进行调整, 以适应不同的检查场景。
缺点
对设备要求高
脉冲序列需要高性能的成像设 备才能实现,这增加了设备成
本和维护成本。
对病人不友好
由于脉冲序列的快速成像特点 ,可能会导致病人感到不适或 产生幽闭恐惧症。
技术难度大
脉冲序列需要精确控制脉冲参 数和采集过程,对操作技术要 求较高。
反转恢复序列
先施加一个180度反转脉 冲,使自旋磁化矢量反转, 再施加90度脉冲激发,然 后进行读出。
梯度回波序列
利用快速变化的梯度磁场 产生回波信号,常用于显 示血流。
脉冲序列的工作原理
核自旋的磁化矢量在磁场中受 到射频脉冲的激励,从低能态 跃迁到高能态。
在射频脉冲作用后,磁化矢量 发生进动,产生回波信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FSE T1WI
优点
采集时间缩短,甚至可以进行屏气扫描
缺点
受T2弛豫污染,T1对比不如SE T1WI 模糊效应 与GRE T1WI对比速度还不够快
主要用途
T1对比要求较低,以显示结构为主的部位 患者耐受差,要求加快扫描速度时 垂体动态增强扫描 体部屏气扫描
短回波链FSE T2WI
90° 180°
90° 180°
90° 180°
90° 180°
90° 180°
FSE ______________________________________________
90° 180° 180° 180°
90°
180° 180° 180°
90° 180° 180° 180°
K 空 间
SE
优点
与SE序列相比,成像速度加快 由于回波链较短,T2对比接近SE T2WI 对磁场不均匀性不敏感,没有明显的磁敏感性伪影
缺点
扫描速度还不够快,用于体部成像时易产生运动伪影
主要用途
颅脑 腹部(配合呼吸触发和脂肪抑制技术) 骨关节
中等回波链FSE T2WI
优点
扫描速度更快
优点
结构简单,信号变化容易解释 图像的组织对比好,信噪比高 对磁场不均匀敏感性低 最常用的T1WI序列之一,较少应用于T2WI
缺点
采集时间较长 体部易产生伪影 难进行动态增强扫描 激励次数(NEX)常需2次以上,进一步增加采集时间
临床应用
常用于颅脑、颈部、骨关节、软组织、 脊柱脊髓等部位的T1WI序列
Mz(纵向磁化矢量) 100%
50%
TR(ms)
TE决定图像的T2成分
很短的TE → 基本剔除图像的T2成分
Mxy(横向磁化矢量) 100%
50%
TE(ms)
100%
Mz(纵向磁化矢量)
50%
长TR (>2000ms)
长TE (>50ms)
Mxy(横向磁化矢量) 100%
50%
TR(ms) TE(ms)
FSE
快速成像
特点
回波链中每个回 波信号的TE不同
FSE ______________________________________________
90° 180° 180° 180°
90°
180° 180° 180°
90° 180° 180° 180°
TE1 TE2
TE3
快速成像
特点
回波链中每个回 波信号的TE不同
选择合适长的TE获得最好的T2对比
Mxy
100%
合适长的TE
一般TE选择两种组织T2值的平均 值附近可获得最好的T2对比
T2对比
TE(ms)
100%
Mz(纵向磁化矢量)
50%
短TR (200-600ms)
短TE ( 8-20ms )
Mxy(横向磁化矢量) 100%
50%
TR(ms) TE(ms)
模糊效应
能量沉积增加
对磁场不均 匀性不敏感
快速成像
特点
回波链中每个回 波信号的TE不同
脂肪组织 信号
强度增高
模糊效应
J-偶联
磁化转移效 应
FSE序列的分类
FSE T1WI (ETL=2-5) 短回波链FSE T2WI (ETL=5-10) 中等回波链FSE T2WI (ETL=10-20) 长回波链FSE T2WI (ETL>20)
选择合适短的TR获得最好的T1对比
Mxy
100%
合适短的TR
T1对比
一般TR选择两种组织T1值平均值附 近可获得最好的T1对比
TE(ms)
Mz(纵向磁化矢量) 100%
50%
长TR (>2000ms)
短TE ( <20ms ) Mxy(横向磁化矢量)
100%
50%
TR(ms) TE(ms)
SE序列的特点
MRI脉冲序列分类
(1)自由感应衰减类序列
采集的MR信号是自由感应衰减信号
(2)自旋回波类序列
采集到的MR信号是利用180°聚焦脉冲产生的自旋回波
(3)梯度回波类序列
采集到的MR信号是利用读出梯度场切换产生的梯度回波
(4)杂合序列
采集到的MR信号有两种以上的回波
一、自由感应衰减(FID)类序列
采集到的MRI信号为自由感应衰减(FID) 信号的脉冲序列统称为FID类序列。
磁共振常用脉 冲序列及其临 床应用-翁强
脉冲序列的基本概念
磁共振信号强度的影响因素
组
水
织 的 质 子 密
T2 T1
值
值
化 学 位 移
液 体 流 动
分 子 扩等 散 运
度
动
可调整的
成像参数
射频脉冲
梯度场
信号采集时刻
我们把射频脉冲、梯度场和信号采集时刻等相关各参数
的设置及其在时序上的排列称为MRI的脉冲序列(
自旋回波(spin echo,SE) 快速自旋回波(fast spin echo,FSE) 反转恢复类序列:反转恢复序列、快速反
转恢复序列
TR:重复时间
脉冲序列相邻的两次执行的时间间隔
TE:回波时间
产生宏观横向磁化矢量的脉冲中点到回波中点的时间间隔
TR决定图像的T1成分
很长的TR→ 所有的组织T1完全弛豫→ 剔除图像的T1成分
MRI发展的早期,FID序列曾经在低场强的 MRI仪上有较多的应用,目前这类序列已经很少 使用。
① 饱和恢复(saturation recovery,SR)序列 ② 采集FID信号的反转恢复(inversion recovery,IR)序列
二、自旋回波类序列
采集到的MR信号是利用180聚焦脉冲 产生的自旋回波
缺点
ETL较长,T2对比不如SE及短ETL FSE
主要用途
随着射频功率和梯度场性能的提高,中等ETL 的FSE序列很大程度取代短ETL的FSE成为最常用的 T2WI序列
ห้องสมุดไป่ตู้
GE: FSE(fast spin echo)
西门子、飞利浦:TSE( turbo spin echo )
ES:回波间隙
回波链中相邻两个回波中点之间的时间间隙
ETL:回波链长度
一次90°脉冲激发后所产生和采集的回波数目
快速成像
特点
SE ____________________________________________
pulse sequence)。
脉冲序列基本构成
SE脉冲序列的基本构建 第一行是射频脉冲,SE序列的射频脉冲由多次重复的90脉冲和后随 的180脉冲构成。第二行是层面选择梯度场,在90脉冲和180脉冲 时施加。第三行是相位编码梯度场,在90脉冲后180脉冲前施加。 第四行是频率编码梯度场,必须在回波产生的过程中施加。第五行是 MR信号