发电机过电压
发电机励磁系统过电压保护误动分析

转子过电压保护动作跳灭磁 开关 的程序 , 逻辑见 图
2。
故障发生 时, 号机组灭磁 开关 5F B跳 闸, 5 C 5
在正常运行情况下 , 励磁通道投入、 励磁调节器
号主变高压侧断路器 25 0 跳闸 ,2 V母联断路器 20k
22 闸。相关信号如下 : 1跳
为了确认相关判断 , 在检查二次设备无异常, 并
&
电压保 护动作
对转子回路做绝缘检查正常后 , 我们决定开机检查。 将5 号机组空载升压至额定 1 . V 励磁 电流 20 57 k , 5 2 A 励磁电压 1 , 5 V情况 下 , 0 在励磁调节器上观察到 转子过 电压保护 回路电流大约为 12 , 0 显然此信号 A 是一个假信号 , 因为机组正常运行时 , 转子过电压保 护回路不会导通 , 此时过电压 回路的泄流电流应该
根据事故时对励磁装置 、 发变组保护进行 的检 查, 5 及 号机组故 障录波 图、2 V故 障录波图显 20k 示 , 闸时机组运行正常 , 跳 电网也无故障发生 。因此 基本可以判定是误动作 , 必须查明原因。
2 保 护误 动作原 因分析
2 1 故 障 录波 数据 分析 . 根据 分析 故 障 录波 图发 现 : 机 组 灭 磁 开 关 5号
只有 m A级。因此我们判断故障可能是 因为霍耳传 感器 c 3 T 因安装位置紧邻转子引出线 , 到励磁电 受
流形成的强磁场干扰 , 零点发生漂移或传感器短时
故障, 使传感器输出瞬时增大而造成 的。 2 3 低 压 记忆过 流保 护动 作分 析 .
大朝山水电站发变组保护采用许继电气生产的 W B 0 型发 变组保护装置 , F 一10 该装置针对励磁系 统的自并励接线方式设计 了低压记忆过流保护作为 主变高压侧及母线的后备保护 。该保护沿用了传统 的一段两时限配置模式 , 时限跳母联断路器 , 时 t , t 2
发电机过电压

发电机过电压保护
一、保护原理
保护反映发电机定子电压。
其输入电压为机端TV二次相间电压(例如
U),动作后
CA
经延时切除发电机。
其逻辑框图见图一:
图一发电机过电压保护逻辑图
二、一般信息
2.3 出口跳闸定义(方式)
注:对应的保护压板插入,保护动作时发信并出口跳闸;对应的保护压板拔掉,保护动作时只发信,不出口跳闸。
2.5定值整定
2.6投入保护
开启液晶屏的背光电源,在人机界面的主画面中观察此保护是否已投入。
(注:该保护投入时其运行指示灯是亮的。
)如果该保护的运行指示灯是暗的,在“投退保护”的子画面点击投入该保护。
2.7参数监视
点击进入发电机过电压保护监视界面,可监视保护的整定值,电压计算值等有关信息。
三、保护动作整定值测试
3.1 保护定值测试
3.2 动作时间定值测试
保护出口方式是否正确(打“√”表示):正确□错误□保护信号方式是否正确(打“√”表示):正确□错误□。
发电机保护配置

发电机保护配置一、发电机保护配置1、法电机差动保护:保护能在区外故障时可靠地躲过两侧CT特性不一致所产的不平衡电流,区内故障保护灵敏动作。
保护采用三相式接线, 由两侧差动继电器构成,瞬时动作于全停。
2、发电机定子接地保护:保护由发电机机端零序电压和中性点侧三次谐波电压共同构成100%保护区的定子接地保护,基波跳闸,三次谐波发信号。
设PT断线闭锁。
区外故障时不误动。
3、发电机过电压保护:过电压保护动作电压取1.3倍额定电压,延时0.5秒动作于全停。
4、低频保护:低频保护反应系统频率的降低,保护由灵敏的频率继电器和计数器组成,并受出口断路器辅助接点闭锁。
即发电机退出运行时低频保护自动退出运行。
保护动作于发信号或全停。
装置在运行时可实时监视定值,频率及累计时间的显示。
两套保护之间宜有连续跟踪和数据累计功能。
