高考数学复习点拨全称命题与特称命题的否定

合集下载

全称命题和特称命题的否定

全称命题和特称命题的否定

注意:1.全称命题的否定是特称命题.因为
要否定全称命题“ ∀x∈M , p(x) 成立”,只需
在 M 中 找 到 一 个 x , 使 得 p(x ) 不 成 立 , 也 即
“∃x0∈M, ¬p(x0)成立”.
2.要证明一个全称命题是假命题,只需举
一个反例.
3.有些全称命题省略了量词,在这种情况下, 千万不要将否定写成“是”或“不是”,如第(4)
的”.
对省略量词的命题怎样否定? 提示:对于含有一个量词的命题,容易知道它是全 称命题或特称命题.一般地,省略了量词的命题是全称 命题,可加上“所有的”或“对任意”,它的否定是特称命 题.如:|x|≥0,实际上是指:∀x∈R,|x|≥0 其否定为:∃x∈R,|x|<0
概念理解
1.命题:“∀x∈R,都有 x2-x+1>0”的否定 是( ) A.∀x∈R,都有 x2-x+1≤0 B.∃x0∈R,使 x2 0-x0+1>0 C.∃x0∈R,使 x2 0-x0+1≤0 D.以上均不正确
2.特称命题的否定:
一般地,对于含一个量词的特称命题的否定, 有下面的结论:特称命题 p:∃x0∈M,p(x0),它的 否定綈p:∀x∈M, ¬ p(x).特称命题的否定是全称 命题.如:“存在一个实数x,使得x2+x+1≤0”的
否定为“对所有实数x,都有x2+x+1>0”,其中,
把存在量词“存在一个”变为全称量词“对所有
[解 ]
π 由于 sinx+cosx= 2sin(x+ )∈[- 2, 2],所 4
以如果对任意的 x∈R, r(x)为假命题, 即对任意的 x∈R, 不等式 sinx+cosx>m 恒不成立, 所以 m> 2.又对任意的 x∈R,s(x)为真命题,即对任意的 x∈R,不等式 x2+ mx+1>0, 所以 Δ=m2-4<0, 即-2<m<2.故如果对任意 的 x∈R,r(x)为假命题且 s(x)为真命题,应有 2<m<2.

