2017_2018学年高中数学课下能力提升(含答案)七新人教A版必修3
2017-2018学年高中数学人教A版选修1-2学业分层测评:

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.如图4-1-6所示流程图中,判断正整数x是奇数还是偶数,判断框内的条件是()图4-1-6A.余数是1?B.余数是0?C.余数是3? D.余数不为0?【解析】依据判断框的出口进行选择,出口为“是”时x为偶数.故判断框内应该填“余数是0?”.【答案】 B2.进入互联网时代,发电子邮件是不可少的,一般而言,发电子邮件要分成以下几个步骤:a.打开电子信箱;b.输入发送地址;c.输入主题;d.输入信件内容;e.点击“写邮件”;f.点击“发送邮件”.则正确的是() A.a→b→c→d→e→f B.a→c→d→f→e→bC.a→e→b→c→d→f D.b→a→c→d→f→e【解析】依题意知发送电子邮件的步骤应是:a→e→b→c→d→f.【答案】 C3.如图4-1-7,小黑点表示网络的结点,结点之间的连线表示它们有网线相连,连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可分开沿不同的路线同时传递,则单位时间内传递的最大信息量是()【导学号:81092059】图4-1-7A.26 B.24C.20 D.19【解析】由A→B有4条路线,4条路线单位时间内传递的最大信息量为3+4+6+6=19.【答案】 D4.小明每天早晨起床后要做如下事情:洗漱用5分钟,收拾床褥用4分钟,听广播用15分钟,吃早饭用8分钟,要完成这些事情,小明要花费的最少时间为() A.17分钟B.19分钟C.23分钟D.27分钟【解析】把过程简化,把能放在同一个时间内完成的并列,如听广播的同时可以洗涮、收拾被褥、吃早饭,共用5+4+8=17(分钟).【答案】 A5.阅读下边的程序框图4-1-8,运行相应的程序,则输出S的值为()图4-1-8A.2 B.4C.6 D.8【解析】S=4不满足S≥6,S=2S=2×4=8,n=1+1=2;n=2不满足n>3,S=8满足S≥6,则S=8-6=2,n=2+1=3;n=3不满足n>3,S=2不满足S≥6,则S=2S=2×2=4,n=3+1=4;n=4满足n>3,输出S=4.故选B.【答案】 B二、填空题6.椭圆x2a2+y2b2=1(a>b>0)的面积为S=πab,当a=4,b=2时,计算椭圆面积的流程图如图4-1-9所示,则空白处应为________.【导学号:81092060】图4-1-9【解析】由S=πab知,需要a,b的值,由已知a=4,b=2,而且用的是框,故为赋值.【答案】a=4,b=27.如图4-1-10是计算1+13+15+…+199的程序框图,判断框中应填的内容是________,处理框中应填的内容是________.图4-1-10【解析】用i来表示计数变量,故判断框内为“i>99?”,处理框内为“i=i+2”.【答案】i>99?i=i+28.执行如图4-1-11所示的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为________.图4-1-11【解析】第1次循环:a=0+1=1,b=9-1=8,a<b,此时i=2;第2次循环:a=1+2=3,b=8-2=6,a<b,此时i=3;第3次循环:a=3+3=6,b=6-3=3,a>b,输出i=3.【答案】 3三、解答题9.设计一个计算1+2+…+100的值的程序框图.【解】程序框图设计如下:10.数学建模过程的流程图如图4-1-12.图4-1-12根据这个流程图,说明数学建模的过程.【解】数学建模的过程:根据实际情境提出问题,从而建立数学模型得出数学结果,然后检验是否合乎实际,如果不合乎实际,进行修改后重新提出问题.如果合乎实际,则成为可用的结果.[能力提升]1.某工厂加工某种零件的工序流程图如图4-1-13:图4-1-13按照这个工序流程图,一件成品至少经过几道加工和检验程序()A.3B.4C.5D.6【解析】由流程图可知加工零件有三道工序:粗加工、返修加工和精加工,每道工序完成都要对产品进行检验,粗加工的合格品进入精加工,不合格品进入返修加工;返修加工的合格品进入精加工,不合格品作为废品处理;精加工的合格品为成品,不合格品为废品.由上可知一件成品至少要经过粗加工、检验、精加工、最后检验四道程序.【答案】 B2.执行两次如图4-1-14所示的程序框图,若第一次输入的a的值为-1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为()图4-1-14A .0.2,0.2B .0.2,0.8C .0.8,0.2D .0.8,0.8【解析】 第一次:a =-1.2<0,a =-1.2+1=-0.2,-0.2<0,a =-0.2+1=0.8>0,a =0.8≥1不成立,输出0.8.第二次:a =1.2<0不成立,a =1.2≥1成立,a =1.2-1=0.2≥1不成立,输出0.2.【答案】 C3.如图4-1-15所示算法程序框图中,令a =tan 315°,b =sin 315°, c =cos 315°,则输出结果为________.【导学号:81092061】图4-1-15【解析】 程序框图的算法是求出a ,b ,c 三个数中的最大值.对于tan 315°=-1,sin 315°=-22,cos 315°=22,故输出的结果为22.【答案】 224.某市环境保护局信访工作流程如下:(1)信访办受理来访,一般信访填单转办;重大信访报局长批示后转办;(2)及时转送有关部门办理、督办,如特殊情况未能按期办理完毕,批准后可延办,办理完毕后反馈;(3)信访办理情况反馈后,归档备查,定期通报.据上画出该局信访工作流程图.【解】流程图如图所示.。
2017版人教A版高中数学必修3全册教案

人教A版高中数学必修3全册教案目录§1.1.1算法的概念§1.1.2程序框图与算法的基本逻辑结构(1)§1.1.2程序框图与算法的基本逻辑结构(2)§1.1.2程序框图与算法的基本逻辑结构(3)§1.1.2程序框图与算法的基本逻辑结构(4)§1.2.1输入语句、输出语句和赋值语句§1.2.2条件语句§1.2.3循环语句§1.3算法案例(复习)§1.3算法案例(秦九韶算法)§1.3算法案例(辗转相除法与更相减损术)§1.3算法案例(进位制)§2.1.1简单随机抽样§2.1.2系统抽样§2.1.3分层抽样§2.2.1用样本的频率分布估计总体分布§2.2.2众数中位数平均数§2.2.2标准差§2.3变量间的相关关系(1)§2.3变量间的相关关系(2)§3.1.1随机事件的概率§3.1.2概率的意义§3.1.3概率的基本性质§3.2.1古典概型§3.2.2(整数值)随机数的产生§3.3.1几何概型§3.3.2均匀随机数的产生第一章算法初步本章教材分析算法是数学及其应用的重要组成部分,是计算科学的重要基础.算法的应用是学习数学的一个重要方面.学生学习算法的应用,目的就是利用已有的数学知识分析问题和解决问题.通过算法的学习,对完善数学的思想,激发应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助.本章主要内容:算法与程序框图、基本算法语句、算法案例和小结.教材从学生最熟悉的算法入手,通过研究程序框图与算法案例,使算法得到充分的应用,同时也展现了古老算法和现代计算机技术的密切关系.算法案例不仅展示了数学方法的严谨性、科学性,也为计算机的应用提供了广阔的空间.让学生进一步受到数学思想方法的熏陶,激发学生的学习热情.在算法初步这一章中让学生近距离接近社会生活,从生活中学习数学,使数学在社会生活中得到应用和提高,让学生体会到数学是有用的,从而培养学生的学习兴趣.“数学建模”也是高考考查重点.本章还是数学思想方法的载体,学生在学习中会经常用到“算法思想” “转化思想”,从而提高自己数学能力.因此应从三个方面把握本章:(1)知识间的联系;(2)数学思想方法;(3)认知规律.§1.1 算法与程序框图§1.1.1 算法的概念一、教材分析算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固.二、教学目标1、知识与技能:(1)了解算法的含义,体会算法的思想。