5、失步保护:保护由三阻抗元件或测量振荡中心电压及变化率等原理构成,在短路故障、系统稳定振荡、电压回路断线等情况下,保护不误动作。
能检测加速和减速失步。
保护通常动作于信号,当振荡中心在发电机变压器内部,失步动作时间超过整定值或电流振荡次数超过规定值时,保护动作于全停。
并装设电流闭锁装置,以保证断路器断开时的电流不超过断路器额定失步开断电流。
6、失磁保护:保护由发电机端测量阻抗判据、变压器高压侧低电压判据、定子过电流判据组成。
设PT断线闭锁。
闭锁元件动作,阻抗元件动作发出失磁信号经延时t1动作减出力。
闭锁元件动作,阻抗元件动作延时t2切换厂用电源。
闭锁元件动作,系统电压低于动作允许值时经延时t3动作于全停或程序跳闸。
7、发电机逆功率保护:保护动作分两段时限t1发信号,t2动作于全停,具备PT断线闭锁功能。
8、程序跳闸逆功率保护:保护为程序跳闸专用,用于确认主汽门完全关闭。
由逆功率继电器作为闭锁元件,其整定值为(1-3)%发电机额定功率。
保护动作分两段时限t1发信号,t2动作于全停。
9、发电机过激磁保护:过激磁是以V/HZ的比值为动作原理,设有两段定值。
发电机试验中的过电压与过电流保护技术

发电机试验中的过电压与过电流保护技术过电压与过电流是发电机试验中常见的问题,对电气设备的正常运行和使用安全有着重要影响。
因此,保护发电机免受过电压和过电流的侵害是非常重要的。
本文将探讨发电机试验中的过电压与过电流保护技术,介绍其原理和应用。
一、过电压保护技术过电压是指电压在短时间内超过额定值的现象,在发电机试验中可能发生的原因有很多,比如突然断电、失速、电网故障等。
过电压对发电机绝缘系统造成很大的损害,甚至可能导致设备寿命缩短甚至无法使用。
因此,过电压保护对于发电机来说至关重要。
1. 电压继电器保护电压继电器是一种电气保护装置,用于监测电压的波动情况。
当电压超过设定的阈值时,电压继电器会触发保护动作,通过切断电源或者触发报警来保护发电机。
这种保护技术简单可靠,被广泛应用于发电机试验中。
2. 自动电压调节器保护自动电压调节器(AVR)是发电机的一个重要部件,能够监测发电机输出的电压,并根据设定值自动调节电压的大小。
当发生过电压时,AVR会自动调节发电机的输出电压,以保护设备不受损害。
这种保护技术能够有效地控制发电机的电压,提高设备的稳定性和工作效率。
3. 欠电压保护欠电压是指电压低于额定值的现象,在发电机试验中也需要保护。
因为欠电压会导致发电机无法正常工作,甚至无法输出电能。
对于欠电压的保护,可以采用类似过电压保护的技术,即使用电压继电器或自动电压调节器来监测电压波动,并触发保护动作。
二、过电流保护技术过电流是指电流在短时间内超过额定值的现象,在发电机试验中常见于过负荷或短路等情况。
过电流对发电机内部的电气元件和线路造成很大的热损害,甚至引起火灾。
因此,过电流保护也是发电机试验中必不可少的一项技术。
1. 电流继电器保护电流继电器是一种能够监测电流的装置,当电流超过设定值时,电流继电器会触发保护动作,切断电源或者触发报警。
这种保护技术简单可靠,广泛用于发电机试验中。
2. 熔断器保护熔断器是一种能够在电流过大时切断电路的设备,它由保护管和熔丝组成。
发电机励磁转子过电压保护功能检测方法应用实践研究

发电机励磁转子过电压保护功能检测方法应用实践研究摘要: 介绍了某型燃机发电机励磁转子过电压保护装置的配置功能。
根据燃机发电机励磁转子过电压保护功能检测要求,结合现场工程实践,在分析当前发电机励磁系统过电压保护功能传统检测方法的基础上,通过采用一次和二次相结合的检测方法对公司发电机励磁转子过电压保护功能进行检测的应用实践,总结完善一种新颖实用且相对安全的励磁转子过压保护功能检测方法,这对优化改进发电机励磁转子过电压保护功能检测方法,提高检测过程的安全性、正确性和便捷性,确保发电机励磁系统过电压保护装置安全可靠运行,具有较好的借鉴意义。