全称特称命题的否命题

全称特称命题的否命题

全称特称命题的否命题什么是命题?在逻辑学中,命题是可以判断为真或假的陈述句。

它是构成逻辑推理的基本单位。

命题可以识别为两类:全称命题和特称命题。

•全称命题:全称命题是对于某一集合中的每个元素而言,都满足某一条件的命题。

例如:“所有的猫都会喵喵叫。

”这是一个全称命题,因为对于猫这个集合中的每个猫而言,都满足“会喵喵叫”的条件。

•特称命题:特称命题是对于某一集合中的某个元素而言,满足某一条件的命题。

例如:“有一只猫会喵喵叫。

”这是一个特称命题,因为只需存在一个猫满足“会喵喵叫”的条件即可。

全称特称命题的否命题在逻辑学中,我们可以通过否定一个命题来形成它的否命题。

对于全称命题和特称命题而言,形成否命题的方式是不同的。

全称命题的否命题对于一个全称命题,我们可以通过否定其条件部分来形成它的否命题。

例如,假设我们有一个全称命题:“所有的学生都喜欢数学。

”我们可以否定它的条件部分,即“不是所有的学生都喜欢数学”,从而形成它的否命题。

在逻辑学中,全称命题的否命题是特称命题。

所以,通过否定一个全称命题,我们得到的是一个特称命题。

特称命题的否命题对于一个特称命题,我们可以通过否定其主语部分来形成它的否命题。

例如,假设我们有一个特称命题:“有一只猫是黄色的。

”我们可以否定它的主语部分,即“没有一只猫是黄色的”,从而形成它的否命题。

在逻辑学中,特称命题的否命题是全称命题。

所以,通过否定一个特称命题,我们得到的是一个全称命题。

总结全称特称命题的否命题是通过否定命题的条件部分(对于全称命题)或主语部分(对于特称命题)来形成的。

全称命题的否命题是特称命题,而特称命题的否命题是全称命题。

在逻辑推理中,理解命题及其否命题的概念是非常重要的。

它们可以帮助我们进行有效的推理和论证。

通过掌握全称特称命题的否命题的形成方法,我们可以更好地理解逻辑学中的命题逻辑,并应用于实际问题的推理过程中。

希望本文能够对读者理解全称特称命题的否命题提供帮助和指导。

高中数学第一章常用逻辑用语1.3.3全称命题与特称命题的否定121数学

高中数学第一章常用逻辑用语1.3.3全称命题与特称命题的否定121数学

因否定不全面致误
写出命题 p:“存在 x∈[0,1],x(xx--12)<0”的否
定,并判断 p 与其否定的真假. [解] p 的否定为:“对任意 x∈[0,1],x(xx--12)≥0 或 x(xx--12)无意义”. 由于存在 x∈[0,1],x(xx--12)<0 不成立,故 p 为假命题.其 否定为真命题.
解析:(1)该命题的否定“对任意的 x∈R,都有 x2+mx+2m -3≥0”为真命题,即 Δ=m2-4(2m-3)≤0,得 m∈[2,6]. (2)该命题的否定“存在实数 x,使得 x2+2x+a≤0”为真命 题,即 Δ=22-4a≥0 得 a≤1.
12/9/2021
第二十五页,共三十三页。
易错警示
1.全称命题的否定 要说明一个全称命题是错误的,只需找出一个反例就可以 了.实际上是要说明这个全称命题的否定是正确的.全称命 题的否定是___特__称________命题. 一般地,全称命题“所有的 x∈A,使 p(x)成立”的否定为特 称命题“存在 x∈A,使 p(x)不成立”.
12/9/2021
12/9/2021
第二十九页,共三十三页。
2.“命题‘存在 x∈R,x2+ax-4a<0’为假命题”是“- 16≤a≤0”的( A ) A.充要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件
解析:因为“存在 x∈R,x2+ax-4a<0”为假命题,所以它 的否定“对任意的 x∈R,x2+ax-4a≥0”为真命题,所以 Δ =a2+16a≤0,即-16≤a≤0.所以“命题‘存在 x∈R,x2+ ax-4a<0’为假命题”是“-16≤a≤0”的充要条件.
12/9/2021
第十八页,共三十三页。

1.4.2 全称命题与特称命题的否定

1.4.2 全称命题与特称命题的否定
含有一个量词的命题的否定
温故知新
全称量词: “所有的”, “任意一个”, “一切” ,
“每一个”, “任给”……常用符号“"”表示.
全称命题:含有全称量词的命题叫做全称命题.
全称命题格式为: 对M中任意一个x,有p(x)成立.
符号语言表示为: "x∈M,p(x).
温故知新
存在量词:“存在一个”, “至少有一个”,“有
7.(2010 年高考湖南卷文科 2)下列命题中的假命题 是 ... A. $x R, lg x 0 C. B. $x R, tan x 1 D. "x R, 2x > 0
"x R, x3 > 0
一不变:元素的性质不变.
练习: 写出下列命题的否定 . (1) p: $x0∈R, x02 + 2x0 + 2 ≤ 0; (2) p: 有的三角形是等边三角形; (3) p: 有一个素数含三个正因数 . 注意: 特称命题的否定是全称命题.
写出下列命题的否定:
(1) p: ∃x0∈R , x02 + 2x0 + 2 ≤ 0;
p:每一个平行四边形都不是菱形.
( 3)$x0 R, x + 1 < 0 .
2 0
p : "x R , x 2 + 1 0 .
特称命题的否定
特称命题: p: $x0∈M , p(x0) ﹁ p: "x∈M , ﹁ p(x) 特称命题的否定: 注意事项:
三变:更换量词,否定结论,给元素去下标;
∀x∈M,¬ p(x)
课堂小结
1、全称量词、全称命题的定义. 2、全称命题的符号记法. 3、判断全称命题真假性的方法. 4、存在量词、特称命题的定义. 5、特称命题的符号记法. 6、判断特称命题真假性的方法. 7、含有一个量词的否定.

(完整版)3.3全称命题与特称命题的否定

(完整版)3.3全称命题与特称命题的否定

3.3全称命题与特称命题的否认明目标、知要点经过实例总结含有一个量词的命题与它们的否认在形式上的变化规律,能正确地对含有一个量词的命题进行否认.1.要说明一个全称命题是错误的,只要找出一个反例即可,说明这个全称命题的否认是正确的.2.全称命题的否认是特称命题.3.要说明一个特称命题是错误的,就要说明全部的对象都不知足这一性质,说明这个特称命题的否认是正确的.4.特称命题的否认是全称命题.研究点一全称命题的否认思虑 1你能试试写出下边含有一个量词的命题的否认吗?(1)全部矩形都是平行四边形;(2)每一个素数都是奇数;(3)三个给定产品都是次品.答 (1) 存在一个矩形不是平行四边形;(2)存在一个素数不是奇数;(3)三个给定产品中起码有一个是正品.思虑 2 全称命题的否认有什么特色?答全称命题的否认是特称命题.例 1 写出以下全称命题的否认:(1)全部能被 3 整除的整数都是奇数;(2)每一个四边形的四个极点共圆;(3) 对随意 x∈ Z , x2的个位数字不等于 3.解 (1) 存在一个能被 3 整除的整数不是奇数.(2) 存在一个四边形,它的四个极点不共圆.(3) 存在 x ∈ Z , x2的个位数字等于3.00反省与感悟全称命题的否认是特称命题,对省略全称量词的全称命题可补上量词后进行否定.追踪训练1写出以下命题的否认:(1)数列 {1,2,3,4,5} 中的每一项都是偶数;(2)随意 a, b∈ R,方程 ax= b 都有唯一解;(3) 能够被 5 整除的整数,末位是0.解 (1) 是全称命题,其否认:数列 {1,2,3,4,5} 中起码有一项不是偶数.(2)是全称命题,其否认:存在a, b∈ R ,使方程 ax= b 的解不唯一.(3) 是全称命题,其否认:存在被 5 整除的整数,末位不是0.研究点二特称命题的否认思虑如何对特称命题进行否认?答对特称命题进行否认时,第一把存在量词改为全称量词,而后对判断词进行否认,能够联合命题的实质意义进行表述.例 2写出以下特称命题的否认,并判断其否认的真假:(1)有些实数的绝对值是正数;(2)某些平行四边形是菱形;(3) 存在 x, y∈ Z,使得2x+ y= 3.解 (1)命题的否认:“不存在一个实数,它的绝对值是正数” ,也即“ 全部实数的绝对值都不是正数”.因为 |- 2|= 2,所以命题的否认为假命题.(2)命题的否认:“ 没有一个平行四边形是菱形” ,也即“ 每一个平行四边形都不是菱形”.因为菱形是平行四边形,所以命题的否认是假命题.(3)命题的否认:“随意 x,y∈ Z, 2x+y≠ 3”.因为当 x= 0, y= 3 时,2x+ y= 3,所以命题的否认是假命题.反省与感悟特称命题的否认是全称命题,否认的要点是量词的否认形式和判断词的改变.追踪训练2写出以下特称命题的否认:(1) 存在一个2+2≤0;x ∈ R, x + 2x000(2)有的三角形是等边三角形;(3)有一个素数含三个正因数.解(1) 对随意的x∈ R ,x2+ 2x+ 2>0.(2) 全部的三角形都不是等边三角形.(3) 每一个素数都不含三个正因数.研究点三特称命题、全称命题的综合应用例 3 已知函数 f(x)= 4x 2-2(p - 2)x - 2p 2- p +1 在区间 [- 1,1]上起码存在一个实数c ,使得f(c)>0. 务实数 p 的取值范围.解在区间 [-1,1] 中起码存在一个实数c ,使得 f(c)>0 的否认是在 [ -1,1] 上的全部实数 x ,都有 f(x)≤ 0 恒建立.又由二次函数的图像特色可知,f - 1 ≤ 0, 4+ 2 p - 2 - 2p 2- p + 1≤ 0,f 1 ≤ 0,即4-2 p - 2 - 2p 2- p + 1≤ 0,1p ≥1或 p ≤ -2,即3p ≥2或 p ≤ -3.3∴ p ≥ 2或 p ≤ - 3.3故 p 的取值范围是- 3<p<2.反省与感悟往常关于 “ 至多 ”“ 起码 ”的命题, 应采纳逆向思想的方法办理, 先考虑命题的否认,求出相应的会合,再求会合的补集,可防止烦杂的运算.追踪训练 3 若随意 x ∈ R ,f(x)= (a 2- 1)x 是单一减函数, 则 a 的取值范围是 ________________ .答案(- 2,- 1)∪ (1, 2)依题意有 0<a 2- 1<1?a 2- 1>0,a<-1或 a>1,分析??a 2- 1<1- 2< a< 2- 2< a<- 1 或 1<a< 2.1.以下 4 个命题:p 1:存在 x ∈ (0,+∞ ), (12)x<(13)x ;11p 2:存在 x ∈ (0,1), log 2x>log 3x ;p 3:随意 x ∈ (0,+∞ ), (12)x>log 12x ;1 1 x1 p 4:随意 x ∈ (0, ) ,() <log x.32 3此中的真命题是 ( )A . p 1, p 3B . p 1, p 4C . p 2, p 3D . p 2, p 4答案D11 1分析取 x =2,则 log 2x = 1, log 3x = log 32<1.p 2 正确.当 x ∈ (0,13)时, (12)x <1 ,而 log 13x>1, p 4 正确.2.对以下命题的否认说法错误的选项是()A .命题:能被 2 整除的数是偶数;命题的否认:存在一个能被2 整除的数不是偶数B .命题:有些矩形是正方形;命题的否认:全部的矩形都不是正方形C .命题:有的三角形为正三角形;命题的否认:全部的三角形不都是正三角形D .命题:存在 x ∈ R ,x 2+ x + 2≤ 0;命题的否认:随意 x ∈ R , x 2+ x + 2>0答案C分析 “ 有的三角形为正三角形 ” 为特称命题, 其否认为全称命题: “ 全部的三角形都不是正三角形 ”,应选项 C 错误.3.命题“对任何 x ∈R , |x - 2|+ |x - 4|>3”的否认是 ____________________________ .答案存在 x ∈ R ,使得 |x - 2|+ |x - 4|≤ 3分析由定义知命题的否认为“存在 x ∈ R ,使得 |x - 2|+ |x - 4|≤ 3”.4.命题“零向量与随意愿量共线”的否认为________________________________________ .答案 有的向量与零向量不共线分析 命题 “ 零向量与随意愿量共线 ” 即“ 随意愿量与零向量共线 ”,是全称命题, 其否认为特称命题: “ 有的向量与零向量不共线 ”.[呈要点、现规律 ]对含有一个量词的命题的否认要注意以下问题:(1) 确立数题种类,是全称命题仍是特称命题.(2) 改变量词:把全称量词改为适合的存在量词;把存在量词改为适合的全称量词.(3) 否认结论:原命题中的 “ 是 ”“ 有 ”“ 存在 ”“ 建立 ” 等改为 “ 不是 ”“ 没有 ”“ 不存 在”“ 不建立 ” 等.(4) 无量词的全称命题要先补回量词再否认.一、基础过关1.命题“随意x∈ R, x2- x+ 2≥ 0”的否认是 ()A .存在 x∈ R, x2- x+ 2≥0B.随意 x∈ R, x2- x+ 2≥ 0C.存在 x∈ R, x2- x+ 2<0D.随意 x∈ R, x2- x+ 2<0答案C分析“≥”的否认是“ <”,全称命题的否认是特称命题.2.对命题:“存在实数m,使方程x2+ mx+ 1= 0 有实数根”的否认为()A .存在实数m,使方程x2+ mx+ 1= 0 无实根B.不存在实数m,使方程x2+ mx+ 1= 0 无实根C.对随意的实数m,方程 x2+ mx+ 1= 0 无实根D.至多有一个实数m,使方程x2+ mx+1= 0 有实根答案C分析若命题是特称命题,其否认形式为全称命题,即对随意的实数m,方程 x2+ mx+ 1=0无实根.3.“命题‘存在x∈R , x2+ ax- 4a<0’为假命题”是“-16≤ a≤ 0”的 ()A.充要条件B.必需不充足条件C.充足不用要条件D.既不充足也不用要条件答案A分析因为“存在 x∈R ,x2+ax- 4a<0”为假命题,所以“随意 x∈ R, x2+ ax- 4a≥0”为真命题.所以= a2+ 16a≤0,即- 16≤ a≤ 0.所以“命题‘存在 x∈R ,x2+ax- 4a<0’为假命题”是“ - 16≤ a≤ 0”的充要条件.4.命题“一次函数都是单一函数”的否认是()A.一次函数都不是单一函数B.