高中数学 专题02 频率分布直方图及其应用分项汇编(含解析)新人教A版必修3

专题02 频率分布直方图及其应用一、选择题1.【2017-2018年北京市首都师大附中高二期末】对高速公路某段上汽车行驶速度进行抽样调查,画出如下频率分布直方图.根据直方图估计在此路段上汽车行驶速度的众数和行驶速度超过80km/h的概率A. 75,0.25B. 80,0.35C. 77.5,0.25D. 77.5,0.35【答案】D故选D.2.【人教B版高中数学必修三同步测试】根据某水文观测点的历史统计数据,得到某条河流水位的频率分布直方图(如图),从图中可以看出,该水文观测点平均至少100年才遇到一次的洪水的最低水位是()A. 48 mB. 49 mC. 50 mD. 51 m【答案】C【解析】由频率分布直方图知水位为50 m的频率组距为0.00520.01⨯=,即水文观测点平均至少一百年才遇到一次的洪水的最低水位是50 m. 本题选择C选项.3.【福建省三明市A片区高中联盟校2017-2018学年高二上学期阶段性考试】为了解某地区名高三男生的身体发育情况,抽查了该地区名年龄为~岁的高三男生体重(),得到频率分布直方图如图.根据图示,估计该地区高三男生中体重在kg的学生人数是( )A . B. C. D.【答案】C点睛:此题主要考查了频率分布直方图在实际问题中的应用,属于中低档题型,也是常考考点.在解决此类问题中,充分利用频率分布直方图的纵坐标的实际意义,其纵坐标值为:频率/组距,由此各组数据的频率=其纵坐标组距,各组频数=频率×总体,从而可估计出所求数据段的频数(即人数).4.【广东省中山一中、仲元中学等七校2017-2018学年高二3月联考】某商场在国庆黄金周的促销活动中,对10月1日9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为3万元,则9时至14时的销售总额为A. 10万元B. 12万元C. 15万元D. 30万元【答案】D【解析】9时至10时的销售额频率为0.1,因此所有销售总额为万元,故选D .5.【四川省成都外国语学校2017-2018学年高二上学期期末考试】容量为100的样本,其数据分布在[]2,18,将样本数据分为4组: [)2,6, [)6,10, [)10,14, []14,18,得到频率分布直方图如图所示.则下列说法不正确的是A . 样本数据分布在[)6,10的频率为0.32B . 样本数据分布在[)10,14的频数为40C . 样本数据分布在[)2,10的频数为40D . 估计总体数据大约有10%分布在[)10,14【答案】DD 不正确.故选D .6.【四川省雅安市2017-2018学年高二上学期期末考试】某高校进行自主招生,先从报名者中筛选出400人参加笔试,再按笔试成绩择优选出100人参加面试,现随机调查了24名笔试者的成绩,如下表所示:据此估计允许参加面试的分数线大约是( )A . 75B . 80C . 85D . 90【答案】B故选B7.【四川省成都市2017-2018学年高二上学期期末调研考试】容量为100的样本,其数据分布在[]2,18,将样本数据分为4组: [)[)[)[]2,6,6,10,10,14,14,18,得到频率分布直方图如图所示,则下列说法不正确的是( )A . 样本数据分布在[)6,10的频率为0.32B . 样本数据分布在[)10,14的频数为40C . 样本数据分布在[)2,10的频数为40D . 估计总体数据大约有10%分布在[)10,14【答案】D【解析】总体数据分布在[)10,14的概率为0.140%0.020.080.10.05=+++故选D8.【广西南宁市第二中学(曲靖一中、柳州高中)2017-2018学年高二上学期末期考试】2014年5月,国家统计局公布了《2013年农民工监测调查报告》,报告显示:我国农民工收入持续快速增长.某地区农民工人均月收入增长率如图1,并将人均月收入绘制成如图2的不完整的条形统计图.根据以上统计图来判断以下说法错误的是( )A. 2013年农民工人均月收入的增长率是.B. 2011年农民工人均月收入是元.C. 小明看了统计图后说:“农民工2012年的人均月收入比2011年的少了”.D. 2009年到2013年这五年中2013年农民工人均月收入最高.【答案】C9.【四川省遂宁市2017-2018学年高二上学期期末考试】供电部门对某社区位居民2017年12月份人均用电情况进行统计后,按人均用电量分为,,,,五组,整理得到如下的频率分布直方图,则下列说法错误的是A . 月份人均用电量人数最多的一组有人B . 月份人均用电量不低于度的有人C . 月份人均用电量为度D . 在这位居民中任选位协助收费,选到的居民用电量在一组的概率为【答案】C点睛:统计中利用频率分布直方图计算样本均值时,可利用组中值进行计算.10.【内蒙古赤峰市宁城县2017-2018学年高二上学期期末考试】有关部门从甲、乙两个城市所有的自动售货机是随机抽取了16台,记录上午8:00~11:00间各自的销售情况(单位:元),用茎叶图表示:设甲、乙的平均数分别为12,x x ,标准差分别为12,s s ,则( )A . 12x x >, 12s s >B . 12x x >, 12s s <C . 12x x <, 12s s <D . 12x x <, 12s s >【答案】D【解析】根据公式得到1x =()13078652014362225276041431616+++++++++++= ()2147710121820224627313268384243481616x =+++++++++++++=故12x x <,再将以上均值代入方差的公式得到12s s >.或者观察茎叶图,得到乙的数据更集中一些,故得到12s s >.故答案为:D .11.【陕西省黄陵中学2017-2018学年高二(重点班)上学期期末考试】某篮球运动员在一个赛季的40场比赛中的得分的茎叶图如右下图所示:则中位数与众数分别为()A. 3与3B. 23与23C. 3与23D. 23与3【答案】B点睛:茎叶图的问题需注意:(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;(2)重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置的数据.12.【内蒙古鄂尔多斯市第一中学2017-2018学年高二上学期第三次月考】如图是某次拉丁舞比赛七位评委为甲、乙两名选手打出的分数的茎叶图(其中m为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1、a2,则a1、a2的大小关系是()A. a1=a2B. a1>a2C. a2>a1D. 无法确定【答案】C【解析】由茎叶图,得甲、乙两名选手得分的平均数分别为18584858581845a++++==,28484868487855a++++==,即21a a>;故选C.填空题13.【吉林省辽源市田家炳高级中学2017-2018学年高二下学期3月月考】上方右图是一个容量为200的样本的频率分布直方图,请根据图形中的数据填空:(1)样本数据落在范围[5,9)的可能性为__________;(2)样本数据落在范围[9,13)的频数为__________.【答案】 0.32 72点睛:本题主要考查的知识点是频率分布直方图的意义以及应用图形解题的能力,属于基础题.对于()1根据频率=⨯频率组距组距即可求出结果,对于()2根据频数=频率⨯样本容量即可求出结果.14.