关键词: 发电机励磁转子过电压保护检测方法一次和二次相结合安全性新颖实用优化改进1.引言发电机励磁转子过电压保护功能是防止发电机励磁系统运行中产生的过电压危害转子绕组及相关回路的重要保护技术手段。
发电机转子过电压保护的配置,主要由非线性吸能电阻器(如氧化锌ZnO)、可控硅器件、触发器等部件组成。
目前可控硅整流静止励磁系统已在大中型同步发电机中广泛采用,在发电机运行时励磁可控硅整流换相及停机灭磁等正常工况和空载误强励、机端短路、励磁失控、机组内部故障等严重事故状态以及其他各种异常工况时,转子回路中会产生很高的过电压,这些过电压如不采取措施进行及时有效抑制就有可能危及发电机励磁绕组对转子铁芯之间的绝缘和可控硅整流桥,一旦这些部位的绝缘被过电压击穿将造成发电机事故停机和更大的经济损失,这就反应出发电机励磁转子过电压保护功能配置的重要性。
在实际工程的应用实践中,就需要总结优化一套安全可靠且操作简便的检测方法来对发电机转子过电压保护装置的元件参数和工作可靠性进行周期性的检查和测试,从而保证发电机转子过电压保护装置的工作可靠性,进而提高发电机组的安全可靠运行性能。
结合工程应用实践,本文介绍了某型燃机发电机转子过电压保护装置配置和工作原理,结合该型燃机励磁系统转子过电压保护装置检测工作的现场实际,总结优化出该型转子过电压保护装置检测工作的改进方法,对同型发电机转子过电压保护装置的检测工作有一定借鉴意义。
什么是过电压

什么是过电压电力系统在特定条件下所出现的超过工作电压的异常电压升高。
过电压属于电力系统中的一种电磁扰动现象。
电工设备的绝缘长期耐受着工作电压,同时还必须能够承受一定幅度的过电压,这样才能保证电力系统安全可靠地运行。
基本介绍overvoltage过电压种类过电压是指工频下交流电压均方根值升高,超过额定值的10%,并且持续时间大于1分钟的长时间电压变动现象;过电压的出现通常是负荷投切的结果。
电力系统在特定条件下所出现的超过工作电压的异常电压升高,属于电力系统中的一种电磁扰动现象。
电工设备的绝缘长期耐受着工作电压,同时还必须能够承受一定幅度的过电压,这样才能保证电力系统安全可靠地运行。
研究各种过电压的起因,预测其幅值,并采取措施加以限制,是确定电力系统绝缘配合的前提,对于电工设备制造和电力系统运行都具有重要意义。
主要分类过电压分外过电压和内过电压两大类。
外过电压又称雷电过电压、大气过电压。
由大气中的雷云对地面放电二次过电压保护器而引起的。
分直击雷过电压和感应雷过电压两种。
雷电过电压的持续时间约为几十微秒,具有脉冲的特性,故常称为雷电冲击波。
直击雷过电压是雷闪直接击中电工设备导电部分时所出现的过电压。
雷闪击中带电的导体,如架空输电线路导线,称为直接雷击。
雷闪击中正常情况下处于接地状态的导体,如输电线路铁塔,使其电流互感器过电压保护器电位升高以后又对带电的导体放电称为反击。
直击雷过电压幅值可达上百万伏,会破坏电工设施绝缘,引起短路接地故障。
感应雷过电压是雷闪击中电工设备附近地面,在放电过程中由于空间电磁场的急剧变化而使未直接遭受雷击的电工设备(包括二次设备、通信设备)上感应出的过电压。
因此,架空输电线路需架设避雷线和接地装置等进行防护。
通常用线路耐雷水平和雷击跳闸率表示输电线路的防雷能力。
内过电压电力系统内部运行方式发生改变而引起的过电压。
有暂态过电压、操过电压保护器作过电压和谐振过电压。
暂态过电压是由于断路器操作或发生短路故障,使电力系统经历过渡过程以后重新达到某种暂时稳定的情况下所出现的过电压,又称工频电压升高。
发电机过电压保护原理
发电机过电压保护原理
