新人教版七年级数学上册期中考试试题

合集下载

人教版七年级上册数学期中考试试卷(含答案)

人教版七年级上册数学期中考试试卷(含答案)

人教版七年级上册数学期中考试试卷(含答案)人教版七年级上册数学期中考试试卷(含答案)一、选择题1. 以下哪个数是整数?A. √2B. 3/4C. -5D. 0.752. 下列有理数中,绝对值最大的是:A. -3B. 1/3C. 0D. -5/63. 对于非零有理数a,以下等式成立的是:A. a^2 = -aB. a * a = -aC. a * a = aD. a^2 = a二、填空题1. 计算:5/6 + 2/3 = ____2. 将72cm^2写成平方分米为____(注:1平方分米=100平方厘米)3. 若a = -2/3,b = 1/2,求ab的值。

三、解答题1. 线段AB的长度为3.2厘米,线段CD的长度为7.5厘米,求AB与CD的比值。

2. 小明从家到学校的距离为4千米,他刚走了2千米,这时他离学校还有多远?3. 将小数-0.125改写成分数。

四、应用题1. 一块长方形花坛长为12米,宽为8米,小明要用花砖铺满这个花坛。

每块花砖的正方形面积为0.25平方米,小明需要多少块花砖?2. 甲乙两个人同时从A地出发,以相同的速度向B地行驶,甲车开车时图示速度为75千米/小时,乙车开车时图示速度为80千米/小时。

若甲车到达B地用时比乙车早30分钟,求A到B地的距离。

五、解答题1. 有理数运算的要点是什么?请分析有理数的加法、减法、乘法和除法运算的规律和特点。

2. 计算题:5/12 + 4/9 - 1/3 + 2/5 = ____ ---答案:一、选择题1. C2. D3. A二、填空题1. 11/62. 0.723. -1/3三、解答题1. AB与CD的比值为 32/752. 离学校还有 2千米3. -0.125可以写成 -1/8四、应用题1. 需要 384 块花砖2. A到B地的距离为 100 千米五、解答题1. 有理数运算的要点是:符号相同的有理数相加减,绝对值大的数保留符号;符号相反的有理数相加减,先求绝对值相加减,再给结果加上原来的符号;有理数相乘除,符号相同为正,符号不同为负。

七年级数学上册期中考试卷及答案人教版

七年级数学上册期中考试卷及答案人教版

七年级数学上册期中考试卷及答案人教版人教版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1. 比小的数是 ( )A. B. C. D.2. 在式子 , , , , , 中 , 整式有 ( )A. 个B. 个C. 个D. 个3. 算式的值为 ( )A. B. C. D.4. 若和相减的结果是, 则的值是 ( ) A. B. C.D.5. 下列计算正确的是 ( )A.B.C.D.6. 若 , 互为相反数 , , 互为倒数 ,.则的值为 ( )A. B. C. 或 D.7. 若, 则 a-b 的值是 ( ) A. B. C.D. 8. 如图 , 在数轴上 , 点 , 所表示的数分别为,, 则 , 两点之间表示整数的点一共有 ( )A. 个B. 个C. 个D. 个9. 按如图所示程序流程计算 , 若开始输入的值.则最后输出的结果是 ( )A. B. C. D.10. 如图 , 把张形状大小完全相同的小长方形卡片不重叠地放在一个底面为长方形的盒子底部 , 盒子底面未被覆盖的部分用阴影部分表示则图中两块阴影部分的周长的和是 ( )A.B.C.D.二、填空题(每小题3分,共15分)11.的相反数是 ____ . 12. 多项式的次数是____. 13. 目前 , 第五代移动通信技术正在阔步前行 , 按照产业间关联关系测算 , 2020 年 ,间接拉动增长将超过亿元数据“亿”用科学记数法表示为_____. 14. 已知数 , 在数轴上的位置如图所示 , 则 , , ,的大小关系是____.15. 观察下列式子:, , 它们是按照一定规律排列的 , 依照此规律 , 则第个式子为 _______ .三.解答题(本大题共8个小题,满分75分)16. 计算:( 1 ); ( 2 ).17. 化简:( 1 ); ( 2 ). 18. 化简并求值:, 其中,.19. 小王在新藏公路某路段设置了一个加水站 , 他每天开着加水车沿东西方向给过路的汽车加水.如果约定向西为正.向东为负 , 加水车当天的行驶记录如下 ( 单位:千米 ) :+8 , -9 , +7 , -4 , -3 , +5 , -6 , -8 , +6 , +7 .( 1 ) 加水车最后到达地方在出发点的哪个方向 ? 距出发点多远 ?( 2 ) 若加水车行驶过程中每千米耗油量为升 , 求这天加水车共耗油多少升 ?20. 小刚同学做一道题:“已知两个多项式 , , 计算.”小刚同学误将看作, 求得结果.若多项式. ( 1 ) 请你帮助小刚同学求出的正确答案; ( 2 ) 若的值与的取值无关 , 求的值.21. 学校让综合实践活动课外学习小组参与学校校办工厂的足球生产活动 , 在工人师傅的指导和帮助下 , 综合实践活动课外学习小组一周计划生产 700 个足球 , 平均每天生产 100 个 , 由于各种原因实际每天生产产量与计划量相比有出入 , 下表是某周的生产情况 ( 超产为正、减产为负 ) :( 1 ) 根据记录可知前四天共生产个;( 2 ) 产量最多的一天比产量最少的一天多生产个;( 3 ) 该校办工厂实行每周计件奖励制 , 生产一个足球奖励给综合实践活动课外学习小组元.超额完成任务超额部分每个再奖元 , 那么该校的综合实践活动课外学习小组这一周得到的奖励总额是多少元 ?22. 某校准备到服装超市购一批演出服装 ( 男 , 女服装价格相同 ) 以供文艺汇演使用 , 一套服装定价元 , 领结 ( 花 ) 每条定价元 , 适逢新中国成立周年 , 服装超市开展促销活动 , 向客户提供两种优惠方案:①买一套服装送一条领结 ( 花 ) ;②服装和领结 ( 花 ) 都按定价的销售. 现该校要到该服装超市购买服装套 , 领结 ( 花 ) 条.( 1 ) 若该校按方案①购买.需付款 _______ 元 ( 用含的式子表示 ) ;若该校按方案②购买.需付款元 ( 用含的式子表示 ) ;( 2 ) 若, 通过计算说明此时按哪种方案付款比较合算; ( 3 ) 当时 , 你能给出一种更为省钱的购买方案吗 ? 试写出你的购买方案 , 并计算出需付款多少元.23. ( 1 ) 如图 , 点 M 在数轴上对应数为 -4 .点 N 在点 M 右边距 M 点 6 个单位长度 , 求点 N 对应的数;( 2 ) 在 ( 1 ) 的条件下.保持 N 点静止不动 , 点 M 沿数轴以每秒 1 个单位长度的速度匀速向右运动 , 经过多长时间 M , N 两点相距 4 个单位长度;( 3 ) 若已知点 M , N 在数轴上对应的数分别为 -6 、 2 .点 M 以每秒 3 个单位长度的速度沿数轴向右运动 , N 以每秒 2 个单位长度的速度同时沿数轴向右运动 , 当 M , N 两点相距个单位长度时 , 请直接写出点 M 所对应的数.初一数学21个必考知识点1.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。

最新人教版七年级上册数学《期中考试试题》(含答案解析)

最新人教版七年级上册数学《期中考试试题》(含答案解析)

期 中 测 试 卷一、选择题(本大题有16个小题,共42分.1-10小题各3分,11-16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. ﹣3的相反数是( ) A. 13-B.13C. 3-D. 32.如果收入80元记作+80元,那么支出20元记作( ) A. +20元B. -20元C. +100元D. -100元3.如图,在数轴上点A 表示的数可能是( )A. 1.5B. -1.5C. -2.4D. 2.44.下列各组数中,互为倒数的是( ) A. -2 和12-B. -1和1C. 23-和1.5 D. 0和05.十年来,我国知识产权战略实施取得显著成就,全国著作权登记量已达到274.8万件.数据274.8万用科学记数法表示为( ) A. 2.748×102B. 274.8×104C. 2.748×106D. 0.2748×1076.把()()()()5315+-+--+-写成省略括号的和的形式是( ) . A .5315--+- B. 5315-+- C. 5315++-D. 5315---7.将有理数-22,(-2) 3,2--,-12按从小到大的顺序排列为( ) A. (-2) 3<-22<2--<-12B. -12<2--<-22<(-2) 3C. 2--<-12<-22<(-2) 3 D. -22<(-2)3<-12<2--8.对于23-与()23-,下列说法正确的是( ). A. 底数不同,结果不同 B. 底数不同,结果相同 C. 底数相同,结果不同D. 底数相同,结果相同9.某公司在销售一种智能机器人时发现,每月可售出300个,当每个降价1元时,可多售出5个,如果每个降价x 元,那么每月可售出机器人的个数是( ) A. 5xB. 305+xC. 300+5xD. 300+15x 10.下列说法正确的个数是( ) ①单项式a 的系数为0,次数为0②12ab - 是单项式 ③ xyz -的系数为-1,次数是1④ π是单项式,而2不是单项式 A. 0个B. 1个C. 2个D. 3个11.下列说法正确的个数有( ).①倒数等于本身的数只有1;②相反数等于本身的数只有0;③平方等于本身的数只有0、1、1-;④有理数不是整数就是分数;⑤有理数不是正数就是负数. A. 1个B. 2个C. 3个D. 4个12.下列说法错误的个数是( )①多项式 23217x xy -+ 是单项式23x ,2xy - ,17 的和②7x 和75x y + 都是整式 ③ 2143a b + 和2326x y -+都是多项式④ 32429x y -+ 是三次三项式 A. 3个B. 2个C. 1个D. 0个13.若a <c <0<b ,则abc 与0的大小关系是( ) A. abc <0 B. abc=0 C. abc >0D. 无法确定14.观察下列各式:133=,239=,3327=,4381=,53243=,63729=,732187=,836561=……根据上述算式中规律,猜想20193的末位数字是( ) A. 3B. 9C. 7D. 115.某月的月历上连续三天的日期之和不可能是 ( ) A. 87B. 52C. 18D. 916.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,按照这种规律下去,第n 次移动到点A n ,如果点A n ,与原点的距离不少于20,那么n 的最小值是( )A. 11B. 12C. 13D. 20二、填空题(本大题有4个小题,共15分.17-19各3分,20题有两个空,每个空3分)17.如果a 与1互为相反数,则|a +2|=_________. 18.“比 a的123多 4”用代数式表示为_____ 19.若有理数m 、n 满足22(1)0m n ++-=,则2019()m n +=______. 20.阅读材料:如果a b =N (a >0,且a ≠1),那么数b 叫做以a 为底N 的对数,记作b =log a N .例如23=8,则log 28=3.根据材料填空:log 39=_____, log 464=_____.三、解答题(本大题有6个小题,共63分)21.将下列各数分别填在相应的集合里.4-,5,0.7-,134,0,13-,1251-,100,21,3. 正数集合{ ⋯⋯} 负数集合{ ⋯⋯} 整数集合{ ⋯⋯} 分数集合{ ⋯⋯} 22.计算(1)﹣28﹣(﹣19)+(﹣24); (2) 4.3-﹣ 1.7-﹣6.3;(3)()(36)61752119+-⨯-; (4)1111(1)()2323-+-⨯-÷--.23.定义一种新运算“※”,即m ※n=(m +2)×3-n ,例如2※3=(2+2)×3-3=9.根据这规定解答下列问题:(1)求6※(--3)的值.(2)通过计算说明6※(--3)与(--3)※6的值相等吗? 24.操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示的点1与−1表示的点重合,则−2表示的点与_____表示的点重合; 操作二:(2)折叠纸面,使−1表示的点与3表示的点重合,那么5表示的点与_____表示的点重合,此时若数轴上A 、B 两点之间距离为9,(A 在B 的左侧),且A 、B 两点经折叠后重合,那么A 、B 两点表示的数分别是______、______; 操作三:(3)已知在数轴上点A 表示的数是a ,点A 移动4个单位,此时点A 表示的数和a 是互为相反数,那么a 的值是____.25.一自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产记为正,减产记为负(1)根据记录的数据可知该厂星期四生产自行车多少辆?(2)根据记录的数据可知该厂本周实际生产自行车多少辆?(3)产量最多的一天比产量最少的一天多生产自行车多少辆?(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超出部分每辆另加15元,少生产一辆扣20元,那么该厂工人这一周的工资总额是多少? 26.从2开始,连续的偶数相加,它们和的情况如下表: (1)若n=8时,则 S 的值为_____________.(2)根据表中的规律猜想:用n 的式子表示S 的公式为:S=2+4+6+8+…+2n=____________. 加数的个数nS12 = 1×2(3)根据上题的规律计算2+4+6+8+10+…+2018+2020的值.答案与解析一、选择题(本大题有16个小题,共42分.1-10小题各3分,11-16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. ﹣3的相反数是()A.13- B.13C. 3-D. 3【答案】D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.2.如果收入80元记作+80元,那么支出20元记作( )A. +20元B. -20元C. +100元D. -100元【答案】B【解析】试题分析:具有相反意义的量是指意义相反,与值无关,收入为正,则支出为负.考点:具有相反意义的量.3.如图,在数轴上点A表示的数可能是( )A. 1.5B. -1.5C. -2.4D. 2.4【答案】C【解析】【分析】根据点在数轴上的表示方法即可得出答案.【详解】由图可知,点A在-2和-3之间,故答案选择C.【点睛】本题考查的是点在数轴上的表示,比较简单,需要熟练掌握数轴的性质. 4.下列各组数中,互为倒数的是( ) A. -2 和12-B. -1和1C. 23-和1.5 D. 0和0【答案】A 【解析】 【分析】分别计算各选项中两个数的乘积,根据倒数的概念,如果积为1,那么这两个数互为倒数. 【详解】A. -2×(12-)=1,选项正确; B. −1×1=−1,选项错误; C. 23-×1.5=-1,选项错误; D. 0×0=0,选项错误. 故选A.【点睛】此题考查倒数,解题关键在于掌握其性质.5.十年来,我国知识产权战略实施取得显著成就,全国著作权登记量已达到274.8万件.数据274.8万用科学记数法表示为( ) A. 2.748×102 B. 274.8×104C. 2.748×106D. 0.2748×107【答案】C 【解析】 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:数据274.8万用科学记数法表示为274.8×104=2.748×106. 故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.把()()()()5315+-+--+-写成省略括号的和的形式是( ) . A. 5315--+-B. 5315-+-C. 5315++-D. 5315---【答案】B 【解析】 【分析】先把加减法统一成加法,再省略括号和加号.【详解】解:原式=(+5)+(-3)+(+1)+(-5)=5-3+1-5. 故选B .【点睛】本题考查有理数的加减混合运算,将算式写成省略括号的形式必须统一成加法后,才能省略括号和加号.7.将有理数-22,(-2) 3,2--,-12按从小到大的顺序排列为( ) A. (-2) 3<-22<2--<-12B. -12<2--<-22<(-2) 3C. 2--<-12<-22<(-2) 3 D. -22<(-2)3<-12<2--【答案】A 【解析】试题分析:负数之间的大小比较,绝对值大的数反而小.=-4;;-2.考点:数的大小比较8.对于23-与()23-,下列说法正确的是( ). A. 底数不同,结果不同 B. 底数不同,结果相同 C. 底数相同,结果不同 D. 底数相同,结果相同 【答案】A 【解析】 【分析】n 个相同的因数a 相乘,记作n a ,其中底数是a ,【详解】解:23-的底数为3,()23-的底数为-3,239=--,()239=-,故23-与()23-底数不同,结果不同, 故选A.【点睛】此题考查的是乘方的定义,n 个相同的因数a 相乘,记作n a ,这种求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂.在乘方运算n a 中,a 叫做底数,n 叫做a 的幂的指数,简称指数.9.某公司在销售一种智能机器人时发现,每月可售出300个,当每个降价1元时,可多售出5个,如果每个降价x 元,那么每月可售出机器人的个数是( ) A. 5x B. 305+xC. 300+5xD. 300+15x 【答案】C 【解析】 【分析】降价x 元就可多售出5x 个,再加上300即为所求.【详解】由题意可得,如果每个降价x 元,那么每月可售出机器人的个数是:300+5x ,故选C . 【点睛】本题考查如何列代数式,能够读懂题意是解题关键. 10.下列说法正确的个数是( ) ①单项式a 的系数为0,次数为0②12ab - 是单项式 ③ xyz -的系数为-1,次数是1④ π是单项式,而2不是单项式 A. 0个 B. 1个C. 2个D. 3个【答案】A 【解析】 【分析】直接根据单项式、单项式系数及次数的定义进行解答即可. 【详解】解:①单项式a 的系数为1,次数为1,故原说法错误;②12ab - 多项式,故原说法错误; ③ xyz -的系数为-1,次数是3,故原说法错误;④ π是单项式,2也是单项式,故原说法错误; 正确的个数是0,故选A.【点睛】本题考查的是单项式,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键. 11.下列说法正确的个数有( ).①倒数等于本身的数只有1;②相反数等于本身的数只有0;③平方等于本身的数只有0、1、1-;④有理数不是整数就是分数;⑤有理数不是正数就是负数. A. 1个 B. 2个 C. 3个 D. 4个【答案】B 【解析】分析:根据倒数、相反数、平方的定义及性质和有理数的分类进行判断即可. 详解:①的说法是错误的,其中-1的倒数也是等于它本身的; ②相反数等于本身的数只有0,故②正确; ③平方等于本身的数是0和1,故③错误; ④有理数不是整数就是分数,④正确; ⑤有理数分为正数就是负数和0,⑤错误. 所以正确的结论为②④两个, ①、③、⑤错误. 故选B.点睛:本题主要考查了倒数、相反数、平方的定义及性质和有理数的分类等相关知识,熟记概念与性质是解题的关键..12.下列说法错误的个数是( )①多项式 23217x xy -+ 是单项式23x ,2xy - ,17 的和②7x 和75x y + 都是整式 ③ 2143a b + 和2326x y -+都是多项式④ 32429x y -+ 是三次三项式 A. 3个 B. 2个C. 1个D. 0个【答案】C 【解析】 【分析】根据单项式、多项式、整式以及多项式次数和项数的定义求解.【详解】解:①多项式 23217x xy -+ 是单项式23x ,2xy - ,17 的和,正确; ②7x是分式,原说法错误; ③ 2143a b + 和2326x y -+都是多项式,正确; ④ 32429x y -+ 是三次三项式,正确,错误的有1个,故选C.【点睛】本题主要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和.13.若a <c <0<b ,则abc 与0的大小关系是( )A. abc <0B. abc=0C. abc >0D. 无法确定 【答案】C【解析】【详解】∵a <c <0<b ,∴abc >0.故选C .14.观察下列各式:133=,239=,3327=,4381=,53243=,63729=,732187=,836561=……根据上述算式中的规律,猜想20193的末位数字是( )A. 3B. 9C. 7D. 1【答案】C【解析】【分析】根据已知的等式找到末位数字的规律,再求出20193的末位数字即可.【详解】∵133=,末位数字为3,239=,末位数字为9,3=,末位数字为7,3274=,末位数字为1,3815=,末位数字为3,324363729=,末位数字为9,7=,末位数字为7,321878=,末位数字1,36561故每4次一循环,∵2019÷4=504 (3)3的末位数字为7∴2019故选C【点睛】此题主要考查规律探索,解题的关键是根据已知条件找到规律进行求解.15.某月的月历上连续三天的日期之和不可能是( )A. 87B. 52C. 18D. 9【答案】B【解析】【分析】根据题意设中间一天为x日,则前一天的日期为x-1,后一天的日期为x+1日,然后列出代数式对选项进行分析,即可求出答案.【详解】设中间一天为x日,则前一天日期为:x-1,后一天的日期为x+1日,根据题意得:连续三天的日期之和是:(x-1)+x+(x+1)=3x,所以连续三天的日期之和是3的倍数,52不是3的倍数,故选B.【点睛】本题考查列代数式,解题关键是要读懂题目的意思,根据题目给出的条件,列出代数式.16.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种规律下去,第n次移动到点A n,如果点A n,与原点的距离不少于20,那么n的最小值是()A. 11B. 12C. 13D. 20【答案】C【解析】【分析】当n为奇数的点在点A的左边,各点所表示的数依次减少3,当n为偶数的点在点A的右侧,各点所表示的数依次增加3.【详解】根据题目已知条件,A1表示的数,1﹣3=﹣2;A2表示的数为﹣2+6=4;A3表示的数为4﹣9=﹣5;A4表示的数为﹣5+12=7;A5表示的数为7﹣15=﹣8;A6表示的数为7+3=10,A7表示的数为﹣8﹣3=﹣11,A8表示的数为10+3=13,A9表示的数为﹣11﹣3=﹣14,A10表示的数为13+3=16,A11表示的数为﹣14﹣3=﹣17,A12表示的数为16+3=19,A13表示的数为﹣17﹣3=﹣20.所以点A n与原点的距离不小于20,那么n的最小值是13.故选C.【点睛】本题考查了数字变化的规律,根据数轴发现题目规律,按照规律解答即可.二、填空题(本大题有4个小题,共15分.17-19各3分,20题有两个空,每个空3分)17.如果a与1互为相反数,则|a+2|=_________.【答案】1【解析】∵a与1互为相反数,∴1a=-,∴21211a+=-+==.18.“比a 的123多4”用代数式表示为_____【答案】54 3a+【解析】【分析】根据题意即可列出代数式.【详解】比 a 的123多 4”用代数式表示为543a + 故填:543a +. 【点睛】此题主要考查列代数式,解题的关键是根据题意写出代数式.19.若有理数m 、n 满足22(1)0m n ++-=,则2019()m n +=______.【答案】-1【解析】【分析】根据绝对值和平方的非负性求出m 和n 的值,代入后面的式子计算即可得出答案.【详解】根据题意可得:m+2=0,n-1=0解得:m=-2,n=1∴()()20192019211m n +=-+=-故答案为-1.【点睛】本题考查的是绝对值的非负性,难度不大,一个数的绝对值一定是一个大于等于0的数.20.阅读材料:如果a b =N (a >0,且a ≠1),那么数b 叫做以a 为底N 的对数,记作b =log a N .例如23=8,则log 28=3.根据材料填空:log 39=_____, log 464=_____.【答案】 (1). 2 (2). 3【解析】【分析】根据对数的定义即可得出答案.【详解】∵239=∴392log =∵3464=∴4643log =故答案为2,3.【点睛】本题考查的是新定义,认真审题,弄懂对数的定义是解决本题的关键.三、解答题(本大题有6个小题,共63分)21.将下列各数分别填在相应的集合里.4-,5,0.7-,134,0,13-,1251-,100,21,3. 正数集合{ ⋯⋯} 负数集合{ ⋯⋯} 整数集合{ ⋯⋯} 分数集合{ ⋯⋯} 【答案】正数集合{5,134,100,21,3 ⋯⋯} 负数集合{4-,0.7-,13-,1251- , ⋯⋯} 整数集合{4-,5,0,100,21,3 ⋯⋯} 分数集合{0.7-,134,13-,1251- , ⋯⋯} 【解析】【分析】根据整数的分类即可进行求解.【详解】正数集合{5,134,100,21,3 ⋯⋯} 负数集合{4-,0.7-,13-,1251- , ⋯⋯} 整数集合{4-,5,0,100,21,3 ⋯⋯} 分数集合{0.7-,134,13-,1251- , ⋯⋯} 【点睛】考查了有理数,认真掌握正数、负数、整数、分数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.22.计算(1)﹣28﹣(﹣19)+(﹣24);(2) 4.3-﹣ 1.7-﹣6.3;(3)()(36)61752119+-⨯-; (4)1111(1)()2323-+-⨯-÷--.【答案】(1)-33;(2)-3.7;(3)-25;(4)1 22 -.【解析】【分析】(1)根据有理数的加减运算法则计算即可得出答案;(2)先去绝对值,再根据有理数的加减运算法则计算即可得出答案;(3)根据乘法分配律去括号,再利用有理数的混合运算法则计算即可得出答案;(4)先算括号和绝对值,再利用有理数的混合运算法则计算即可得出答案.【详解】解:(1)原式=281924-+-=33-(2)原式=4.3 1.7 6.3--= 3.7-(3)原式=283033--+=25-(4)原式=11326-+⨯-=1 22 -【点睛】本题考查的是有理数的混合运算,比较简单,需要熟练掌握有理数的混合运算法则.23.定义一种新运算“※”,即m※n=(m+2)×3-n,例如2※3=(2+2)×3-3=9.根据这规定解答下列问题:(1)求6※(--3)的值.(2)通过计算说明6※(--3)与(--3)※6的值相等吗?【答案】(1)27;(2)不相等,理由见解析【解析】【分析】(1)利用题中的新定义计算即可得到结果;(2)分别计算出两式的值,即可做出判断.【详解】(1)6※(−3)=(6+2)×3−(−3)=24+3=27;(2)(−3) ※6=(−3+2)×3−6=−3−6=−9,所以6※(−3)与(−3) ※6值不相等.【点睛】此题考查有理数的混合运算,解题关键在于利用新定义计算法则进行计算.24.操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示的点1与−1表示的点重合,则−2表示的点与_____表示的点重合;操作二:(2)折叠纸面,使−1表示的点与3表示的点重合,那么5表示的点与_____表示的点重合,此时若数轴上A 、B 两点之间距离为9,(A 在B 的左侧),且A 、B 两点经折叠后重合,那么A 、B 两点表示的数分别是______、______;操作三:(3)已知在数轴上点A 表示的数是a ,点A 移动4个单位,此时点A 表示的数和a 是互为相反数,那么a 的值是____.【答案】(1)2;(2)-3,-3.5,5.5;(3)±2.【解析】【分析】(1)先求出折痕点,再根据到折痕点的距离相等计算即可得出答案;(2)先求出折痕点,再根据到折痕点的距离相等计算即可答案;先求出点A 和点B 到折痕点的距离,再根据距离公式计算即可得出答案;(3)分两种情况进行讨论:①往左移动,②往右移动,再利用相反数的性质计算即可得出答案.【详解】解:(1)∵折叠纸面,点1和点-1表示的点重合∴折痕点为0∴-2表示的点与2表示的点重合(2)∵-1表示的点与3表示的点重合∴折痕点为1∴5表示的点与-3表示的点重合∵AB 之间的距离为9∴AB 两点与中心点的距离为9÷2=4.5∴点A 表示的点为-3.5,点B 表示的点为5.5(3)①若点A 往左移动4个单位长度则可得:a-4+a=0解得:a=2②若点A 往右移动4个单位长度则可得:a+4+a=0解得:a=-2综上所述a=±2【点睛】本题考查的是数轴上两点间的距离,难度适中,需要理解并记忆两点之间的距离公式.25.一自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产记为正,减产记为负(1)根据记录的数据可知该厂星期四生产自行车多少辆?(2)根据记录的数据可知该厂本周实际生产自行车多少辆?(3)产量最多的一天比产量最少的一天多生产自行车多少辆?(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超出部分每辆另加15元,少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?【答案】(1)213;(2)1409;(3)26;(4)85215;【解析】【分析】(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得答案;(3)根据有理数的加法,可得答案;(4)根据基本工资加奖金,可得答案.【详解】(1)超产记为正、减产记为负,所以星期四生产自行车200+13辆,故该厂星期四生产自行车213辆;(2) 根据题意5−2−4+13−10+16−9=9,200×7+9=1409辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216−190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=(7×200+9)×60+9×15=85215元,故该厂工人这一周的工资总额是85215元.【点睛】此题考查正数和负数,解题关键在于根据题意列出式子进行计算.26.从2开始,连续的偶数相加,它们和的情况如下表:(1)若n=8时,则S的值为_____________.(2)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n=____________.(3)根据上题的规律计算2+4+6+8+10+…+2018+2020的值.【答案】(1)72.(2)n(n+1).(3)1021110.【解析】【分析】设加数的个数为n时,它们的和为S n(n为正整数),根据给定的部分S n的值找出变化规律“S n=2+4+6+…+2n=n(n+1)”.(1)依照规律“S n=2+4+6+…+2n=n(n+1)”代入n=8即可得出结论;(2)依照规律“S n=2+4+6+…+2n=n(n+1)”即可得出结论;(3)依照规律“S n=2+4+6+…+2n=n(n+1)”代入n=1010即可得出结论.【详解】解:设加数的个数为n时,它们的和为S n(n为正整数),观察,发现规律:S1=2=1×2,S2=2+4=2×3,S3=2+4+6=3×4,S4=2+4+6+8=4×5,…,∴S n=2+4+6+…+2n=n(n+1).(1)当n=8时,S8=8×9=72.故答案为72.(2)S n=2+4+6+…+2n=n(n+1).故答案为n(n+1).(3)∵2+4+6+8+10+…+2018+2020中有1010个数,∴S1010=2+4+6+8+10+…+2018+2020=1010×1011=1021110.【点睛】本题考查了规律型中的数字的变化类,解题的关键是找出变化规律“S n=2+4+6+…+2n=n(n +1)”.本题属于基础题,难度不大,根据给定的部分S n的值,找出变化规律是关键.。

2024年全新七年级数学上册期中试卷及答案(人教版)

2024年全新七年级数学上册期中试卷及答案(人教版)

专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 29C. 35D. 392. 下列哪个数是偶数?A. 23B. 27C. 33D. 363. 一个等差数列的首项是3,公差是2,那么第10项是多少?A. 19B. 20C. 21D. 224. 下列哪个图形是平行四边形?A. 正方形B. 长方形C. 梯形D. 圆形5. 下列哪个是无理数?A. √9B. √16C. √25D. √26二、判断题(每题1分,共5分)1. 两个质数相乘一定是合数。

()2. 0是偶数。

()3. 1是等差数列的首项。

()4. 平行四边形的对边相等。

()5. 所有的无理数都是开方开不尽的数。

()三、填空题(每题1分,共5分)1. 100的平方根是______。

2. 一个等差数列的公差是3,第5项是17,那么首项是______。

3. 下列图形中,______是轴对称图形。

4. 下列数中,______是立方数。

5. 如果a+b=12,ab=4,那么a和b的值分别是______和______。

四、简答题(每题2分,共10分)1. 请简述等差数列的定义。

2. 请简述平行四边形的性质。

3. 请简述无理数的概念。

4. 请简述勾股定理的内容。

5. 请简述一次函数的图像特点。

五、应用题(每题2分,共10分)1. 一个等差数列的前5项和是35,求这个数列的第10项。

2. 一个长方形的长是10厘米,宽是6厘米,求这个长方形的面积。

3. 如果一个数的平方是64,那么这个数的立方是多少?4. 如果a=5,b=3,求a²+b²的值。

5. 请画出一个一次函数y=2x+1的图像。

六、分析题(每题5分,共10分)七、实践操作题(每题5分,共10分)1. 请用直尺和圆规画出一个边长为5厘米的正方形。

2. 请用直尺和圆规画出一个半径为3厘米的圆。

八、专业设计题(每题2分,共10分)1. 设计一个等差数列,其首项为3,公差为2,求前10项的和。

人教版七年级数学上册期中测试卷-有参考答案

人教版七年级数学上册期中测试卷-有参考答案

人教版七年级数学上册期中测试卷-有参考答案一、选择题(本题共12小题 每小题4分 共48分 在每小题给出的四个选项中 只有一项是符合题目要求的 请用2B 铅笔把答题卡上对应题目答案标号涂黑)1.(4分)古人都讲“四十不惑” 如果以40岁为基准 张明50岁 记为+10岁 那么王横25岁记为( )A .25岁B .﹣25岁C .﹣15岁D .+15岁【分析】以40岁为基准 张明50岁 记为+10岁 25减去40即可解答.【解答】解:以40岁为基准 张明50岁 记为+10岁那么王横25岁记为25﹣40=﹣15(岁).故选:C .2.(4分)中国信息通信研究院测算.2020﹣2025年 中国5G 商用带动的息消费规模将超过8万亿元 直接带动经济总产出达10.6万亿元 其中数据10.6万亿用科学记数法表示为( )A .10.6×104B .1.06×1013C .10.6×1013D .1.06×108【分析】科学记数法的表示形式为a ×10n 的形式 其中1≤|a |<10 n 为整数.确定n 的值时 要看把原数变成a 时 小数点移动了多少位 n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时 n 是正整数;当原数的绝对值<1时 n 是负整数.【解答】解:10.6万亿=10600000000000=1.06×1013.故选:B .3.(4分)下列说法正确的是( )A .52xy 的系数是﹣5 B .单项式a 的系数为1 次数是0C .﹣5232b a 的次数是6D .x y +x ﹣1是二次三项式 【分析】直接利用单项式的次数与系数确定方法、多项式的次数与项数确定方法分别判断得出答案.【解答】解:A .﹣的系数是﹣ 故此选项不合题意;B .单项式a 的系数为1 次数是1 故此选项不合题意;C.﹣的次数是﹣故此选项不合题意;D.xy+x﹣1是二次三项式故此选项符合题意;故选:D.4.(4分)下列各组整式中不是同类项的是()A.3a2b与﹣2a2b B.2xy与5yxC.2x3y2与﹣x2y3D.5和0【分析】根据同类项的定义:所含字母相同相同字母的指数也相同判断即可.【解答】解:A、3a2b与﹣2a2b所含字母相同相同字母的指数也相同是同类项故本选项不符合题意;B、2xy与5yx所含字母相同相同字母的指数也相同是同类项故本选项不符合题意;C、2x3y2与﹣x2y3所含字母相同但相同字母的指数不相同不是同类项故本选项符合题意;D、5和0都是常数项所有常数项都是同类项故本选项不符合题意;故选:C.5.(4分)如图A B C D E为某未标出原点的数轴上的五个点且AB=BC=CD=DE则点C所表示的数是()A.2B.7C.11D.12【分析】先根据点A、E表示的数求出线段AE的长度再根据长度相等的线段表示相同的单位长度求出AB、BC、CD、DE的长即可解答【解答】解:∵AE=17﹣(﹣3)=20又∵AB=BC=CD=DE AB+BC+CD+DE=AE∴DE=AE=5∴D表示的数是17﹣5=12 C表示的数是17﹣5×2=7故选:B.6.(4分)下列各组数中数值相等的是()A.32与23B.﹣23与(﹣2)3C.﹣32与(﹣3)2D.3×22与(3×2)2【分析】先根据有理数的乘方和有理数的乘法进行计算再根据求出的结果进行判断即可.【解答】解:A .∵32=9 23=8∴32≠23 故本选项不符合题意;B .∵﹣23=﹣8 (﹣2)3=﹣8∴﹣23=(﹣2)3 故本选项符合题意;C .∵﹣32=﹣9 (﹣3)2=9∴﹣32≠(﹣3)2 故本选项不符合题意;D .∵3×22=3×4=12 (3×2)2=62=36∴3×22≠(3×2)2 故本选项不符合题意;故选:B .7.(4分)如果a b 互为相反数 c d 互为倒数 m 的绝对值是2 那么cd m m b a 2212-++⨯的值( ) A .2 B .3 C .4 D .不确定【分析】根据a b 互为相反数 c d 互为倒数 m 的绝对值是2 可以得到a +b =0 cd =1 m 2=4 然后代入所求式子计算即可.【解答】解:∵a b 互为相反数 c d 互为倒数 m 的绝对值是2∴a +b =0 cd =1 m 2=4∴=×+4﹣2×1=0+4﹣2=2故选:A .8.(4分)某快递公司受新一次疫情影响 4月份业务量比3月份下降了30% 由于采取了科学的防控措施 5月份疫情明显好转 该快递公司5月份业务量比4月份增长了40% 若设该快递公司3月份业务量为a 则5月份的业务量为( )A .(1﹣30%+40%)aB .(30%+40%)aC .(40%﹣30%)aD .(1﹣30%)(1+40%)a 【分析】先表示出4月份业务量是(1﹣30%)a 再根据5月份业务量比4月份增长了40% 即可列出代数式.【解答】解:∵该快递公司3月份业务量为a 4月份业务量比3月份下降了30%∴4月份业务量是(1﹣30%)a∵5月份业务量比4月份增长了40%∴5月份业务量是(1+40%)(1﹣30%)a故选:D .9.(4分)已知m n 满足6m ﹣8n +4=2 则代数式12n ﹣9m +4的值为( )A .0B .1C .7D .10【分析】将6m ﹣8n +4=2移项变形后 可以与12n ﹣9m +4建立联系 进而计算即可.【解答】解:∵6m ﹣8n +4=2∴8n ﹣6m ﹣2=0∴4n ﹣3m ﹣1=0∴12n ﹣9m ﹣3=0∴12n ﹣9m +4=7 故选:C .10.(4分)下列说法正确的个数有( )(1)若a 2=b 2 则|a |=|b |;(2)若a 、b 互为相反数 则1-=ba ;(3)绝对值相等的两数相等;(4)单项式7×102a 4的次数是6;(5)﹣a 一定是一个负数;(6)平方是本身的数是1 A .1 B .2 C .3D .4 【分析】根据去绝对值法则 相反数的定义 绝对值的性质 单项式的定义 有理数的分类以及性质作答.【解答】解:(1)若a 2=b 2 则|a |=|b | 原说法正确;(2)若a 、b 互为相反数且ab ≠0时 原说法错误;(3)绝对值相等的两数相等或互为相反数 原说法错误;(4)单项式7×102a 4的次数是4 原说法错误;(5)当a =0时 说法“﹣a 一定是一个负数”错误;(6)平方是本身的数是1或0 原说法错误.故选:A .11.(4分)已知|a |=2 b 2=25 3c =27 且ab >0 则a ﹣b +c 的值为( )A .10B .6C .3D .6或者0【分析】先根据绝对值的性质 乘方的性质求得a 、b 、c 再根据ab >0 分情况代值计算便可.【解答】解:∵|a |=2 b 2=25 3c =27∴a =±2 b =±5 c =3∴a、b同号∴当a=2 b=5 c=3时a﹣b+c=2﹣5+3=0;当a=﹣2 b=﹣5 c=3时a﹣b+c=﹣2+5+3=6;故选:D.12.(4分)如图在矩形ABCD中放入正方形AEFG正方形MNRH正方形CPQN点E在AB上点M、N在BC上若AE=4 MN=3 CN=2 则图中右上角阴影部分的周长与左下角阴影部分的周长的差为()A.5B.6C.7D.8【分析】设AB=DC=a AD=BC=b用含a、b的代数式分别表示BE BM DG PD.再表示出图中右上角阴影部分的周长及左下角阴影部分的周长然后相减即可.【解答】解:矩形ABCD中AB=DC AD=BC.正方形AEFG中AE=EF=FG=AG=4.正方形MNRH中MN=NR=RH=HM=3.正方形CPQN中CP=PQ=QN=CN=2.设AB=DC=a AD=BC=b则BE=AB﹣AE=a﹣4 BM=BC﹣MN﹣CN=b﹣3﹣2=b﹣5 DG=AD﹣AG=b﹣4 PD=CD﹣CP=a﹣2.∴图中右上角阴影部分的周长为2(DG+DP)=2(b﹣4+a﹣2)=2a+2b﹣12.左下角阴影部分的周长为2(BM+BE)=2(b﹣5+a﹣4)=2a+2b﹣18∴图中右上角阴影部分的周长与左下角阴影部分的周长的差为(2a+2b﹣12)﹣(2a+2b﹣18)=6.故选:B.二、填空题(本题共4个小题每小题4分共16分答题请用黑色墨水笔或签字笔直接答在答题卡相应13.(4分)已知x y满足|x﹣5|+(x﹣y﹣1)2=0 则(x﹣y)2021的值是.【分析】根据绝对值和偶次方的非负数的性质求出x、y的值再代入计算即可.【解答】解:∵|x﹣5|+(x﹣y﹣1)2=0 而|x﹣5|≥0 (x﹣y﹣1)2≥0∴x﹣5=0 x﹣y﹣1=0解得x=5 y=4∴(x﹣y)2021=12021=1.故答案为:1.14.(4分)如图a b c d e f均有有理数图中各行各列及两条对角线上三个数的和都相等则a﹣b+c﹣d+e﹣f的值为.a4﹣1b3cd e f【分析】先找出具有已知量最多且含有公共未知量的行或列即4﹣1+a=d+3+a得到d=0 再以4+b+0=b+3+c解得c=2 以此类推求出各个字母的值即可得出结论.【解答】解:由题意得:4﹣1+a=d+3+a解得:d=0.∵4+b+0=b+3+c∴c=1.∵4﹣1+a=a+1+f∴f=2.∴a﹣1+4=4+3+2∴a=6 b=5 e=7.∴a﹣b+c﹣d+e﹣f=6﹣5+1﹣0+7﹣2=7.故答案为:7.15.(4分)若多项式2x3﹣8x2+x﹣1与多项式x3+(3m+1)x2﹣5x+7的差不含二次项则m的值为.【分析】先列式化简代数式 再根据条件得出x 的二次项系数为0 列出m 的方程进行解答便可.【解答】解:(2x 3﹣8x 2+x ﹣1)﹣[x 3+(3m +1)x 2﹣5x +7]=2x 3﹣8x 2+x ﹣1﹣x 3﹣(3m +1)x 2+5x ﹣7=x 3﹣(3m +9)x 2+6x ﹣8∵多项式2x 3﹣8x 2+x ﹣1与多项式x 3+(3m +1)x 2﹣5x +7的差不含二次项∴3m +9=0∴m =﹣3.故答案为:﹣3.16.(4分)如M ={1 2 x } 我们叫集合M 其中1 2 x 叫做集合M 的元素.集合中的元素具有确定性(如x 必然存在) 互异性(如x ≠1 x ≠2) 无序性(即改变元素的顺序 集合不变).若集合N ={x 1 2} 我们说M =N .已知集合A ={1 0 a } 集合B ={a 1 |a | ab } 若A =B 则b ﹣a 的值是 .【分析】根据集合的定义和集合相等的条件即可得到答案.【解答】解:∵A =B a ≠0≠0 ∴=0 =1 |a |=a 或=0=a |a |=1 ∴b =0 a =1(舍去)或b =0 a =﹣1∴b ﹣a =0﹣(﹣1)=1故答案为:1.三、解答题(本题共8个小题 共86分 答题请用黑色墨水笔或签字笔直接答在答题卡相应的位置上 解答时应写出必要的文字说明、证明步骤或演算步骤.)17.(8分)计算:(1)2+(﹣3)﹣(﹣5);(2)(﹣143)﹣(+631)﹣2.25+310; (3)(﹣81)÷49×94÷(﹣16); (4)(﹣21+43﹣31)÷(﹣241). 【分析】(1)先化简符号 再计算;(2)把减化为加 再将相加得整数的先相加;(3)把除化为乘 再约分即可;(4)把除化为乘 再用乘法分配律计算.【解答】解:(1)原式=2﹣3+5=4;(2)原式=(﹣1.75﹣2.25)+(﹣6+3)=﹣4﹣3=﹣7;(3)原式=﹣81×××(﹣)=1;(4)原式=(﹣+﹣)×(﹣24)=24×﹣24×+24×=12﹣18+8=2.18.(8分)已知A=8x2y﹣6xy2﹣3xy B=7xy2﹣2xy+5x2y若A+B﹣C=0 求C+A.【分析】直接利用已知得出C进而利用整式的加减运算法则计算得出答案.【解答】解:∵A=8x2y﹣6xy2﹣3xy B=7xy2﹣2xy+5x2y A+B﹣C=0∴C=8x2y﹣6xy2﹣3xy+7xy2﹣2xy+5x2y=13x2y+xy2﹣5xy∴C+A=13x2y+xy2﹣5xy+8x2y﹣6xy2﹣3xy=21x2y﹣5xy2﹣8xy.19.(10分)东江湖蜜桔是我们湖南郴州的特产口感香甜入口即化.科技改变生活当前网络销售日益盛行.湖南某网红主播为了帮助农民脱贫致富在某直播间直播销售东江湖蜜桔计划每天销售20000千克但实际每天的销售量与计划量相比有增减超过计划量记为正不足计划量记为负.下表是该主播在直播带货期间第一周销售蜜桔的情况:星期一二三四五六日蜜桔销售情况(单位:千克)+300﹣400﹣200+100﹣600+1200+500(1)该主播在直播带货期间第一周销售蜜桔最多的一天比最少的一天多销售多少千克?(2)若该主播在直播期间按6元/千克进行蜜桔销售平均快递运费及其它费用为2元/千克则该主播第一周直播带货销售蜜桔为当地农民一共创收多少元?【分析】(1)7天销量求和即可;(2)由7天的总销量即可求解;【解答】解:(1)+1200﹣(﹣600)=1800(千克)答:第一周销售蜜桔最多的一天比最少的一天多销售1800千克.(2)∵20000×7+300﹣400﹣200+100﹣600+1200+500=140900(千克)∴(6﹣2)×140900=563600(元).答:该主播第一周直播带货销售蜜桔为当地农民一共创收563600元.20.(10分)(1)化简:﹣5a ﹣(4a +3b )+(9a +2b );(2)先化简 再求值:2(x 3﹣2y 2)﹣(x 3﹣4y 2+2x 3) 其中x =3 y =﹣2.【分析】(1)把整式去括号、合并同类项即可;(2)把整式去括号、合并同类项化简后 代入计算即可得出答案.【解答】解:(1)﹣5a ﹣(4a +3b )+(9a +2b )=﹣5a ﹣4a ﹣3b +9a +2b=﹣b ;(2)2(x 3﹣2y 2)﹣(x 3﹣4y 2+2x 3)=2x 3﹣4y 2﹣x 3+4y 2﹣2x 3=﹣x 3当x =3时原式=﹣33=﹣27.21.(12分)(1)如图 数轴上的点A B C 分别表示有理数a b c .化简:|a |﹣|b +2|﹣|a +c |﹣|b +1|+|1﹣c |;(2)已知关于x 、y 的多项式(3y ﹣ax 2﹣3x ﹣1)﹣(﹣y +bx ﹣2x 2)中不含x 项和x 2项 且22x a ﹣x +b =0 求代数式:2332x x a ﹣x ﹣b 的值.【分析】(1)由数轴可知 a <﹣2<b <﹣1 0<c <1 据此可得b +2>0 a +c <0 b +1<0 1﹣c >0 再根据绝对值性质去绝对值符号化简可得;(2)多项式合并后 根据结果中不含x 3项和xy 2项 求出a 与b 的值 代入原式计算即可得到结果.【解答】解:(1)∵a <﹣2<b <﹣1 0<c <1∴b +2>0 a +c <0 b +1<0 1﹣c >0∴|a |﹣|b +2|﹣|a +c |﹣|b +1|+|1﹣c |=﹣a ﹣(b +2)﹣(﹣a ﹣c )﹣(﹣b ﹣1)+1﹣c=﹣a ﹣b ﹣2+a +c +b +1+1﹣c=0.(2)原式=3y ﹣ax 2﹣3x ﹣1+y ﹣bx +2x 2=(2﹣a )x 2﹣(b +3)x +4y ﹣1由题意得2﹣a =0 b +3=0解得a =2 b =﹣3∵x 2﹣x ﹣3=0∴x 2﹣x =3∴原式=x 3﹣3x 2﹣x +3=x 3﹣x 2﹣2x 2﹣x +3=x (x 2﹣x )﹣2x 2﹣x +3=3x ﹣2x 2﹣x +3=2x ﹣2x 2+3=﹣2(x 2﹣x )+3=﹣6+3=﹣3.∴﹣x ