新人教版高中数学《基本不等式》PPT课件1
合集下载
2.2.1 基本不等式-(新教材人教版必修第一册)(35张PPT)

利用基本不等式比较大小
【例 2】 (1)已知 a,b∈R+,则下列各式中不一定成立的是( )
A.a+b≥2 ab
B.ba+ab≥2
C.a2+abb2≥2 ab
D.a2+abb≥ ab
(2)已知 a,b,c 是两两不等的实数,则 p=a2+b2+c2 与 q=ab+bc
+ca 的大小关系是________.
B [当a2+1=2a,即(a-1)2=0 1.不等式a2+1≥2a中等号成立 即a=1时,“=”成立.] 的条件是( ) A.a=±1 B.a=1 C.a=-1 D.a=0
2.已知a,b∈(0,1),且a≠b,
D [∵a,b∈(0,1),∴a2<a,
下列各式中最大的是( )
b2<b,
A.a2+b2
一定成立的是( )
A.a-b<0
B.0<ab<1
C.
a+b ab< 2
D.ab>a+b
C [∵a>b>0,由基本不等式知 ab<a+2 b一定成立.]
3.不等式x-9 2+(x-2)≥6(其 中x>2)中等号成立的条件是( )
A.x=3 B.x=-3
C [由基本不等式知等号成立 的条件为x-9 2=x-2,即x=5(x=- 1舍去).]
∴a2+b2<a+b,又a2+b2>
B.2 ab
2ab(∵a≠b),
C.2ab
∴2ab<a2+b2<a+b.
D.a+b
又∵a+b>2 ab(∵a≠b),∴a
+b最大.]
3.已知ab=1,a>0,b>0,则a
B [∵a>0,b>0,∴a+
+b的最小值为( )
b≥2 ab=2,当且仅当a=b=1时取
人教版必修五数学《基本不等式》PPT课件

《基本不等式》
·人教版必修五数学PPT课件·
目 录
1
重要不等式
2
基本不等式
3
有关常用理论4Biblioteka 例题学习1 重要不等式
1. 重要不等式
当a,b是任意实数时,有a2+b2≥2ab,当且仅当a=b时,等号成立.
2 基本不等式
2. 基本不等式
2. 基本不等式
2. 基本不等式
从数列的角度看,a,b的算术平均数是a,b的等差中项,几何平均 数是a,b的正的等比中项,则基本不等式可表示为:a与b的正的等比中 项不大于它们的等差中项.
【做一做2】 已知ab=16,a>0,b>0,则a+b的最小值为
.
答案:8
2. 基本不等式
2. 基本不等式
2. 基本不等式
2. 基本不等式
3 有关常用理论
3. 有关常用理论
3. 有关常用理论
4 例题学习
4. 例题学习
题型一
比较大小
4. 例题学习
4. 例题学习
题型二 利用基本不等式求最值
4. 例题学习
4. 例题学习
4. 例题学习
4. 例题学习
同学们!下课啦!
·人教版必修五数学PPT课件· 千图老师
·人教版必修五数学PPT课件·
目 录
1
重要不等式
2
基本不等式
3
有关常用理论4Biblioteka 例题学习1 重要不等式
1. 重要不等式
当a,b是任意实数时,有a2+b2≥2ab,当且仅当a=b时,等号成立.
2 基本不等式
2. 基本不等式
2. 基本不等式
2. 基本不等式
从数列的角度看,a,b的算术平均数是a,b的等差中项,几何平均 数是a,b的正的等比中项,则基本不等式可表示为:a与b的正的等比中 项不大于它们的等差中项.
【做一做2】 已知ab=16,a>0,b>0,则a+b的最小值为
.
答案:8
2. 基本不等式
2. 基本不等式
2. 基本不等式
2. 基本不等式
3 有关常用理论
3. 有关常用理论
3. 有关常用理论
4 例题学习
4. 例题学习
题型一
比较大小
4. 例题学习
4. 例题学习
题型二 利用基本不等式求最值
4. 例题学习
4. 例题学习
4. 例题学习
4. 例题学习
同学们!下课啦!
·人教版必修五数学PPT课件· 千图老师
《基本不等式》示范公开课教学PPT课件【高中数学人教版】

课程导入
通常称不等式(1)为基本不等式(basic inequality).其中,叫做正数a,b的算术平均数,叫做正数a,b的几何平均数.基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.
课程讲解
思考: 上面通过考察a2+b2=2ab的特殊情形获得了基本不等式,能否直接利用不等式的性质推导出基本不等式呢?下面我们来分析一下.
a>0,b>0
填表比较:
注意:从不同角度认识基本不等式
课程讲解
课程讲解
例1 已知x>0,求x+的最小值.
分析:求x+的最小值,就是要求一个y0(=x0+),使x>0,都有x+≥y.观察x+,发现x=1.联系基本不等式,可以利用正数x和的算术平均数与几何平均数的关系得到y0=2.
解:因为x>0,所以 x+=2当且仅当x= ,即x2=1,x=1时,等号成立,因此所求的最小值为2.
谢谢大家
再见
课程讲解
我们用两个正数的算术平均数与几何平均数的关系顺利解决了函数的一些最值问题.在用均值不等式求函数的最值,是值得重视的一种方法,但在具体求解时,应注意考查下列三个条件:(1)函数的解析式中,各项均为正数;(2)函数的解析式中,含变数的各项的和或积必须有一个为定值;(3)函数的解析式中,含变数的各项均相等,取得最值即用均值不等式求某些函数的最值时,应具备三个条件:一正二定三取等.
②如何用a, b表示CD? CD=______
①如何用a, b表示OD? OD=______
课程讲解
你能用这个图得出基本不等式的几何解释吗?
②如何用a, b表示CD? CD=______
①如何用a, b表示OD? OD=______
③OD与CD的大小关系怎样? OD_____CD
通常称不等式(1)为基本不等式(basic inequality).其中,叫做正数a,b的算术平均数,叫做正数a,b的几何平均数.基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.
课程讲解
思考: 上面通过考察a2+b2=2ab的特殊情形获得了基本不等式,能否直接利用不等式的性质推导出基本不等式呢?下面我们来分析一下.
a>0,b>0
填表比较:
注意:从不同角度认识基本不等式
课程讲解
课程讲解
例1 已知x>0,求x+的最小值.
分析:求x+的最小值,就是要求一个y0(=x0+),使x>0,都有x+≥y.观察x+,发现x=1.联系基本不等式,可以利用正数x和的算术平均数与几何平均数的关系得到y0=2.
解:因为x>0,所以 x+=2当且仅当x= ,即x2=1,x=1时,等号成立,因此所求的最小值为2.
谢谢大家
再见
课程讲解
我们用两个正数的算术平均数与几何平均数的关系顺利解决了函数的一些最值问题.在用均值不等式求函数的最值,是值得重视的一种方法,但在具体求解时,应注意考查下列三个条件:(1)函数的解析式中,各项均为正数;(2)函数的解析式中,含变数的各项的和或积必须有一个为定值;(3)函数的解析式中,含变数的各项均相等,取得最值即用均值不等式求某些函数的最值时,应具备三个条件:一正二定三取等.
②如何用a, b表示CD? CD=______
①如何用a, b表示OD? OD=______
课程讲解
你能用这个图得出基本不等式的几何解释吗?
②如何用a, b表示CD? CD=______
①如何用a, b表示OD? OD=______
③OD与CD的大小关系怎样? OD_____CD
2.2基本不等式(第1课时) 高中数学人教版必修一 课件(共14张PPT).ppt

追问1. 基本不等式实质上就是比较大小,以前学习的比较大小的方法都有哪些?你会用这些
方法证明基本不等式吗? 作差法
a b ab 1 (a b 2 ab)
2
ab 2
1 ( a b)2 0 2
ab
,即
ab a b 2
【师生共探,证明新知】
问题3. 我们从赵爽弦图得到了重要不等式,又通过代换得到了基本不等式。数学讲究严谨性,请
同学们想一想,可以用什么方法证明基本不等式?
追问2:除了以上的方法,你还能用其它的方法证明吗?
要证 只要证 要证①,只要证 要证②,只要证
2 ab a b
①
2 ab a b 0 ②
( a b)2 0 ③
要证③,只要证
( a b)2 0
④
显然,④成立,当且仅当a=b时,等号成立。
分析法(执果索因法)
a2 b2 2ab(a,b R) ,当且仅当 a b 时,等号成立。那么, 当 a 0,b 0 时,我们用 a , b 分别代替上式中的 a, b ,上述
不等关系变为什么?
a2 b2 2ab(a, b R) a b 2 ab
基本不等式 (均值不等式)
【合作交流,生成新知】
基本不等式的结构特征:
2.2 基本不等式
【创设情境,发现新知】
【地主分地的故事】 地主家有两个儿子,为了分家产,他分给大儿子一块长方形的地,分
给小儿子一块正方形的地,这两块地的周长相同。问:这样分家公平吗?
你分这块长 方形的地
你分这块正 方形的地
【合作交流,生成新知】
问题1. 上一节我们通过赵爽的弦图得出了一个重要不等式:
【师生共探,证明新知】 问题4. 以上的方法都是从代数的角度证明的,你能从几何的角度解释基本不等式吗?
方法证明基本不等式吗? 作差法
a b ab 1 (a b 2 ab)
2
ab 2
1 ( a b)2 0 2
ab
,即
ab a b 2
【师生共探,证明新知】
问题3. 我们从赵爽弦图得到了重要不等式,又通过代换得到了基本不等式。数学讲究严谨性,请
同学们想一想,可以用什么方法证明基本不等式?
追问2:除了以上的方法,你还能用其它的方法证明吗?
要证 只要证 要证①,只要证 要证②,只要证
2 ab a b
①
2 ab a b 0 ②
( a b)2 0 ③
要证③,只要证
( a b)2 0
④
显然,④成立,当且仅当a=b时,等号成立。
分析法(执果索因法)
a2 b2 2ab(a,b R) ,当且仅当 a b 时,等号成立。那么, 当 a 0,b 0 时,我们用 a , b 分别代替上式中的 a, b ,上述
不等关系变为什么?
a2 b2 2ab(a, b R) a b 2 ab
基本不等式 (均值不等式)
【合作交流,生成新知】
基本不等式的结构特征:
2.2 基本不等式
【创设情境,发现新知】
【地主分地的故事】 地主家有两个儿子,为了分家产,他分给大儿子一块长方形的地,分
给小儿子一块正方形的地,这两块地的周长相同。问:这样分家公平吗?
你分这块长 方形的地
你分这块正 方形的地
【合作交流,生成新知】
问题1. 上一节我们通过赵爽的弦图得出了一个重要不等式:
【师生共探,证明新知】 问题4. 以上的方法都是从代数的角度证明的,你能从几何的角度解释基本不等式吗?
人教版高中数学必修1《基本不等式》PPT课件

(二)基本知能小试 1.判断正误:
(1)当 x>0 时,1x+x 的最小值为 2. (2)已知 m>0,n>0,且 mn=81,则 m+n 的最小值为 18.
答案:(1)√ (2)√
() ()
2.下列不等式正确的是
A.a+1a≥2
B.(-a)+-1a≤-2
C.a2+a12≥2
D.(-a)2+-1a2≤-2
(2)已知 0<x<12,求 x(1-2x)的最大值;
(3)已知 x>0,y>0,且8x+1y=1,求 x+2y 的最小值.
[解]
(1)
∵
x
>
2
,
∴
x
-
2
>
0
,
∴
x
+
4 x-2
=
x
-
2
+
4 x-2
+
2≥2 x-2·x-4 2+2=6.当且仅当 x-2=x-4 2即 x=4 时,等号成立.∴x+
x-4 2的最小值为 6.
解析:∵a>b>c,∴a-b>0,b-c>0, ∴ a-bb-c≤a-b+2 b-c=a-2 c. 当且仅当 a-b=b-c,即 2b=a+c 时,等号成立. 答案: a-bb-c≤a-2 c
题型二 利用基本不等式求最值 【学透用活】
(1) 利 用 基 本 不 等 式 求 最 值 , 必 须 按 照 “ 一 正 , 二 定 , 三 相 等 ” 的 条 件 进 行.若具备这些条件,可直接运用基本不等式;若不具备这些条件,则应进行适 当地变形.
()
A.x≥2y
B.x>2y
C.x≤2y
D.x<2y
解析:∵不等式成立的前提条件是各项均为正,∴x-2y>0,即 x>2y. 故选 B.
高中数学人教版必修五:基本不等式(共23张PPT)

基本不等式:
ab
a
b 2
(第一课时)
2019/10/5
一、情境创设 导入课题
第24届国际数学家大会(ICM2002)的会标
问题 :你能在这个图中找出一些相等关系或不 等关系吗?
二、自主探究 推导公式
问题 1:在正方形 ABCD 中有4个全等的直角三角形.设直角三角形的
两条直角边长为a,b,正方形ABCD的面积为 S ,4个直角三角形的面积和
2
又称为基本不等式
4、从数列角度看:
把
ab 2
看做两个正数a,b 的等差中项,
ab 看做正数a,b的等比中项,
那么上面不等式可以叙述为:
两个正数的等差中项不小于它们的等比 中项。
还有没有其它的证明方法证明均值 不等式呢?
二、自主探究 推导公式 探究:如图,AB 是圆的直径,点 C 是 AB上一点,
显然,④是成立的.当且仅当 a b 时,④中的等号成立.
2019/10/5
析 : a 0,b 0,
a b ab a b 2 ab ( a b)2 0
2
2
2
即 a b ab 2
当且仅当 a b即a b等号成立
上面所证结论通常称为均值不等式
(2)设矩形的长、宽分别为x(m),y(m),
依题意有2(x+y)=36,即x+y=18, 因为x>0,y>0,所以, xy ≤ x y
2
因此 xy ≤9
将这个正值不等式的两边平方,得xy≤81, 当且仅当x=y时,式中等号成立,此时x=y=9,
因此,当这个矩形的长与宽都是9m时,它的 面积最大,最大值是81m2。
ab
a
b 2
(第一课时)
2019/10/5
一、情境创设 导入课题
第24届国际数学家大会(ICM2002)的会标
问题 :你能在这个图中找出一些相等关系或不 等关系吗?
二、自主探究 推导公式
问题 1:在正方形 ABCD 中有4个全等的直角三角形.设直角三角形的
两条直角边长为a,b,正方形ABCD的面积为 S ,4个直角三角形的面积和
2
又称为基本不等式
4、从数列角度看:
把
ab 2
看做两个正数a,b 的等差中项,
ab 看做正数a,b的等比中项,
那么上面不等式可以叙述为:
两个正数的等差中项不小于它们的等比 中项。
还有没有其它的证明方法证明均值 不等式呢?
二、自主探究 推导公式 探究:如图,AB 是圆的直径,点 C 是 AB上一点,
显然,④是成立的.当且仅当 a b 时,④中的等号成立.
2019/10/5
析 : a 0,b 0,
a b ab a b 2 ab ( a b)2 0
2
2
2
即 a b ab 2
当且仅当 a b即a b等号成立
上面所证结论通常称为均值不等式
(2)设矩形的长、宽分别为x(m),y(m),
依题意有2(x+y)=36,即x+y=18, 因为x>0,y>0,所以, xy ≤ x y
2
因此 xy ≤9
将这个正值不等式的两边平方,得xy≤81, 当且仅当x=y时,式中等号成立,此时x=y=9,
因此,当这个矩形的长与宽都是9m时,它的 面积最大,最大值是81m2。
基本不等式(共43张)ppt课件

15
判别式及根的关系
根的关系
判别式:$Delta = b^2 4ac$,用于判断一元二次方
程的根的情况。
01
02
03
当 $Delta > 0$ 时,方程有 两个不相等的实根;
当 $Delta = 0$ 时,方程有 两个相等的实根(即一个重
根);
04
2024/1/25
05
当 $Delta < 0$ 时,方程无 实根,有两个共轭复根。
基本不等式性质
传递性
若$a > b$且$b > c$,则$a > c$。
正数乘法保序性
若$a > b > 0$且$c > d > 0$ ,则$ac > bd$。
对称性
若$a = b$,则$b = a$;若 $a > b$,则$b < a$。
2024/1/25
可加性
若$a > b$且$c > d$,则$a + c > b + d$。
2024/1/25
35
思考题与练习题
思考题:如何利用均值不 等式证明其他不等式?
2024/1/25
|x - 3| < 5
练习题:解下列不等式, 并在数轴上表示解集
(x + 1)/(x - 2) > 0
36
THANKS。
2024/1/25
37
次不等式组来解决。
12
03
一元二次不等式解法
2024/1/25
13
一元二次不等式概念
一元二次不等式
只含有一个未知数,并且未知数的最高次数是2的不等式。
标准形式
$ax^2+bx+c>0$ 或 $ax^2+bx+c<0$,其中 $a neq 0$。
判别式及根的关系
根的关系
判别式:$Delta = b^2 4ac$,用于判断一元二次方
程的根的情况。
01
02
03
当 $Delta > 0$ 时,方程有 两个不相等的实根;
当 $Delta = 0$ 时,方程有 两个相等的实根(即一个重
根);
04
2024/1/25
05
当 $Delta < 0$ 时,方程无 实根,有两个共轭复根。
基本不等式性质
传递性
若$a > b$且$b > c$,则$a > c$。
正数乘法保序性
若$a > b > 0$且$c > d > 0$ ,则$ac > bd$。
对称性
若$a = b$,则$b = a$;若 $a > b$,则$b < a$。
2024/1/25
可加性
若$a > b$且$c > d$,则$a + c > b + d$。
2024/1/25
35
思考题与练习题
思考题:如何利用均值不 等式证明其他不等式?
2024/1/25
|x - 3| < 5
练习题:解下列不等式, 并在数轴上表示解集
(x + 1)/(x - 2) > 0
36
THANKS。
2024/1/25
37
次不等式组来解决。
12
03
一元二次不等式解法
2024/1/25
13
一元二次不等式概念
一元二次不等式
只含有一个未知数,并且未知数的最高次数是2的不等式。
标准形式
$ax^2+bx+c>0$ 或 $ax^2+bx+c<0$,其中 $a neq 0$。
新人教版高中数学《基本不等式》PPT课件1

立,D中最小值不是2. 答案:C
新人教版高中数学《基本不等式》PPT 课件1
新人教版高中数学《基本不等式》PPT 课件1
总结归纳:
利用基本不等式求最值需要注意什么?
新人教版高中数学《基本不等式》PPT 课件1
新人教版高中数学《基本不等式》PPT 课件1
总结归纳:
应用基本不等式求最值时,要把握三个条件:
新人教版高中数学《基本不等式》PPT 课件1 新人教版高中数学《基本不等式》PPT 课件1
新人教版高中数学《基本不等式》PPT 课件1
第三章 不等式
3.4 基本不等式: ab≤a+ 2 b
(第 2 课时)
利用基本不等式求最值
新人教版高中数学《基本不等式》PPT 课件1
新人教版高中数学《基本不等式》PPT 课件1
一、正数条件,即a、b都是正数;
二、定值条件,即和是定值或积是定值;
三、相等条件,即a=b时取等号;
简称“一正,二定,三等”
忽略了任何一个条件,都会导致解题失败,若有
条件不满足时,应该怎样处理呢?
新人教版高中数学《基本不等式》PPT 课件1
新人教版高中数学《基本不等式》PPT 课件1
探究利用基本不等式求最值问题的方法
y=x(1-2x)
的最大值.
分析: 2x+(1-2x) 不=1是为 常数.
解:
∵0<x<
1 2
,
∴1-2x>0.
∴y=x(1-2x)= 12∙2x∙(1-2x)
≤
1 2
∙[
2x+(1-2x) 2
]2=
1 8
.
当且仅当
2x=(1-2x),
即 x=
新人教版高中数学《基本不等式》PPT 课件1
新人教版高中数学《基本不等式》PPT 课件1
总结归纳:
利用基本不等式求最值需要注意什么?
新人教版高中数学《基本不等式》PPT 课件1
新人教版高中数学《基本不等式》PPT 课件1
总结归纳:
应用基本不等式求最值时,要把握三个条件:
新人教版高中数学《基本不等式》PPT 课件1 新人教版高中数学《基本不等式》PPT 课件1
新人教版高中数学《基本不等式》PPT 课件1
第三章 不等式
3.4 基本不等式: ab≤a+ 2 b
(第 2 课时)
利用基本不等式求最值
新人教版高中数学《基本不等式》PPT 课件1
新人教版高中数学《基本不等式》PPT 课件1
一、正数条件,即a、b都是正数;
二、定值条件,即和是定值或积是定值;
三、相等条件,即a=b时取等号;
简称“一正,二定,三等”
忽略了任何一个条件,都会导致解题失败,若有
条件不满足时,应该怎样处理呢?
新人教版高中数学《基本不等式》PPT 课件1
新人教版高中数学《基本不等式》PPT 课件1
探究利用基本不等式求最值问题的方法
y=x(1-2x)
的最大值.
分析: 2x+(1-2x) 不=1是为 常数.
解:
∵0<x<
1 2
,
∴1-2x>0.
∴y=x(1-2x)= 12∙2x∙(1-2x)
≤
1 2
∙[
2x+(1-2x) 2
]2=
1 8
.
当且仅当
2x=(1-2x),
即 x=