发电机过电压保护原理是根据电压变化的幅值和时间来判断电压是否超过设定的阈值,并采取相应的保护措施。
发电机过电压保护通常采用继电器保护装置来实现。
当电压超过设定阈值时,继电器保护装置会通过感应器或传感器检测到电压变化。
然后通过比较电压变化的幅值和时间与设定阈值进行比较,判断电压是否超过阈值。
在保护装置中,通常会设置有一个可调节的时间延迟器或时间继电器。
当电压超过阈值一段时间后,时间延迟器会启动,并发送信号到继电器,触发保护动作。
这样可以防止电压瞬时波动引起的误动作。
继电器保护装置一般会采取断路器来切断发电机与负载之间的连接,使发电机不再输出电能。
同时也会发送警告信号,以提醒操作人员进行处理。
此外,发电机还可以通过调节励磁电流来实现过电压保护。
当检测到过电压时,自动调节系统会通过降低励磁电流的方式,降低发电机的输出电压,以达到保护的目的。
综上所述,发电机过电压保护原理是通过检测电压变化的幅值和时间来判断电压是否超过设定阈值,并采取相应的保护措施,包括切断输出电能和发送警告信号等。
通过这些手段,可以保护发电机免受过电压的损害。
什么是过电压-过电压类别有哪些-电力系统过电压分类
什么是过电压?过电压类别有哪些?电力系统过电压分类过电压这块在系统设计中比较重要,特别是500kV电压等级以上设计,但是由于专业性比较强,对其理解也是基于参与工程的过电压专题以及EMTP过电压计算的一个课题,对这块也做一个总结。
一、何谓过电压所谓过电压,是指电力系统在特定条件下所出现的超过工作电压的异常电压升高,属于电力系统中的一种电磁扰动现象。
电工设备的绝缘长期耐受着工作电压,同时还必须能够承受一定幅度的过电压,这样才能保证电力系统安全可靠地运行。
研究各种过电压的起因,预测其幅值,并采取措施加以限制,是确定电力系统绝缘配合的前提,对于电工设备制造和电力系统运行都具有重要意义。
过电压分两类,外过电压和内过电压。
外过电压又称雷电过电压、大气过电压。
由大气中的雷云对地面放电而引起的。
内过电压是电力系统内部运行方式发生改变而引起的过电压,分为工频过电压、操作过电压和谐振过电压。
个人涉及的一般都是内过电压分析,外过电压也会尝试稍作总结。
二、工频过电压工频过电压指系统中由线路空载、不对称接地故障和甩负荷引起的的频率等于工频(50Hz)或接近工频的过电压。
主要是三类原因:1.空载长线路的电容效应;2.不对称短路引起的非故障相电压升高;3.甩负荷引起的工频电压升高。
其中1和3经常结合在一起造成过电压。
实际计算过程中,与线路长短、短路容量、有无并联电抗器、故障前负荷都有关系。
为何讨论工频过电压?直接影响操作过电压的幅值持续时间长的工频电压升高仍可能危及设备的安全运行(油纸绝缘局放、绝缘子污闪、电晕等)在超高压系统中,为降低电气设备绝缘水平,不但要对工频电压升高的数值予以限制,对持续时间也给予规定(母线侧1.3pu,线路侧1.4pu,时间一般为1min)决定避雷器额定电压(灭弧电压)的重要依据(3、6、l0kV系统工频电压升高可达系统最高运行线电压的1.1倍,称为110%避雷器;35~60kV系统为100%避雷器;110、220kV 系统为80%避雷器;330kV及以上系统,分为电站型避雷器(即80%避雷器)及线路型避雷器(即90%避雷器)两种)工频过电压的幅值、持续时间与出现的机率对设备的影响及避雷器的选用应该说是非常重要的,但是现在广泛采用了不带间隙的氧化锌避雷器,由于有一定热容级,选择其额定电压时,工频过电压只是条件之一,不仅决定于工频过电压的幅值、而且决定于其持续时间,但由于我国这块持续时间与几率比较低(单相重合闸,一般不超过0.5S-1S),所以工频过电压可能已不是选择氧化锌避雷器额定电压的关健条件。
发电机过压保护实验
发电机过压保护实验一、实验目的1.掌握发电机电压保护的电路原理、工作特点、应用及整定原则。
2.通过安装调试,了解过电压保护中各继电器的功能、整定和调试方法。
3.掌握发电机过电压保护电路接线及实验操作技术。
2、预览和思考1、图17―1的过电压保护电路中,每一个继电器承担着什么任务?能否少用几个?2、图17―1电路中各个继电器的参数是根据什么原则整定的?3.如果图17-1中信号继电器的电流线圈错误地连接到电压电路,会发生什么情况?4、为什么安装调试时只断开电压继电器与电压互感器的连接,在电压继电器线圈上加调试电压可以调整和设置吗?5、为什么四个继电器中只有yj是测量元件?三、原理说明发电机保护是防止发电机绝缘因输出电压升高而损坏的一套继电保护装置。
当运行中的发电机突然失去负荷或限时切断靠近发电机的外部故障时,由于转子转速的增加和强励装置的作用,发电机的端电压升高。
对于水轮发电机,由于调速系统惯性较大,使动作过程缓慢,因此在突然失去负荷时,转速将超过额定值,这时发电机输出端电压有可能高达额定值的1.8~2倍,为了防止发电机的绝缘受到损坏,在水轮发电机上一般应装设过电压保护。
对于汽轮发电机,由于配有速动调速器,当转速超过额定值的10%时,汽轮机危急遮断器立即动作,关闭主汽门,可有效防止机组转速升高引起的过电压。
因此,汽轮发电机一般不考虑安装过电压保护。
然而,为了保证大型汽轮发电机的安全,对于大型中间再热机组,由于其工频调节器调节过程缓慢,励磁系统响应速度慢,因此也有必要在大型汽轮发电机上安装过电压保护装置。
(一)保护装置原理接线图过电压保护装置的原理接线如图17-1所示。
由于过电压发生在三相对称中,因此只需安装一个电压继电器作为测量元件。
该保护包括一个连接到发电机输出端电压互感器的过压继电器YJ,以及时间继电器SJ、信号继电器XJ、保护出口中间继电器BCJ等。
保护动作后,电机断路器和灭磁开关跳闸。
对于大型发变组,变压器高压侧的断路器和灭磁开关跳闸。
发电机机组自励磁问题及过电压问题的分析及计算研究
山东电网黑启动实验- 发电机机组自励磁及过电压问题的分析研究山东大学电气工程学院王洪涛1 发电机机组自励磁问题的分析及计算研究 (2)1.1 自励磁的物理过程 (2)1.2 发生自励磁的条件 (3)1.3 自励磁计算与分析 (4)1.4 小结 (5)2 过电压问题的分析及计算研究 (6)2.1 过电压问题的分析 (6)2.2 工频过电压计算 (7)2.3 空载线路合闸操作过电压计算 (8)2.3.1 分段空充线路 (8)2.3.2 一次空充全部线路 (10)2.4 空充变压器谐振过电压计算 (10)2.5 小结 (12)1 发电机机组自励磁问题的分析及计算研究发电机自励磁是黑启动过程中需要注意的问题,本章从发生自励磁的物理过程开始,结合泰安抽水蓄能电站实际对黑启动过程中自励磁发生的条件进行了分析和计算。
1.1 自励磁的物理过程自励磁实质是参数共振现象。
在正常的同步运行情况下,水轮发电机的同步电抗在X d 〜X q之间周期性地变动着,即每过一个电周期,电抗将变动两个周期。
另一方面,无论是凸极机(水轮发电机)还是隐极机(汽轮发电机),当它们处于异步工作状态,或者处在定子磁通变动时的同步工作状态时,电抗将在X d'〜X q之间周期性变动。
在所有这些情况下,如果电机的外电路具有容抗性质,就可能在此电感参数自动变化的振荡回路中激发起一种特殊性质的过电压,称为参数共振过电压。
首先,共振所需的能量由改变参数的发电机所供给,而不需单独的电源电压。
同时,在起始阶段,只要回路中具有某些残余能量,例如,转子剩磁切割绕组而产生不大的感应电压,或电容两端具有微小的残压,就可保证共振现象的持续发展。
其次,由于实际电网中存在着一定的损耗电阻,所以每次参数变化所引起的能量应当足够大(即参数变化足够大),以便不仅可以补偿电阻中的能量损耗,才可能并使回路中的储能愈积愈多,保证共振的发展。