非一次函数都不是单一函数C.有些一次函数是单一函数D.有些一次函数不是单一函数答案D分析命题的否认只对结论进行否认,“都是” 的否认是“不都是”,即“ 有些”.5.命题“对随意 x∈R ,都有 x2≥ 0”的否认为 ________.答案存在 x0∈R ,使得 x02<0分析22“对随意 x∈ R,都有 x ≥ 0”的否认是“存在 x00”.∈ R,使得 x <06.若命题“存在实数x,使得 x2+ (1 - a)x+ 1<0 ”是真命题,则实数 a 的取值范围是____________.答案(-∞,- 1)∪ (3,+∞ )分析由题意可知,=(1- a)2-4>0 ,解得 a<- 1 或 a>3.7.判断以下命题的真假,并写出这些命题的否认:(1)三角形的内角和为 180 °;(2)每个二次函数的图像都张口向下;(3)存在一个四边形不是平行四边形.解 (1) 是全称命题且为真命题.命题的否认:三角形的内角和不全为180 °即存在一个三角形其内角和不等于,180 °.(2)是全称命题且为假命题.命题的否认:存在一个二次函数的图像张口不向下.(3)是特称命题且为真命题.命题的否认:随意一个四边形都是平行四边形.二、能力提高8.以下命题中的假命题是()x -2 014>02A .随意 x∈ R,2B.随意 x∈N +, (x- 1) >0 C.存在 x0∈R , lg x0<1D.存在 x0∈R , tan x0= 2答案B分析 A 中命题是全称命题,易知2x-2 014>0 恒建立,故是真命题;B 中命题是全称命题,当x= 1时, (x- 1)2= 0,故是假命题;C 中命题是特称命题,当x= 1时, lg x= 0,故是真命题;D中命题是特称命题,依照正切函数定义,可知是真命题.9.已知命题“三角形有且仅有一个外接圆”,则命题的否认为“__________________________________________ ”.答案存在一个三角形有两个或两个以上的外接圆或没有外接圆分析全称命题的否认是特称命题.10.已知 p(x): x2+ 2x- m>0 ,假如 p(1)是假命题, p(2) 是真命题,则实数m 的取值范围是__________.答案3≤m<8分析因为 p(1) 是假命题,所以1+2- m≤ 0,解得 m≥3.又因为 p(2)是真命题,所以4+ 4-m>0,解得 m<8 ,故实数 m 的取值范围是3≤ m<8.11.命题 p 是“对某些实数x,有 x- a>0 或 x- b≤ 0”,此中 a、 b 是常数.(1)写出命题 p 的否认;(2) 当a、b 知足什么条件时,命题p 的否认为真?解(1) 命题p 的否认:对随意实数x,有x- a≤ 0 且 x- b>0.x- a≤ 0,(2) 要使命题p 的否认为真,需要使不等式组的解集不为空集,x- b>0经过画数轴可看出,a、 b 应知足的条件是b<a.12.已知命题p:“起码存在一个实数x∈ [1,2] ,使不等式x2+ 2ax+ 2- a>0建立”为真,试求参数 a 的取值范围.解由已知得命题p 的否认:随意x∈ [1,2] , x2+ 2ax+ 2- a≤ 0 建立.f 1 ≤ 0,∴设 f( x)= x2+ 2ax+ 2- a,则f 2 ≤ 0,1+ 2a+ 2-a≤ 0,∴解得 a≤- 3,4+ 4a+ 2-a≤ 0,∵命题 p 的否认为假,∴ a>-3,即 a 的取值范围是(- 3,+∞ ).三、研究与拓展13.已知命题 p:存在 x∈ R,使得 x2- 2ax+ 2a2-5a+ 4= 0;命题 q:随意 x∈ [0,1] ,都有(a2- 4a+3)x- 3< 0.若 p 和 q 中拥有一个真命题,务实数 a 的取值范围.解若命题 p 为真命题,则有=4a2-4(2a2-5a+4)≥0,解得1≤ a≤ 4.关于命题q,令 f(x)= (a2- 4a+ 3)x- 3,若命题 q 为真命题,则有f(0) < 0 且 f(1) <0,可得 0<a< 4.由题设知命题p 和 q 中有且只有一个真命题,1≤ a≤4,所以a≤ 0或a≥ 4a< 1或 a>4,或0< a< 4,解得 0< a< 1 或 a=4,故所求 a 的取值范围是0< a<1 或 a= 4.。

全称特称命题的否命题

全称特称命题的否命题

全称特称命题的否命题1. 引言在命题逻辑中,命题是对一个陈述句的真假性进行判断的基本元素。

而全称特称命题是命题逻辑中两种重要类型的命题。

全称命题是对每一个成员进行断言,而特称命题则只对某一特定成员进行断言。

在命题逻辑中,我们经常需要对命题进行否定,即得到其否命题。

本文将会介绍全称特称命题的否命题的定义与性质。

2. 全称命题的否命题全称命题是对所有成员进行断言的命题,也可以表示为∀xP(x),其中P(x)为关于变量x的命题。

全称命题的否命题是对其取非,即∃x¬P(x)。

否命题断言存在一个成员使得P(x)不成立。

举个例子,在一个学生群体中,假设全称命题“所有学生都愿意参加体育活动”,可以表示为∀xP(x),其中P(x)为“学生x愿意参加体育活动”。

那么全称命题的否命题即为“存在一个学生不愿意参加体育活动”,可以表示为∃x¬P(x),其中¬P(x)表示“学生x不愿意参加体育活动”。

3. 特称命题的否命题特称命题是只对某一特定成员进行断言的命题,也可以表示为∃xP(x),其中P(x)为关于变量x的命题。

特称命题的否命题是对其取非,即¬∃xP(x)。

否命题断言不存在一个成员使得P(x)成立。

继续以上述学生群体的例子,假设特称命题“存在一个学生愿意参加体育活动”,可以表示为∃xP(x),其中P(x)为“学生x愿意参加体育活动”。

那么特称命题的否命题即为“所有学生都不愿意参加体育活动”,可以表示为¬∃xP(x)。

4. 全称特称命题的否命题的等价形式全称命题的否命题可以等价地表示为特称命题,反之亦然。

这是因为全称命题的否命题断言存在一个成员使得P(x)不成立,而特称命题断言存在一个成员使得P(x)成立。

因此,全称命题的否命题可以转化为特称命题,特称命题的否命题可以转化为全称命题。

举个例子,我们可以将全称命题的否命题“存在一个学生不愿意参加体育活动”转化为特称命题“有个学生不愿意参加体育活动”,可以表示为∃x¬P(x)。

完整全称命题特称命题否定

完整全称命题特称命题否定

1.3.3 全称命题与特称命题的否定一、创设情境“所有”、“任意”、等与“存在着”、“有”、“至少有一个”等的词语,分别称为全称量词与存在性量词(用符号分别记为“ ”与“”来表示);由这样的量词构成的命题分别称为全称命题与存在性命题。

都容易判断,但它们的否定形式是我们困惑的症结所在。

二、活动尝试问题1:指出下列命题的形式,写出下列命题的否定。

(1)所有的矩形都是平行四边形;(2)每一个素数都是奇数;(3)x R,x2-2x+1≥0分析:(1),否定:存在一个矩形不是平行四边形;(2),否定:存在一个素数不是奇数;(3),否定:x R,x2-2x+1<0;这些命题和它们的否定在形式上有什么变化结论:从命题形式上看,这三个全称命题的否定都变成了存在性命题.三、师生探究问题2:写出命题的否定(1)p:$ x∈R,x2+2x+2≤0;(2)p:有的三角形是等边三角形;(3)p:有些函数没有反函数;(4)p:存在一个四边形,它的对角线互相垂直且平分;分析:(1) x R,x2+2x+2>0;(2)任何三角形都不是等边三角形;(3)任何函数都有反函数;(4)对于所有的四边形,它的对角线不可能互相垂直或平分;从集合的运算观点剖析:,四、数学理论1.全称命题、存在性命题的否定一般地,全称命题P:x M,有P(x)成立;其否定命题┓P为:x∈M,使P(x)不成立。

存在性命题P:x M,使P(x)成立;其否定命题┓P为: x M,有P(x)不成立。

用符号语言表示:P:M, p(x)否定为 P: M, P(x)P:M, p(x)否定为 P: M, P(x)2.关键量词的否定词语是一定是都是大于小于且词语的否定不是一定不是不都是小于或等于大于或等于或词语必有一个至少有n个至多有一个所有x成立所有x不成立词语的否定一个也没有至多有n-1个至少有两个存在一个x不成立存在有一个成立五、巩固运用例1写出下列全称命题的否定:(1)p:所有人都晨练;(2)p:x R,x2+x+1>0;(3)p:平行四边形的对边相等;(4)p:$ x∈R,x2-x+1=0;解:(1)P:有的人不晨练;(2)$ x∈R,x2+x+1≤0;(3)存在平行四边形,它的的对边不相等;(4)x R,x2-x+1≠0;例2写出下列命题的否定。

全称命题与特称命题的否定

全称命题与特称命题的否定

探究
写出下列命题的否定:
(1)有些实数的绝对值是正数;
(2)有些平行四边形是菱形;
(3) ∃x0∈R, x0² +1<0.
这些命题和它们的否定在形式上
有什么变化?
以上三个命题都是特称命题,即具有形式 “∃0 x ∈M, p(x0)” 命题(1)的否定是“不存在一个实数,它的绝对 值是正数”,即 所有实数的绝对值都不是正数; 命题(2)的否定是“没有一个平行四边形是菱 形”,即 每一个平行四边形都不是菱形; 命题(3)的否定是“不存在x∈R, x²+1<0”,也 就是说, ∀x∈R, x²+1≥0
命题(2)的否定是“并非每一个素数都是奇数”, 也就是说,
存在一个素数不是奇数
∃x0∈R, x0² -2x0+1<0
命题(3)的否定是“并非所有的x∈ R, x² -2x+1≥0”, 也就是说,
这三个全称命题的否定都变成了特称命题.
全称命题的否定,一般是在全 称量词前加“并非”,或者把全 称量词改成存在量词的同时对结 论进行否定。
例题
例3 :写出下列特称命题的否定: (1)p: ∃x0∈R, x0² +2x0+2≤0;
(2)p:有的三角形是等边三角形;
(3)p:有一个素数含三个正因数. 答:(1)ㄱp: ∀x0∈R, x0² +2x0+2>0; (2)ㄱp:所有的三角形都不是等边三角形; (3)ㄱp:每一个素数都不含三个正因数.
全称命题的否定,一般是在全称量 词前加“并非”,或者把全称量词改 成存在量词的同时对结论进行否定。
总结:
二、特称命题 p: ∃x0∈M ,p(x0), 它的否定ㄱp: ∀ x∈M,ㄱp(x), 特称命题的否定是全称命题 特称命题的否定,一般在存在量 词前加“不”或者把存在量词改为全称 量词的同时对结论进行否定。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全称命题与特称命题的否定
全称命题与特称命题是两类特殊的命题,也是两类新型命题,这两类命题的否定又是这两类命题中的重要概念,为使你较全面、较准确的掌握这一特殊概念,本文将谈下述四点,也许对你会有帮助.
1、书写命题的否定时一定要抓住决定命题性质的量词,从对量词的否定入手,书写命题的否定
例1 判断下列命题是全称命题还是特称命题,并写出它们的否定:
(1):p 对任意的x ∈R ,210x x ++=都成立;
(2):p x ∃∈R ,2250x x ++>.
分析:(1)由于命题中含有全称量词“任意的”,因而是全称命题;又由于“任意的”的否定为“存在一个”,因此,:p ⌝存在一个x ∈R ,使210x x ++≠成立,即x ∃∈R ,使2
10x x ++≠成立;
(2)由于“x ∃∈R ”表示存在实数中的一个x ,即命题中含有存在量词“存在一个”,因而是特称命题;又由于“存在一个”的否定为“任意一个”,因此,:p ⌝对任意一个x 都有2250x x ++≤,即x ∀∈R ,2250x x ++≤. 2.书写命题的否定时,一定要注重理解数学符号的意义
有些数学符号,表面看我们已非常熟悉,其实不一定;如:x ∈R ,谈到它的否定,很多同学会认为是:x ≠R ,其实不然.
我们从一个例子看起:若x ∈R ,则方程2
210x x ++=有解;这是个真命题,当然,它的逆否命题也是真命题;而它的逆否命题是什么呢?是“若方程2210x x ++=无解,则x ∉R ”吗?这个命题是假命题.显然,它不是我们要的逆否命题.问题出在哪里?出在x ∈R 的否定并不是x ∉R 上,那么x ∈R 的否定到底是什么?其实,x ∈R 表示x 是任意实数,其否定应该是:x 不是任意实数;
例2 判断命题“x ∈R ,则方程2
210x x ++=有解”是全称命题还是特称命题,并写出它的否定.
分析:由于x ∈R 表示x 是任意实数,即命题中含有全称量词“任意的”;因而是全称命题;其否定是:“x 不是任意实数,则方程2210x x ++=无解”.
3.由于全称量词的否定是存在量词,而存在量词的否定又是全称量词;因此,全称命题的否定一定是特称命题;特称命题的否定一定是全称命题.
4.命题的否定与否命题
(1)命题的否定是针对仅含一个量词的全称命题与特称命题.显然,并非所有命题都有写出它的否定的必要;如“若x y =,则22
x y =”不含量词;再如“[]11x ∀∈-,,[]01y ∃∈,,使2232x xy y ++≥”含有两个量词;这些命题的否定可能存在,但不在我们学习的范围;而这些命题的否命题都在我们的学习范围内;
(2)以量词为前提的命题.如命题:“x ∀∈R ,若0y >,则2
0x y +>”的否命题为“x ∀∈R ,若0y ≤,则20x y +≤”;而此命题的否定为“x ∃∈R ,若0y >,则20x y +≤”;显然,两者的区别很大.。

相关文档
最新文档