9-3 感生电动势 感生电场

合集下载

动生电动势感生电动势感生电场普遍环路定理

动生电动势感生电动势感生电场普遍环路定理

THANKS FOR WATCHING
感谢您的观看
感应加热
感应加热器利用动生电动势对金属进 行加热。当金属在变化的磁场中时, 会在金属内部产生动生电动势,从而 产生电流并加热金属。
02 感生电动势
定义与产生机制
定义
当磁场发生变化时,会在导体中产生电动势。这个电动势被 称为感生电动势。
产生机制
磁场的变化会在导体中激发出电场,这个电场驱动导体中的 自由电荷移动,从而产生感生电动势。
感生电场的应用实例
电磁感应
当线圈中的磁场发生变化时,会在线 圈中产生感生电动势,进而产生电流。
磁记录
利用感生电场可以记录磁场的变化, 从而实现信息的存储和读取。
04 普遍环路定理
定理的表述与证明
表述
在磁场中,如果闭合回路的磁通量发生变化,那么就会产生电动势。这个电动势的大小等于回路的磁通量变化率 与回路的长度成正比。
证明
根据法拉第电磁感应定律和安培环路定律,通过引入磁场线穿过闭合回路的磁通量概念,可以推导出普遍环路定 理。
普遍环路定理的应用场景
电机工程
普遍环路定理是电机设计中的重 要理论依据,用于计算和预测电 机在不同工作状态下的电动势和
电流。
电力系统
在电力系统中,普遍环路定理用于 分析和计算电力传输过程中的电压 和电流变化,以确保电力供应的稳 定性和可靠性。
感生电动势的计算公式
公式
E = -dΦB/dt,其中E是感生电动势,ΦB是磁通量。
解释
这个公式表示,当磁通量发生变化时,就会产生感生电动势。负号表示电动势的 方向与磁通量变化的方向相反。
感生电动势的应用实例
01
02
03
感应炉

大学物理第九章

大学物理第九章

动生电动势
由于导体运动而产生的感应电动势。
dΦ B dS Bldx
i
dΦ dt
Bl
dx dt
Bl
d a
B
l
c b
dx
负号表示电动势的方向。
在磁场中运动的导线内的感应电动势
导线内每个自由电子受到的
洛仑F兹力e
B
非静E电k 场 强Fe
B
a
电场。
解:由场的对称性,变化磁场所激发的感生电场
线在管内、外都是与螺线管同轴的同心圆。
取任一电场线(半径为r)作
为闭合回 路, 则
L L
E E
E
ddll21LrESdSlBtBt2ddSrSE
ER
r
B
感生电场
1)
当r
S
<RB时 dS t
S
B t
dS
r 2 dB
dt
E
1
2r
S
§9-1 电磁感应定律
法拉第(1791-1867英国)
1831年,发现电磁感应现象。 1833年,发现电解定律。 1837年,发现电解质对电容的影响, 引入电容率概念。 1845年,发现磁光效应,顺磁质、抗 磁质等。
§9-1 电磁感应定律
1. 电磁感应现象
N
S
现象1
条形磁铁N极(或S极)插入线圈时,线圈中就有电 流通过,这种电流称为感应电流。 实验表明:磁铁与线圈有相对运动时,线圈中就有感 应电流,相对速度越大,感应电流也越大。
(a)Φ 0, dΦ
B
dt en
0, i
0
i
(b)Φ 0, dΦ
B

dt en

感生电场感生电动势

感生电场感生电动势

R
0r R B 与S 一致 作闭合环路L (L+,S+右旋) + t
A)


S+ L
B L E感 dl S dt dS B E感 2r SdS t
L
综合:
E感
B t
E感
{R
r B 2 t
2
(0 r R )
( R r )
B 2r t
B t
E感线
E感
B r R
B t
E感
E感
{ R B
2
r B 2 t
(0 r R )
( R r )
2r t
例2)在上例中的螺线管中的横载面内,放 置有一直导线,求导线中的感应电动势。 已知: , h, B 求: iMN L M
E0 S
B
R
1)证明不存在 轴向分量:
B (L ,S 右旋) E感 dl dS + + L S dt L E感 dl AB E0 dl BC Er dl E0 dl Er dl

o h

N
r
t 解1)用 i感 E感 dl 求 L E感 规定电动势的正方向
M N分割成许多 dl
r B h B dl d i E感 dl cos dl 2 t 2 t
i感
L
L

dl
E感 dl
inducedelectricfieldinducedemf感应电场的方向与成左手螺旋关系典型例题一长载流螺线管中电流随时间作线性变化didtconst其内部磁感应强度也作线性变化且dbdt为已知