第三,共振发生后,回路中的电流和电压的幅值,理论上能趋于无穷大,这一点与线性共振现象有着显著的区别,后者即使在完全共振的条件下,其振荡的幅值也受损耗电阻所限制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四月一日、二日#1发电机过电压的原因分析
一、主要经过:
• 1996四月一日上半夜,#1发电机中修后的起动准备工作基本完成。
21:05当合上发电机励磁开关41时,发电机出口电压表立即甩到最大(25KV),发电机电流指示约14KA,发电机励磁电压、励磁电流指示均较大。
立即手动拉开41开关。
BTG盘报警信号有:86-5/GMT出口动作、强励报警电子间检查发现51AE继电器调牌,发电机意外加电压报护动作。
发生上述现象以后,立即对发变组的一次回路进行检查,但未发现任何异常,对发变组回路测绝缘正常。
根据发电机的现象当时主要怀疑AVR系统有问题,继电保护班对AVR系统进行外观检查,但没发现任何问题。
后经有关领导决定,准备再次进行并网操作。
四月二日02:35,当合上发电机励磁开关41后,发电机出口电压表立即甩到最大(25KV),发电机电流指示约18KA,发电机励磁电压、励磁电流指示均较大。
立即手动拉开41开关。
BTG盘“86-5/GMT出口动作”报警,电子间检查发现51AE继电器调牌,发电机意外加电压报护动作。
另外,就地检查人员听到发变组回路有异常的充电声音。
二、原因及现象分析:
• 事故发生以后,维持汽机3000转/分,对永磁机出口进行核相,相序正确。
故分析原因是AVR系统故障引起。
将发变组回路转为检修。
对AVR系统,重点是90DC调节回路进行全面检查,并做模拟试验,发现90DC调节器回路中A6运算放大器输出为-1.2V电位。
该信号到#2触发电路用来增大功放回路的导通角。
这样当41开关合上后,功放回路被导通,励磁电流、励磁电压增加,发电机空载电势增大。
发电机空载电势的增大,导致与其相连结的主变、厂总变出现过磁密,使变压器铁芯出现严重磁饱和,产生巨大的空载激磁电流,尤其是三台主变。
下表反应的是一台主变的过磁密倍数与励磁电流的关系:┌──────┬───┬───┬───┬───┐
│过磁密倍数│ 1.0 │ 1.1 │ 1.2 │ 1.3 │
├──────┼───┼───┼───┼───┤
│励磁电流(A)│ 180 │ 216 │ 2000 │ 8200 │
└──────┴───┴───┴───┴───┘
从上表可看出,如果主变有1.•3倍的过磁密,则三台主变所需的励磁电流为1.•732×8.2KA=14.2KA,而当时发电机的三相电流近18KA,考虑厂总变需要部份激磁电流,这样根据发电机的三相电流,可推算出当时发电机的出口电压为26KV左右。
(注:当时发电机的频率为额定,过磁密倍数即为过电压倍数。
)
对意外加电压保护动作的说明:
意外加电压保护是由50AE 和81AE两部分串连够成的。
•其简图如下
││
┼├──┤├──┤├───┤├───┤─
│50AE 81AE 86-5\GMT│
• 其中81AE接点带有一小的延时,50AE为瞬动接点。
在合励磁开关41之前,发电机没有电压,故81AE接点闭合,当励磁开关41合上后,由与存在相当大的激磁电流,50AE闭合而81AE没来及返回,故86-5\GMT出口继电器动作。
三、暴露的问题:
1、本次中修前AVR系统为正常工作状态。
而中修期间对该系统进行了全面检验,不
但没有发现问题,反而出现运算回路有损坏现象。
值得分析。
2、四月一日21:05,第一次合发电机励磁开关41出现问题以后,应组织人员进行分析,在没有找出原因的情况下,不应该再进行第二次操作。
分析人:陆明智
1996.4.10。