【山西省临汾第一中学等五校2017-2018学年高二上学期期末联考】目前北方空气污染越来越严重,某大学组织学生参加环保知识竞赛,从参加学生中抽取40名,将其成绩(均为整数)整理后画出的频率分布直方图如图,若从成绩是80分以上(包括80分)的学生中选两人,则他们在同一分数段的概率为_______.【答案】∵前三组的累积频率为:0.10+0.15+0.25=0.50,故这次环保知识竞赛成绩的中位数为70;成绩在[80,90)段的人数有10×0.010×40=4人,成绩在[90,100]段的人数有10×0.005×40=2人,从成绩是80分以上(包括80分)的学生中任选两人共有15种不同的基本事件,其中他们在同一分数段的基本事件有:7,故他们在同一分数段的概率为故答案为:.15.【黑龙江省大庆中学2017-2018学年高二上学期期末考试】某高校在今年的自主招生考试成绩中随机抽取100名考生的笔试成绩,分为5组制出频率分布直方图如图所示.则a=__________,d=__________.【答案】 30 0.2点睛:利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.16.【辽宁省六校协作体2017-2018学年高二上学期期初联考】从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高在[ 120 , 130),[130 ,140) , [140 , 150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140 ,150]内的学生中选取的人数应为【答案】3人【解析】试题分析:∵直方图中各个矩形的面积之和为1,∴10×(0.005+0.035+a+0.02+0.01)=1,解得a=0.03.由直方图可知三个区域内的学生总数为100×10×(0.03+0.02+0.01)=60人.其中身高在[140,150]内的学生人数为10人,所以身高在[140,150]范围内抽取的学生人数为人.考点:频率分布直方图.点评:本题考查频率分布直方图的相关知识.直方图中的各个矩形的面积代表了频率,所以各个矩形面积之和为1.同时也考查了分层抽样的特点,即每个层次中抽取的个体的概率都是相等的.解答题17.【2017-2018学年人教A版数学必修三同步测试】我校对高二600名学生进行了一次知识测试,并从中抽取了部分学生的成绩(满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.分组频数频率[50,60) 2 0.04[60,70) 8 0.16[70,80) 10[80,90)[90,100] 14 0.28合计1.00(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;(2)请你估算该年级学生成绩的中位数;(3)如果用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,再从6人中选2人,求2人分数都在[80,90)的概率.【答案】(1)答案见解析;(2)83.125;(3) 2 5【解析】试题分析:试题解析:(1)填写频率分布表中的空格,如下表:分组频数频率[50,60) 2 0.04[60,70) 8 0.16[70,80) 10 0.2[80,90) 16 0.32[90,100] 14 0.28合计50 1.00补全频率分布直方图,如下图:(2)设中位数为x,依题意得0.04+0.16+0.2+0.032×(x-80)=0.5,解得x=83.125,所以中位数约为83.125.(3)由题意知样本分数在[60,70)有8人,样本分数在[80,90)有16人,用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,则抽取的分数在[60,70)和[80,90)的人数分别为2人和4人.记分数在[60,70)的为a1,a2,在[80,90)的为b1,b2,b3,b4.从已抽取的6人中任选两人的所有可能结果有15种,分别为{a1,a2},{a1,b1},{a1,b2},{a1,b3},{a1,b4},{a2,b1},{a2,b2},{a2,b3},{a2,b4},{b1,b2},{b1,b3},{b1,b4},{b2,b3},{ b2,b4},{b3,b4},设“2人分数都在[80,90)”为事件A,则事件A包括{b1,b2},{b1,b3},{b1,b4},{b2,b3},{b2,b4},{b3,b4}共6种,所以P(A)=62 155.点睛:利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.18.【内蒙古自治区北方重工业集团有限公司第三中学2017-2018学年高二3月月考】节能减排以来,兰州市100户居民的月平均用电量单位:度,以分组的频率分布直方图如图.求直方图中x的值;求月平均用电量的众数和中位数;估计用电量落在中的概率是多少?【答案】(1)5;(2)众数为,中位数为224;(3).月平均用电量在中的概率是.试题解析:的频率之和为,的频率之和为,∴中位数在设中位数为y ,则解得故中位数为224.由频率分布直方图可知,月平均用电量在中的概率是.点睛:利用频率分布直方图估计样本的数字特征(1)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积相等,由此可以估计中位数值. (2)平均数:平均数的估计值等于每个小矩形的面积乘以矩形底边中点横坐标之和. (3)众数:最高的矩形的中点的横坐标.19.【河南师范大学附属中学2017-2018学年高二4月月考】某重点中学100位学生在市统考中的理科综合分数,以[)160,180, [)180,200, [)200,220, [)220,240, [)240,260, [)260,280, []280,300分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求理科综合分数的众数和中位数;(3)在理科综合分数为[)220,240, [)240,260, [)260,280, []280,300的四组学生中,用分层抽样的方法抽取11名学生,则理科综合分数在[)220,240的学生中应抽取多少人? 【答案】(1) 0.0075 (2)230, 224(3)5人 【解析】试题分析:(1)根据直方图求出x 的值即可;(2)根据直方图求出众数,设中位数为a,得到关于a的方程,解出即可;(3)分别求出[220,240),[240,260),[260,280),[280,300]的用户数,根据分层抽样求出满足条件的概率即可.(2)理科综合分数的众数是2202402302+=,∵()0.0020.00950.011200.450.5++⨯=<,∴理科综合分数的中位数在[)220,240内,设中位数为a,则()()0.0020.00950.011200.01252200.5a++⨯+⨯-=,解得224a=,即中位数为224.(3)理科综合分数在[)220,240的学生有0.01252010025⨯⨯=(位),同理可求理科综合分数为[)240,260,[)260,280,[]280,300的用户分别有15位、10位、5位,故抽取比为111 25151055=+++,∴从理科综合分数在[)220,240的学生中应抽取12555⨯=人.点睛:利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.20.【河北省阜城中学 2017-2018学年高二上学期期末考试】某校高一年级某次数学竞赛随机抽取100名学生的成绩,分组为[50,60),[60,70),[70,80),[80,90),[90,100],统计后得到频率分布直方图如图所示:(1)试估计这组样本数据的众数和中位数(结果精确到0.1);(2)年级决定在成绩[70,100]中用分层抽样抽取6人组成一个调研小组,对高一年级学生课外学习数学的情况做一个调查,则在[70,80),[80,90),[90,100]这三组分别抽取了多少人?(3)现在要从(2)中抽取的6人中选出正副2个小组长,求成绩在[80,90)中至少有1人当选为正、副小组长的概率.【答案】(1)65,73.3;(2)3,2,1;(3)【解析】试题分析:(1)由频率分布直方图中面积最大的矩形中点可得众数、左右面积各为0.5的分界处为中位数.(2)先求出成绩为[70,80)、[80,90)、[90,100]这三组的频率,由此能求出[70,80)、[80,90)、[90,100]这三组抽取的人数.(3)由(2)知成绩在[70,80)有3人,分别记为a,b,c;成绩在[80,90)有2人,分别记为d,e;成绩在[90,100]有1人,记为f.由此利用列举法能求出成绩在[80,90)中至少有1人当选为正、副小组长的概率.(2)成绩为[70,80)、[80,90)、[90,100]这三组的频率分别为0.3,0.2,0.1,∴[70,80)、[80,90)、[90,100]这三组抽取的人数分别为3人,2人,1人.(3)由(2)知成绩在[70,80)有3人,分别记为a,b,c;成绩在[80,90)有2人,分别记为d,e;成绩在[90,100]有1人,记为f.∴从(2)中抽取的6人中选出正副2个小组长包含的基本事件有种,分别为:ab,ba,ac,ca,ad,da,ae,ea,af,fa,bc,cb,bd,db,be,eb,bf,fb,cd,dc,ce,ec,cf,fc,de,ed,df,fd,ef,fe,记“成绩在[80,90)中至少有1人当选为正、副小组长”为事件Q,则事件Q包含的基本事件有18种,∴成绩在[80,90)中至少有1人当选为正、副小组长的概率P(Q)=.点睛:利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.21.【黑龙江省哈尔滨市第六中学2017-2018学年高二3月月考】从某学校高三年级共800名男生中随机抽取50名测量身高,测量发现被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160);第二组[160,165)、…、第八组[190,195],下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.(1)估计这所学校高三年级全体男生身高180cm以上(含180cm)的人数;(2)求第六组、第七组的频率并补充完整频率分布直方图(如需增加刻度请在纵轴上标记出数据,并用直尺作图);(3)由直方图估计男生身高的中位数.【答案】(1);(2)详见解析;(3).试题解析:(1)由直方图,前五组频率为(0.008+0.016+0.04+0.04+0.06)×5=0.82,后三组频率为1-0.82=0.18.这所学校高三男生身高在180cm以上(含180cm)的人数为800×0.18=144人.(2)由频率分布直方图得第八组频率为0.008×5=0.04,人数为0.04×50=2人,设第六组人数为m,则第七组人数为0.18×50-2-m=7-m,又m+2=2(7-m),所以m=4,即第六组人数为4人,第七组人数为3人,频率分别为0.08,0.06.频率除以组距分别等于0.016,0.012,见图.(3)设中位数为,由频率为,所以,,解得=174.5 22.【广东省中山一中、仲元中学等七校2017-2018学年高二3月联考】某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.(1)上表是年龄的频数分布表,求正整数的值;(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?(3)在(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.【答案】(1);(2) 第1,2,3组分别抽取1人,1人,4人;(3).【解析】试题分析:(1))由题设可知,,;(2)由第1,2,3组的比例关系为1:1:4,则分别抽取1人,1人,4人;(3)设第1组的1位同学为,第2组的1位同学为,第3组的4位同学为,由穷举法,求得至少有1人年龄在第3组的概率为.(3)设第1组的1位同学为,第2组的1位同学为,第3组的4位同学为,则从6位同学中抽两位同学有:共种可能.其中2人年龄都不在第3组的有:共1种可能,所以至少有1人年龄在第3组的概率为.。
人教版新课标高中数学A版必修3

人教版新课标高中数学A版必修3人教版新课标高中数学A版必修3是高中数学学习的重要组成部分,它涵盖了多个重要的数学概念和应用。
本册教材主要包括以下内容:1. 概率论初步:介绍了随机事件、概率的基本概念,以及如何通过实验或理论计算来确定事件的概率。
包括古典概型、几何概型和条件概率等内容。
2. 统计初步:涉及数据的收集、整理、描述和分析的基本方法。
包括数据的图表表示(如条形图、折线图、饼图等)、平均数、中位数、众数、方差和标准差等统计量的计算。
3. 算法初步:介绍了算法的概念、基本结构(如顺序结构、选择结构、循环结构)以及如何设计简单的算法来解决实际问题。
4. 复数:讲解了复数的定义、复数的四则运算、复数的几何意义以及复数在实际问题中的应用。
5. 三角函数:包括任意角的三角函数定义、三角函数的基本性质、三角函数的图像和性质、三角恒等变换以及解三角形等。
6. 解析几何:介绍了平面直角坐标系、直线和圆的方程、直线与圆的位置关系、椭圆、双曲线和抛物线的定义和性质等。
7. 立体几何:包括空间直线和平面的位置关系、空间多面体和旋转体的结构、体积和表面积的计算等。
8. 数列:涉及数列的概念、等差数列和等比数列的性质、数列的求和公式以及数列在实际问题中的应用。
9. 数学建模:介绍了数学建模的基本思想和方法,以及如何运用数学知识解决实际问题。
10. 数学文化:穿插在各个章节中,介绍了数学的历史、数学家的故事、数学在文化中的地位等内容,旨在提高学生对数学的兴趣和认识。
本册教材旨在培养学生的数学思维能力、逻辑推理能力和解决实际问题的能力,同时也注重数学知识与现实生活的联系,使学生能够更好地理解和应用数学。
高中数学第七章随机变量及其分布 全概率公式课后提能训练新人教A版选择性必修第三册

第7章 7.1.2A 级——基础过关练1.袋中有50个乒乓球,其中20个是黄球,30个是白球.今有两人依次随机地从袋中各取一球,取后不放回,则第二人取得黄球的概率为( )A .35B .1949C .2049D .25【答案】D 【解析】设A ={第一个人取到黄球},B ={第二个人取到黄球},则P (B )=P (A )(B |A )+P (A )P (B |A ),由题意知P (A )=2050,P (A )=3050,P (B |A )=1944,P (B |A )=2049,所以P (B )=2050×1949+3050×2049=25.2.设某工厂有甲、乙、丙三个车间生产同一种产品,已知各车间的产量占全厂产量的25%,35%,40%,而且各车间的次品率依次为5%,4%,2%.现从待出厂的产品中检查出一个次品,那它由甲车间生产的概率约为( )A .0.013B .0.362C .0.468D .0.035【答案】B3.甲、乙、丙三个车间生产同一种产品,其产量分别占总量的25%,35%,40%,次品率分别为5%,4%,2%.从这批产品中任取一件,则它是次品的概率为( )A .0.012 3B .0.023 4C .0.034 5D .0.045 6 【答案】C 【解析】由全概率公式,得所求概率为0.25×0.05+0.35×0.04+0.4×0.02=0.034 5.4.已知甲袋中有6只红球,4只白球;乙袋中有8只红球,6只白球,随机取一只袋子,再从袋中任取一球,发现是红球,则此球来自甲袋的概率为( )A .512B .37C .2041D .2141【答案】D 【解析】设A ={取得红球},B 1={来自甲袋},B 2={来自乙袋},则P (B 1)=P (B 2)=12,P (A |B 1)=610,P (A |B 2)=814,由贝叶斯公式得P (B 1A )=P B 1P A |B 1B 1P A |B 1+P B 2P A |B 2=12×61012×610+12×814=2141. 5.5张卡片上分别写有数字1,2,3,4,5,每次从中任取一张,连取两次.若第一次取出的卡片不放回,则第二次取出的卡片上的数字大于第一次取出的数字的概率为( )A .14B .12C .25D .35【答案】B6.两台机床加工同样的零件,它们常出现废品的概率分别为0.03和0.02,加工出的零件放在一起,设第一台机床加工的零件比第二台的多一倍,则任取一个零件是合格品的概率为________.【答案】7375 【解析】第一台机床加工的零件比第二台多一倍,那么第一台机床生产的零件占据总零件的比例是23,第二台机床生产的零件占据总零件的比例是13,由全概率公式,得所求概率为(1-0.03)×23+(1-0.02)×13=7375.7.根据以往的临床记录,某种诊断癌症的试验具有如下效果:若以A 表示“试验反应为阳性”,以B 表示“被诊断者患有癌症”,则有P (A |B )=0.95,P (A -|B )=0.95,现对自然人群进行普查,设被实验的人患有癌症的概率为0.005,则P (B |A )=________(保留两位有效数字).【答案】0.087 【解析】P (A |B )=1-P (A |B )=1-0.95=0.05,被试验的人患有癌症概率为0.005,就相当于P (B )=0.005,由贝叶斯公式,得P (B |A )=P B P A |BP B P A |B +PBP A |B=0.005×0.950.005×0.95+0.995×0.05≈0.087. 8.装有10件某产品(其中一等品5件,二等品3件,三等品2件)的箱子中丢失一件产品,但不知道是几等品,今从箱中任取2件产品,结果都是一等品,则丢失的也是一等品的概率为________.【答案】38 【解析】设事件A 表示从箱中任取2件都是一等品,事件B i 表示丢失的为i等品,i =1,2,3,那么P (A )=P (B 1)·P (A |B 1)+P (B 2)P (A |B 2)+P (B 3)P (A |B 3)=12×C 24C 29+310×C 25C 29+210×C 25C 29=29.所以P (B 1|A )=P B 1P A |B 1P A =38.9.某次社会实践活动中,甲、乙两个班的同学共同在一个社区进行民意调查,参加活动的甲、乙两班的人数之比为5∶3,其中甲班中女生占35,乙班中女生占13,求该社区居民遇到一位进行民意调查的同学恰好是女生的概率.解:用A 1,A 2分别表示居民所遇到的一位同学是甲班的与乙班的事件,B 表示是女生的事件,则Ω=A 1∪A 2,且A 1,A 2互斥,B ⊆Ω.由题意知P (A 1)=58,P (A 2)=38,P (B |A 1)=35,P (B |A 2)=13.由全概率公式可知P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)=58×35+38×13=12.10.有三个箱子,分别编号为1,2,3.1号箱装有1个红球4个白球,2号箱装有2个红球3个白球, 3号箱装有3个红球.某人从三箱中任取一箱,从中任意摸出一球,求取得红球的概率.B 级——能力提升练11.某试卷只有1道选择题,但有6个答案,其中只有一个是正确的.考生不知道正确答案的概率为14,不知道正确答案而猜对的概率为16.现已知某考生答对了,则他猜对此题的概率为( )A .14 B .119 C .1116D .1924【答案】B 【解析】设A ={不知道正确答案},B ={猜对此题},则P (A )=14,P (A )=1-14=34,P (B |A )=16.∴P (A |B )=P A P B |APA PB |A +PAP B |A=14×1614×16+34×1=119. 12.甲箱中有3个白球,2个黑球;乙箱中有1个白球,3个黑球.现从甲箱中任取一球放入乙箱中,再从乙箱任取一球.(1)已知从甲箱中取出的是白球的情况下,从乙箱也取出的是白球的概率是________; (2)从乙箱中取出白球的概率是________.【答案】25 825【解析】设A =“从甲箱中取出白球”,B =“从乙箱中取出白球”,则P (A )=35,P (A )=25,P (B |A )=25,P (B |A )=15,利用全概率公式,得P (B )=P (A )P (B |A )+P (A )P (B |A )=35×25+25×15=825.13.设袋中装有10个阄,其中8个是白阄,2个是有物之阄,甲、乙二人依次抓取一个,求没人抓得有物之阄的概率.解:设A ,B 分别为甲、乙抓得有物之阄的事件.∴P (A )=P (B )P (A |B )+P (B )P (A |B ) =210×19+810×29=15, P (B )=P (A )P (B |A )+P (A )P (B |A )=210×19+810×29=15. ∴1-P (A )-P (B )=1-15-15=35.C 级——探究创新练14.盒中有a 个红球,b 个黑球,今随机地从中取出一个,观察其颜色后放回,并加上同色球c 个,再从盒中第二次抽取一球,求第二次抽出的是黑球的概率.解:设A ={第一次抽出的是黑球},B ={第二次抽出的是黑球}. 由全概率公式,得P (B )=P (A )P (B |A )+P (A -)P (B |A -).由题意P (A )=ba +b,P (B |A )=b +c a +b +c ,P (A -)=a a +b,P (B |A -)=b a +b +c.所以P (B )=b b +ca +b a +b +c +ab a +b a +b +c =ba +b.。
新版高中数学人教A版必修3习题:第三章概率 3.1.2(1)

3.1.2概率的意义课时过关·能力提升一、基础巩固1.概率是指()A.事件发生的可能性大小B.事件发生的频率C.事件发生的次数D.无任何意义2.若某篮球运动员的投篮命中率为98%,则估计该运动员投篮1 000次命中的次数为()A.20B.98C.980D.9981000次命中的次数约为1000×98%=980.3.天气预报中预报某地明天降雨的概率为90%,则()A.降雨的可能性是90%B.90%太大,一定降雨C.该地有90%的区域降雨D.降雨概率为90%没有什么意义90%说明明天降雨的可能性是90%.4.已知某学校有教职工400名,从中选举40名教职工组成教职工代表大会,每名教职工当选的概率是110,则下列说法正确的是()A.10名教职工中,必有1人当选B.每名教职工当选的可能性是1 10C.数学教研组共有50人,该组当选教工代表的人数一定是5D.以上说法都不正确5.从一批准备出厂的电视机中随机抽取10台进行质量检查,其中有1台是次品.若用C表示抽到次品这一事件,则下列说法正确的是()A.事件C发生的概率为1 10B.事件C发生的频率为1 10C.事件C发生的概率接近1 10D.每抽10台电视机,必有1台次品6.某医院治疗一种疾病的治愈率为15,若前4位病人都未治愈,则第5位病人的治愈率为()A.1B.4 5C.15D.015,表明每位病人被治愈的可能性均为15,并不是5人中必有1人治愈.故选C.7.在乒乓球、足球等比赛中,裁判员经常用掷硬币或抽签法决定谁先发球,这种方法.(填“公平”或“不公平”),这两种方法都是公平的.因为采用掷硬币得正面、反面的概率相等;采用抽签法,抽到某一签的概率相等.8.某市运动会前夕,质检部门对这次运动会所用的某种产品进行抽检,得知其合格率为99%.若该运动会所需该产品共20 000件,则其中的不合格产品约有件.1-99%=1%,则不合格产品约有20000×1%=200(件).9.某射击教练评价一名运动员时说:“你射中的概率是90%.”则下面两个解释中能代表教练的观点的为.①该射击运动员射击了100次,恰有90次击中目标②该射击运动员射击一次,中靶的机会是90%90%说明中靶的可能性是90%,所以①不正确,②正确.10.为了估计水库中鱼的尾数,使用以下的方法:先从水库中捕出2 000尾鱼,给每尾鱼做上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中的其他鱼充分混合,再从水库中捕出500尾,查看其中有记号的鱼,有40尾.试根据上述数据,估计水库中鱼的尾数.n(n∈N*),每尾鱼被捕到的可能性相等,给2000尾鱼做上记号后,从水库中任捕一尾鱼,带记号的概率为2000n.又从水库中捕500尾鱼,有40尾带记号,于是带记号的频率为40500.则有2000n≈40500,解得n≈25000.所以估计水库中有25000尾鱼.二、能力提升1.在给病人动手术之前,外科医生会告知病人或家属一些情况,其中有一项是说这种手术的成功率大约是99%.下列解释正确的是()A.100个手术有99个手术成功,有1个手术失败B.这个手术一定成功C.99%的医生能做这个手术,另外1%的医生不能做这个手术D.这个手术成功的可能性是99%99%,说明手术成功的可能性是99%.2.根据山东省教育研究机构的统计资料,今在校学生近视率约为37.4%.某眼镜商要到一中学给学生配眼镜,若已知该校学生总数为600人,则该眼镜商应带眼镜的数目为()A.374副B.224.4副C.不少于225副D.不多于225副,该校近视生人数约为37.4%×600=224.4,结合实际情况,眼镜商应带眼镜数不少于225副.3.某套数学试题中,有12道选择题,每道选择题有4个选项,其中只有1个选项是正确的,则随机选择其中一个选项正确的概率是14.某家长说:“要是都不会做,每题都随机选择其中一个选项,则一定有3道题答对.”这句话() A.正确 B.错误C.不一定D.无法解释,答对的概率是14说明了对的可能性大小是14.做12道选择题,即进行了12次试验,每个结果都是随机的,那么答对3道题的可能性较大,但是并不一定答对3道题.也可能都选错,或有1,2,4,…,甚至12个题都选择正确.4.玲玲和倩倩下象棋,为了确定谁先走第一步,玲玲对倩倩说:“拿一个飞镖射向如图所示的靶中,若射中区域所标的数字大于3,则我先走第一步,否则你先走第一步”.你认为这个游戏规则公平吗?.(填“公平”或“不公平”),所标的数字大于3的区域有5个,而小于或等于3的区域只有3个,所以玲玲先走的概率是58,倩倩先走的概率是38.所以不公平.★5.某地区牛患某种病的概率为0.25,且每头牛患病与否是互不影响的,今研制一种新的预防药,任选12头牛做试验,结果这12头牛服用这种药后均未患病,则此药.(填“有效”或“无效”)头牛都在服药后未患病,由极大似然法,可得此药有效.6.试解释下列情况的概率的意义:(1)某商场为促进销售,实行有奖销售活动,凡购买其商品的顾客中奖率是0.20;(2)一生产厂家称:我们厂生产的产品合格率是0.98.解::(1)“中奖率是0.20”是指购买其商品的顾客中奖的可能性是20%.(2)“产品的合格率是0.98”是指该厂生产的产品合格的可能性是98%.★7.某种彩票的抽奖是从写在36个球上的36个号码中随机摇出7个.有人统计了过去中特等奖的号码,声称某一号码在历次特等奖中出现的次数最多,它是一个幸运号码,人们应该买这一号码;也有人说,若一个号码在历次特等奖中出现的次数最少,由于每个号码出现的机会相等,则应该买这一号码.你认为他们的说法对吗?36个号码的36个球大小、质量是一致的,严格地说,为了保证公平,每次用的36个球, ,除非能保证用过一次后,球没有磨损、变形.因此,当把这36个球看成每次抽奖中只用了一次时,不难看出,以前抽奖的结果对今后抽奖的结果没有任何影响,他们的说法都是错误的.。
高中数学第七章随机变量及其分布7.1.2全概率公式素养检测含解析新人教A版选择性必修第三册

九全概率公式(25分钟50分)一、选择题(每小题5分,共20分)1.8支步枪中有5支已经校准过,3支未校准,一名射手用校准过的枪射击时,中靶的概率为0.8,用未校准的步枪射击时,中靶的概率为0.3,现从8支中任取一支射击,结果中靶,则所选用的枪是校准过的概率为( )A. B. C. D.【解析】选B.设A表示“射击时中靶”,B1表示“使用的枪校准过”,B2表示“使用的枪未校准”,则B1,B2是Ω的一个划分.则P(A)=P(AB1)+P(AB2)=P(A|B1)P(B1)+P(A|B2)P(B2)=0.8×+0.3×=,所以P(B1|A)====.2.根据以往资料,一家3口患某种传染病的概率有以下特点:P(孩子得病)=0.6,P(母亲得病|孩子得病)=0.5,P(父亲得病|母亲及孩子得病)=0.4.则母亲及孩子得病但父亲未得病的概率为( ) A.0.18 B.0.3 C.0.36 D.0.24【解析】选 A.设A={孩子得病},B={母亲得病},C={父亲得病},则P(A)=0.6,P(B|A)=0.5,P(C|AB)=0.4,P(AB)=P(|AB)P(B|A)P(A)=0.6×0.5×0.6=0.18.3.设袋中有5个红球,3个黑球,2个白球,现有放回地摸球3次,每次摸1球,则第3次才摸得白球的概率为( )A. B. C. D.【解析】选C.设A={第1次未摸得白球},B={第2次未摸得白球},C={第3次摸得白球},则事件“第3次才摸得白球”可表示为ABC.P(A)=,P(B|A)=,P(C|AB)=,P(ABC)=P(C|AB)P(B|A)P(A)=××=.4.设袋中含有5件同样的产品,其中3件正品,2件次品,每次从中取一件,无放回地连续取2次,则第2次取到正品的概率为( ) A. B. C. D.【解析】选C.设事件A表示“第1次取到正品”,事件B表示“第2次取到正品”,B=BA+B,所以P(B)=P(BA+B)=P(BA)+P(B)=P(A)P(B|A)+P()P(B|)=×+×=.二、填空题(每小题5分,共10分)5.某保险公司认为,人可以分为两类,第一类容易出事故;另一类,则是比较谨慎,保险公司统计数字表明,一个容易出事故的人在一年内出一次事故的概率为0.04,而对于比较谨慎的人这个概率为0.02,如果第一类人占总人数的30%,那么一客户在购买保险单后一年内出一次事故的概率为.【解析】设A表示“客户购买保险单后一年内出一次事故”,B表示“他属于容易出事故的人”.P(A)=P(B)P(A|B)+P()P(A|)=0.3×0.04+(1-0.3)×0.02=0.026.答案:0.0266.已知在所有男子中有5%患有色盲症,在所有女子中有0.25%患有色盲症.随机抽一人发现患色盲症的概率为(设男子与女子的人数相等).【解析】设A表示“男子”,B表示“女子”,C表示“这人患色盲症”,则P(C|A)=0.05,P(C|B)=0.002 5,P(A)=0.5,P(B)=0.5,则P(C)=P(A)P(C|A)+P(B)P(C|B)=0.5×0.05+0.5×0.002 5=0.026 25.答案:0.026 25三、解答题(每小题10分,共20分)7.有一批同型号的产品,已知其中由一厂生产的占30%,二厂生产的占50%,三厂生产的占20%,又知这三个厂的产品次品率分别为2%,1%,1%,问从这批产品中任取一件是次品的概率是多少? 【解析】设事件B为“任取一件是次品”,事件A i为“任取一件为i厂的产品”,i=1,2,3.A1∪A2∪A3=Ω,A i A j=∅,i,j=1,2,3.由全概率公式得:P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3).P(A1)=0.3,P(A2)=0.5,P(A3)=0.2,P(B|A1)=0.02,P(B|A2)=0.01,P(B|A3)=0.01,所以P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=0.02×0.3+0.01×0.5+0.01×0.2=0.013.8.甲箱的产品中有5个正品和3个次品,乙箱的产品中有4个正品和3个次品.(1)从甲箱中任取2个产品,求这2个产品都是次品的概率.(2)若从甲箱中任取2个产品放入乙箱中,然后再从乙箱中任取一个产品,求取出的这个产品是正品的概率.【解析】(1)从甲箱中任取2个产品的事件数为=28,这2个产品都是次品的事件数为=3,所以这2个产品都是次品的概率为.(2)设事件A为“从乙箱中取一个正品”,事件B1为“从甲箱中取出2个产品都是正品”,事件B2为“从甲箱中取出1个正品1个次品”,事件B3为“从甲箱中取出2个产品都是次品”,则事件B1、事件B2、事件B3彼此互斥.P(B1)==,P(B2)==,P(B3)==,P(A|B1)=,P(A|B2)=,P(A|B3)=,所以P(A)=P(B1)P(A|B1)+P(B2)P(A|B2)+P(B3)P(A|B3)=×+×+×=.(20分钟45分)一、选择题(每小题5分,共15分,多选题全部选对得5分,选对但不全对得3分,有选错的得0分)1.一批同型号的螺钉由编号为1,2,3的三台机器共同生产,各台机器生产的螺钉占这批螺钉的比例分别为35%,40%,25%,各台机器生产的螺钉次品率分别为3%,2%和1%,现从这批螺钉中抽到一颗次品,则次品来自2号机器生产的概率为( ) A. B. C. D.【解析】选B.设A={螺钉是次品},B1={螺钉由1号机器生产},B2={螺钉由2号机器生产},B3={螺钉由3号机器生产},则P(B1)=0.35,P(B2)=0.40,P(B3)=0.25,P(A|B1)=0.03,P(A|B2)=0.02,P(A|B3)=0.01,P(A)=P(A|B1)P(B1)+P(A|B2)P(B2)+P(A|B3)P(B3)=0.35×0.03+0.40×0.02+0.25×0.01=0.021,所以P(B2|A)==.2.(多选题)已知有两副相同的扑克牌,分别有数字2,3,4,5,6,7,8,9,10的36张,有字母J,Q,K,A的16张,大小王2张,现将两幅扑克牌分别打乱,从其中一副扑克牌中随机取一张;放入另一副扑克牌中,分别以A1,A2,A3表示从此扑克牌抽取的是“数字”“字母”和“大小王”;将其打乱,然后随机取一张;以B表示最后抽取的为数字,则下列结论正确的有( )A.P(B)=B.P(B|A1)=C.事件B与事件A1是互斥事件D.A1,A2,A3是两两互斥的事件【解析】选ABD.由题意知A1,A2,A3是两两互斥的事件,P(A1)==,P(A2)==,P(A3)=,P(B|A1)=,P(B|A2)=,P(B|A3)=,而P(B)=P(A1B)+P(A2B)+P(A3B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=×+×+×=.事件B与事件A1不是互斥事件.3.根据以往临床记录,某种诊断癌症的试验有如下的效果,若以A表示事件“试验反应为阳性”,以C表示事件“被诊断者患有癌症”.且有P(A|C)=0.95,P(|)=0.95.现在对自然人群进行普查,设被试验的人患有癌症的概率为0.005,即P(C)=0.005,则P(C|A)约为( ) A.0.05 B.0.95C.0.087D.0.995【解析】选 C.因为P(A|C)=0.95,P(C)=0.005,P(|)=0.95,则P(A|)=1-P(|)=0.05,P()=0.995,所以P(C|A)==≈0.087.二、填空题(每小题5分,共10分)4.对以往数据分析结果表明,当机器调整得良好时,产品的合格率为98%,而当机器发生某种故障时,其合格率为55%.每天早上机器开动时,机器调整良好的概率为95%.则已知某日早上第一件产品合格时,机器调整得良好的概率约为.【解析】设A为事件“产品合格”,B为事件“机器调整良好”,则有P(A|B)=0.98,P(A|)=0.55,P(B)=0.95,P()=0.05,P(A)=P(A|B)P(B)+P(A|)P()=0.98×0.95+0.55×0.05=0.958 5,所以P(B|A)=≈0.97.答案:0.975.同一种产品由甲、乙、丙三个厂供应,由长期的经验知,三家的正品率分别为0.95,0.90,0.80,三家产品数所占的比例为2∶3∶5,混合在一起,从中任取一件,则此产品为正品的概率为;现取到一件产品为正品,则它是由甲、乙、丙三个厂中厂生产的可能性大.【解析】设事件A表示“取到产品为正品”,B1,B2,B3分别表示“产品由甲、乙、丙厂生产”. 由已知P(B1)=0.2,P(B2)=0.3,P(B3)=0.5,P(A|B1)=0.95,P(A|B2)=0.9,P(A|B3)=0.8,P(A)=P(B i)P(A|B i)=0.2×0.95+0.3×0.9+0.5×0.8=0.86.P(B1|A)==≈0.220 9,P(B2|A)==≈0.314 0,P(B3|A)==≈0.465 1,故由丙厂生产的可能性最大.答案:0.86 丙三、解答题(每小题10分,共20分)6.在某次考试中,要从20道题中随机地抽出6道题,若考生至少能答对其中的4道题即可通过;若至少能答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.【解析】设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题而另一道答错”,事件C为“该考生答对了其中4道题而另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,所以P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=++=,P(E|D)=P((A∪B)|D)=P(A|D)+P(B|D)=+=+=,即所求概率为.7.轰炸机轰炸某目标,它能飞到距目标400,200,100(米)的概率分别是0.5,0.3,0.2,又设它在距目标400,200,100(米)时的命中率分别是0.01,0.02,0.1.求目标被命中的概率为多少? 【解析】设事件A1表示“飞机能飞到距目标400米处”,设事件A2表示“飞机能飞到距目标200米处”,设事件A3表示“飞机能飞到距目标100米处”,用事件B表示“目标被击中”.由题意,P(A1)=0.5, P(A2)=0.3, P(A3)=0.2,且A1,A2,A3构成一个完备事件组.又已知P(B|A1)=0.01,P(B|A2)=0.02, P(B|A3)=0.1.由全概率公式得到:P(B)=P(B|A1)P(A1)+P(B|A2)P(A2)+P(B|A3)P(A3)=0.01×0.5+0.02×0.3+0.1×0.2=0.031.。
高中数学必修3(人教A版)第一章算法初步1.1知识点总结含同步练习及答案

描述:例题:高中数学必修3(人教A版)知识点总结含同步练习题及答案第一章 算法初步 1.1 算法与程序框图一、学习任务1. 了解算法的含义,了解算法的基本思想,能用自然语言描述解决具体问题的算法.2. 了解设计程序框图表达解决问题的过程,了解算法和程序语言的区别;了解程序框图的三种基本逻辑结构,会用程序框图表示简单的常见问题的算法.二、知识清单算法 程序框图三、知识讲解1.算法算法(algorithm)是指按照一定规则解决某一类问题的明确和有限的步骤 .可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.描述算法可以有不同的方式.例如,可以用自然语言和数学语言加以描述,也可以借助形式语言(算法语言)给出精确的说明,也可以用框图直观地显示算法的全貌.算法的要求:(1)写出的算法,必须能解决一类问题,并且能重复使用;(2)算法过程要能一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步后能得到结果.下列对算法的理解不正确的是( )A.一个算法应包含有限的步骤,而不能是无限的B.算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的C.算法中的每一个步骤都应当是有效地执行,并得到确定的结果D.一个问题只能设计出一种算法解:D算法的有限性是指包含的步骤是有限的,故 A 正确;算法的确定性是指每一步都是确定的,故 B正确;算法的每一步都是确定的,且每一步都应有确定的结果,故 C 正确;对于同一个问题可以有不同的算法,故 D 错误.下列叙述能称为算法的的个数为( )描述:2.程序框图程序框图简称框图,是一种用程序框、流程线及文字说明来表示算法的图形.其中,起、止框是任何流程不可少的,表明程序的开始和结束.输入和输出框可用在算法中任何需要输入、输出的位置.算法中间要处理数据或计算,可分别写在不同的处理框内.一个算法步骤到另一个算法步骤用流程线连接.如果一个框图需要分开来画,要在断开处画上连接点,并标出连接的号码.①植树需要运苗、挖坑、栽苗、浇水这些步骤;②依次进行下列运算:,,,,;③从枣庄乘火车到徐州,从徐州乘飞机到广州;④ ;⑤求所有能被 整除的正整数,即 .A. B. C. D.解:B①、②、③为算法.1+1=22+1=33+1=4⋯99+1=1003x >x +133,6,9,12,⋯2345写出解方程组的一个算法.解:方法一:代入消元法. 第一步,由 得 ;第二步,将 代入 ,得 ,解得 ;第三步,将 代入方程 ,得 ;第四步,得到方程组的解为 .方法二:加减消元法.第一步,方程 两边同乘以 ,得 ;第二步,将第一步所得的方程与方程 作差,消去 ,得 ,解得 ;第三步,将 代入方程 ,得 ,解得 ;第四步,得到方程组的解为 .{2x +y =74x +5y =112x +y =7y =7−2x y =7−2x 4x +5y =114x +5(7−2x )=11x =4x =4y =7−2x y =−1{x =4y =−12x +y =7510x +5y =354x +5y =11y 6x =24x =4x =42x +y =72×4+y =7y =−1{x =4y =−1例题:画程序框图的规则(1)使用标准的图形符号.(2)框图一般按从上到下、从左到右的方向画.(3)除判断框外,大多数流程图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的惟一符号.(4)判断框分两大类,一类判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果.(5)在图形符号内描述的语言要非常简练清楚.算法的三种基本逻辑结构顺序结构:语句与语句之间,框与框之间按从上到下的顺序进行.条件分支结构:在一个算法中,经常会遇到一些条件的判断,算法的流程条件是否成立有不同的流向,条件结构就是处理这种过程的结构.循环结构:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.下列程序框图分别是解决什么问题的算法.解:(1)已知圆的半径,求圆的面积的算法.(2)求两个实数加法的算法.执行如图的程序框图,输出的 ______ .解:T =30四、课后作业 (查看更多本章节同步练习题,请到快乐学)某程序框图如图所示,若输出的 ,则判断框内为( )A. B. C. D.解:AS =57k >4?k >5?k >6?k >7?已知函数 ,对每次输入的一个值,都得到相应的函数值,画出程序框图.解:f (x )={2x +3,3−x ,x 2x ⩾0x <0x答案:1. 关于算法的说法中,正确的是 A .算法就是某个问题的解题过程B .算法执行后可以产生不确定的结果C .解决某类问题的算法不是唯一的D .算法可以无限地操作下去不停止C()答案:解析:2. 下列运算不属于我们所讨论算法范畴的是 A .已知圆的半径求圆的面积B .随意抽 张扑克牌算到二十四点的可能性C .已知坐标平面内两点求直线方程D .加减乘除法运算法则B注意算法需按照一定的顺序进行.()4答案:解析:3. 执行如图所示的程序框图,如果输入的 ,则输出的 属于 .A .B .C .D .D取 ,得输出的 ,即可判断.t ∈[−2,2]S ()[−6,−2][−5,−1][−4,5][−3,6]t =−2S =64. 某批发商按客户订单数额的大小分别给予不同的优惠折扣.计算客户应付货款的算法步骤如下: :输入订单数额 (单位:件);输入单价 (单位:元);:若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;:计算应付货款 (单位:元);:输出应付货款 .S 1x A S 2x <250d =0250⩽x <500d =0.05500⩽x <1000d =0.10x ⩾1000d =0.15S 3T =Ax (1−d )S 4T。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课下能力提升(七)
[学业水平达标练]
题组1 UNTIL 语句及应用
1.下列循环语句是程序的一部分,循环终止时,i 等于( ) i =1
DO i =i +1
LOOP UNTIL i >
4
A .3
B .4
C .5
D .6
2.下面程序输出的结果为( )
A .17
B .19
C .21
D .23
3.如果下列程序执行后输出的结果是132,那么在程序UNTIL 后面的“条件”应为
( )
A .i >11
B .i >=11
C .i <=11
D .i <11
题组2 WHILE 语句及应用
4.下列循环语句是程序的一部分,循环终止时,i 等于( )
i =1
WHILE i <3 i =i +1
WEND
A .2
B .3
C .4
D .5
5.求出下面语句的输出结果. i =4
S =0
WHILE i<6
i =i +2 S =S +i^2
WEND
PRINT S
END
6.给出一个算法的程序框图(如图所示).
(1)说明该程序的功能;
(2)请用WHILE 型循环语句写出程序.
题组3 循环语句的综合应用
7.已知有如下两段程序: i =21sum =0WHILE i<=20 sum =sum +i i =i +1WEND PRINT sum END i =21
sum =0
DO
sum =sum +i i =i +1
LOOP UNTIL i>20
PRINT sum
END
程序1 程序2
程序1运行的结果为________,程序2运行的结果为________.
8.下面是“求满足1+2+3+…+n >2 014的最小的自然数n ”的一个程序,其中有3
处错误,请找出错误并予以更正.
i=1
S=1
n=0
DO
S=S+i
i=i+1
n=n+1
LOOP UNTIL S>2 014
输出n+1
[能力提升综合练] 1.如下程序的循环次数为( )
x=0
WHILE x<20
x=x+1
x=x^2
WEND
PRINT x
END
A.1 B.2 C.3 D.4
2.读程序:
甲:乙:
i=1
S=0
WHILE i<=1 000 S=S+i
i=i+1 WEND
PRINT S
END i=1 000
S=0
DO
S=S+i
i=i-1
LOOP UNTIL i<1 PRINT S
END
对甲、乙程序和输出结果判断正确的是( )
A.程序不同,结果不同
B.程序不同,结果相同
C.程序相同,结果不同
D.程序相同,结果相同
3.(2015·北京高考)执行如图所示的程序框图,输出的k值为( )。