感生电动势

感生电动势

感生电动势一、感生电动势当一个相对静止的导体闭合回路处于随时间变化的磁场中时,穿过导体闭合回路的磁通量也会发生变化,导体中产生感应电动势,称为感生电动势。

二、感生电场1、麦克斯韦假设相对静止的导体闭合回路因磁场变化能产生感生电动势,这说明回路中的电荷由于磁场的变化受到了某种力的作用。

电荷受力的作用分为两种,一种是静电场所施的库仑力,另一种是施于运动电荷的洛仑兹力。

然而,在产生感生电动势的过程中,即没有静电场也没有电荷的运动。

因此,感应电动势的非静既不是静电场的静电力,也不是洛仑兹力,我们用以前学过的知识已无法解释感生电动势的微观机制。

为了解释感生电动势非静电力的起源,英国科学家麦克斯韦提出一个假设:变化磁场在其周围空间会激发一种电场,这种电场称为感生电场或涡旋电场。

这种电场不管空间有无导体或导体回路,不管是介质还是真空它都存在。

这种感生电场对导体中电荷的作用力就是构成感应电动势的非静电力。

麦克斯韦的这一假设已被许多实验所证实。

2、感生电场的性质电场从起源上分为两种:一种是由电荷激发的静电场(库仑电场),用表示;另一种是由变化磁场激发的感生电场,用表示。

这两种电场有一个共同的特点,即对处于电场中的电荷有作用力。

但感生电场的电场力不同于库仑电场的电场力,它是一种非静电力。

如果在感生电场中放入导体,则导体中的在感生电场力的作用下将发生定向运动,在导体中形成电动势;如果导体构成闭合回路,就产生感应电流。

因此,感生电动势的非静电力就是感生电场力,它是形成感生电动势的起因和本质。

根据定义,感生电动势等于感生电场沿某一闭合曲线的线积分,即根据法拉第电磁感应定律,有其中是穿过闭合曲线所包围曲面上的磁通量,即则由于和静止不动,故上式右边对曲面的积分和对时间的积分次序可以互换,因而有感生电场沿的积分方向就是感生电动势是正方向,它与回路法线矢量构成右手螺旋关系。

一般情况下,空间可能既存在电荷,又存在变化的磁场,因而它们激发的两种电场也就可能同时存在。

克斯韦 感生电场和感应电动势的关系

克斯韦 感生电场和感应电动势的关系

克斯韦感能生电场和感应电动势的关系感生电场和感应电动势是电磁学中重要的概念,它们对于理解电磁现象和应用电磁原理具有重要意义。

克斯韦定律是描述感生电场和感应电动势之间关系的基本原理,本文将从理论和实际应用两个方面详细阐述克斯韦定律对感生电场和感应电动势的影响。

一、克斯韦定律的理论基础克斯韦定律是基于麦克斯韦方程组推导得出的,它描述了磁场的变化会在空间中感生电场,从而引起感应电动势。

具体而言,克斯韦定律可以表述为:当磁场穿过一个闭合线圈时,产生的感应电动势与磁场的变化率成正比。

这一关系可以用数学公式表示为:ɛ = -dΦB/dt,其中ɛ表示感应电动势,ΦB表示磁通量,t表示时间。

克斯韦定律的理论基础在于磁场的变化会导致电场的产生,这一原理是电磁学的基本原理之一,也是电磁感应现象的重要表现。

通过克斯韦定律,我们可以深入理解磁场和电场之间的耦合关系,为电磁学的研究和应用提供了重要的理论依据。

二、克斯韦定律在应用中的意义克斯韦定律不仅在理论研究中具有重要意义,在实际应用中也具有广泛的应用价值。

克斯韦定律可以用来解释和分析感应电动势产生的机制,在发电机、变压器等电气设备中起着重要作用。

克斯韦定律也可以应用于感应加热、感应熔炼等热能转换技术中,实现能量的转换和利用。

克斯韦定律还可以用来探测地下矿藏、地壳构造等大地物理勘探领域,在石油、矿产勘探中具有重要作用。

克斯韦定律在实际应用中的意义主要体现在以下几个方面:1. 工程设计:在发电机、变压器、感应加热设备等电气设备中,克斯韦定律可以用来分析电磁感应现象,指导设备的设计和优化。

2. 能源转换:在能源转换领域,克斯韦定律可以应用于感应加热、感应熔炼等技术,实现能量的高效转换和利用。

3. 地球勘探:在地球物理勘探领域,克斯韦定律可以用来探测地下矿藏、地壳构造等地质信息,为资源勘探和开发提供重要依据。

三、克斯韦定律的局限性和发展虽然克斯韦定律在描述感生电场和感应电动势之间的关系方面有着重要的意义,但也存在一定的局限性。

动生电动势和感生电动势

动生电动势和感生电动势

Ek
1 2
B t
r
1 2
kr
2. r > R 区域
作半径为 r 的环形路径,并以逆
时针为回路绕向,则同理有
2rEk
S
B t
ds
R2k
R
o
r
r
B
1 B R2 1 R2
Ek 2 t
r
k 2r
Foundation - SJYGGF
§ 13.2 动生电动势和感生电动势
Nov 5, 2002 9/33
随时间均匀增加, dB k dt
若铝圆盘的电导率为γ,求盘内 的感应电流。
见书P212页,例4
R
解: 取半径为r、宽为dr的圆环微 元,并以逆时针方向为正方向,则 微元环中元电动势为
d L Ek dl L Ek dl
1 kr 2r dl kr2
20
o
r
dr
B
微元环中的电阻为 dR 1 2r hdr
Foundation - SJYGGF
§ 13.2 动生电动势和感生电动势
Nov 5, 2002 21/33
4) 电度表记录电量
电度表记录用电量,就是
利用通有交流电的铁心产生交
变的磁场,在缝隙处铝盘上产
o
生涡电流,涡电流的磁场与电
磁铁的磁场作用,表盘受到一
转动力矩,使表盘转动。
o’
Foundation - SJYGGF
感生电动势
1. 感生电动势——回路不动或不变,因磁场随时间变 化产生的电动势。相应的电流称为感生电流。
2. 感生电动势的起源——感生电场Ek 1) Maxwell感生电场(涡旋电场)假设
Maxwell 1861年首先从理论上预言感生电场的存在,后 被Hertz的电磁波实验所证实。Maxwell假设: 变化的磁场要在其周围空间激发一种电场——感生电场

感生电动势和动生电动势

感生电动势和动生电动势
VIP时长期间,下载特权不清零。
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
ቤተ መጻሕፍቲ ባይዱ
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
在这种电场力的作用下定向移动,产生感应 电流,或者说产生感应电动势.变化的的磁
场能在周围空间激发电场,这种电场叫感应 电场,由感生电场产生的感应电动势称为感 生电动势.
感生电动势在电路中的作用就是 电源,其电路就是内电路,当它与 外电路连接后就会对外电路供电.
感应电场是产生感应电流或感应电动势 的原因,感应电场的方向同样可由楞次定 律判断.
X X CX
伦兹力为F洛=QVB,F洛方向向上,正 X X XF洛 电荷向上运动,使导体下端出现负电 X XL X V 荷,结果上端C的电势高于下端D的 X X XF电 电势,出现由C指向D的静电场,此时 X X DX 电场对正电荷的作用力是向下,与洛 伦兹力方向相反,当二力互相平衡时, CD两端随时随地彰显尊贵身份。
专属客服
VIP专属客服,第一时间解决你的问题。专属客服QQ:800049878
路漫部权益:1.海量精选书免费读2.热门好书抢先看3.独家精品资源4.VIP专属身份标识5.全站去广告6.名
VIP专享文档下载特权自VIP生效起每月发放一次, 每次发放的特权有效期为1个月,发放数量由您购买 的VIP类型决定。
每月专享9次VIP专享文档下载特权, 自VIP生效起每月发放一次,持续有 效不清零。自动续费,前往我的账号 -我的设置随时取消。
服务特 权
共享文档下载特权

电磁感应、动生电动势、感生电动势讲解

电磁感应、动生电动势、感生电动势讲解
这就是导线以恒定的速度在匀强磁场中运动产生的动生电动势。
前面所说到的电磁感应定律中,需要磁通量发生变化才能产生感应电流,其实就是变 化的磁场在回路中产生了感生电场,这种电场与静电场不同,感生电场的电场线是闭 合的,这样在电路中就可以产生电动势,这一假说正是由麦克斯韦提出的,若用Ek表 示感生电场;
根据前面定义电动势的公式可知,载流子为正电荷时,定义的是把正电荷从负极搬运 到正极,而现在载流子是电子,所以动生电动势就是非静电力(洛伦兹力)把电子从正 极M搬运负极N时所做的功,即ε= ∫Ek·dL = ∫(v×B)·dL,因为v与B垂直,化简后得 到ε= ∫vBdL章《从加法角度来看麦克斯韦电磁场方程,它并没有你想的那么深奥无趣》中, 将为你详细介绍电磁场中的四个基本方程,格式统一尽显美感。
《电磁感应中的两种生电方式,现代发电 机的理论基础》
上一章讲到的电磁感应定律中,只要回路中的磁通量发生变化,电路中就会出现感应 电动势,而对于电路结构来说,想要改变电路的磁通量,一般有两种方式,一种是磁 场中的线圈面积不变,且线圈不运动,只有穿过导线面积的磁感强度随时间变化,或 者磁场在空间中运动,这样产生的感应电动势叫做感生电动势;
第二种是回路面积发生变化,或者单根导线在磁场中运动,此时产生的电动势称为动 生电动势。
先来说说动生电动势,如图1所示有一根长度为L的导线,磁场方向垂直于屏幕向里, 导体以速度v向右运动,则导体内每个电子都要受到洛伦兹力Fm = (-e)v×B,根据右 手定则,电子受到的洛伦兹力由M指向N,
因为导体两端存在电场,所以Fm就是我们前面说的非静电力,它能使电子从M移动 到N,当电场积累到一定程度时,静电力F与非静电力Fm相等,于是导体两端有稳定 的电势差,这时非静电力Fm的场强就可以表示为 Ek = Fm/(-e) = v×B,方向与Fm 相反,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
b
Eicosqdl
a
=
b
ò
rcosq 2
¶ B dl ¶t
a
=
蝌b h
2
抖B 抖t
dl
=
h 2
a
Bb dl
t a
h B L B 1 L R2 L2
2 t t 2
4
I
→B
Ro
a
b
L
上页 下页 返回 退出
二、电子感应加速器
电子感应加速器是利用感应电场来加速电子的
一种设备。
铁芯
线圈
电子束
环形真空 管道
上页 下页 返回 退出
为了使电子在环形真空室中按一定的轨道运动,
电磁铁在真空室处的磁场的 B 值必须满足
R mv 常量 eB
对磁场设计的要求:
将上式两边对 t 进行微分
F0
Ei e
F
-eEi
d B 1 d (mv) d t eR d t
eEi
d dt
(mv)
在磁场中运动时,金属 交
体内也将产生感应电流。 流 这种电流的流线是闭合 电 的,所以称涡旋电流。 源
因为大块导体的电阻很
小,所以涡旋电流强度
很大。
上页 下页 返回 退出
涡电流的利用:
由于大块金属电阻一般较小,导体中涡电流可 以很大,在导体中产生大量焦耳热,此即感应加热 原理。涡电流产生的焦耳热与外加电流的频率的平 方成正比。当交变电流频率高达几百甚至几十千赫 兹时,导体中的涡电流将产生大量焦耳热可利用。
d B Ei dt R
E 1 d i 2R2 dt
dB dt
1
2R2
d dt
上页 下页 返回 退出
R2B
于是有
dB 1 dB dt 2 dt
B1B 2
这是使电子维持在恒定的圆形轨 道上加速时磁场必须满足的条件。
上页 下页 返回 退出
电子感应加速器的感应
电场方向随激发它的磁 场的正弦变化而变化。 B
场)。
B
t
(3)E 线的绕行方向与
所围的 B t
关系。当

的BBtt 方00 向时时构,,成BBtt左与与螺B旋B
同向。 反向
E
上页 下页 返回 退出
感生电场与静电场的比较
场源 环流 电势 场线 通量
静电场
Es
正负电荷
r
òÑL Es
?drr
0
势场
感生电场
Ei
变化的磁场
蝌 Ñ r r
r ¶B
上页 下页 返回 退出
线圈炮
轨道炮
I
B
l
涡流的危害:变压器、电机铁芯发热。
上页 下页 返回 退出
涡电流的危害:
由于涡旋电流 在导体中产生焦耳 -楞次热,因此将 有能量的损失。为 避免能量的损失, 常将发电机和变压 器的铁芯做成层状 的,用薄层绝缘材 料把各层隔开,以 减少损失。
I
E
B
R
r
E
线作为闭合回路。
E
L Ei d l L Ei d l
E
=-
蝌2r¶EBr ?idSr
¶t
S

Ei = -
1 2p
r

r ¶B ¶t
r ?dS
S
上页 下页 返回 退出
(1)当 r R 时

r 抖B 抖t
r ?dS

B dS t
S
S
= pr2 ¶B
上页 下页 返回 退出
电子感应加速器全貌
电子感应加速器的一部分
上页 下页 返回 退出
它的柱形电磁铁在两极间产生一个由中心向外 逐渐减弱、对称分布的磁场。在磁场中安置一个环 形真空管道作为电子运行的轨道。当磁场发生变化 时,就会沿管道方向产生感应电场,其电场线是一 系列绕磁感应线的同心圆。射入其中的电子就受到 这感应电场的持续作用而被不断加速。
§9-3 感生电动势 感生电场
一、感生电场
当导体回路不动,由于磁场变化引起磁通量改 变而产生的感应电动势,叫做感生电动势。
变化的磁场在其周围激发了一种电场,这种电
场称为感生电场。当闭合导线处于变化的磁场中时,
感生电场作用于导体中自由电荷,从而引起导体中
的感生电动势和感生电流。 以Ei表示感生电场的场强,根据电源电动势的
定义及电磁感应定律,则有
L
Ei
d
l
B t
d
S
S
上页 下页 返回 退出
注意:
(1)场的存在并不取决于空间有无导体回路 存在,变化的磁场总是在空间激发电场。
(2)在自然界中存在着两种以不同方式激发
的电场,所激发电场的性质也截然不同。由静止
电荷所激发的静电场是保守力场(无旋场);由
变化磁场所激发的感生电场不是保守力场(有旋
上页 下页 返回 退出
例9-6 在半径为R的圆柱形体积内充满磁感应强度为 B(t)的均匀磁场,有一长度为 l 的金属棒放在磁场中,
如图所示,设dB/dt为已知,求棒两端的感生电动势.
òÑ 解法1:选闭合回路
rr ei = L Ei ?dr =
oab,方向为逆时针
蝌 ? a r r b r r o
Ei ?dr Ei ?dr
r
L Ei ?dr
-
?dS S ¶t
非势场
不闭合
蝌 Ò S
r Es
r ?dS
åq
e0
闭合
rr
蝌Ò S
Ei
?dS
0
上页 下页 返回 退出
例9-5 在半径为场Ei 。
dB = 常量 ) 时,求管内外
dt
解:由场的对称性,变化 磁场所激发的感生电场的电 场线在管内外都是与螺线管 同轴的同心圆。任取一电场
E
B
R
r
E
¶t
\ E= - r ¶B
E
E
2 ¶t
E
的方向沿圆周切线,指向与圆周内的
dB dt
成左旋关系。
上页 下页 返回 退出
蝌 (2)抖当抖Btrr?dSrR

p
R2
B t
S
Ei
R2 ¶ B \ E= -
2r ¶ t
r
OR 螺线管内外感生电场随离轴线距离的变化曲线


压 器




III
涡 电

~~~
上页 下页 返回 退出
由图示可见,只有1、4
两个四分之一周期电子
t
得到加速,而第四个1/4
周期由于洛仑兹力背离
圆心不能维持电子恒定
的圆运动,故只有第一
个1/4周期可利用,这在 实际当中已足够。目前
一个周期内感生电场的方向
可将电子加速到几十到
几百兆电子伏。
上页 下页 返回 退出
三、涡电流
→Ei
当块状金属放在变
化着的磁场中时,或者
应用:1.涡流冶炼金属
2.电动阻尼器
3.电磁灶
~
4.电磁感应加热抽真空
上页 下页 返回 退出
高频感应炉:利用金属
块中产生的涡流所发出的
热量使金属块熔化。具有 加热速度快、温度均匀、
~
易控制、材料不受污染等
优点。
阻尼摆:在一些电磁仪表中,常利用电磁阻尼使 摆动的指针迅速地停止在平衡位置上。电镀表中的 制动铝盘,也利用了电磁阻尼效应。电气火车的电 磁制动器等也都是根据电磁阻尼的原理设计的。
o
a
b
rr Ei ?dr
br r
I
= 0 + ò Ei ?dr 0
=-
a
dΦ = dt
ò
r ¶B ¶t
r ?dS
=
-
r 抖B 抖t

r dS
B 1 L R2 - L2
t2
4
R a
→B o
b
= eab
方向为a→b
L
上页 下页 返回 退出
解法2:直接对感应电场积分,方向为a→b
蝌b r r
ei = Ei ?dr
相关文档
最新文档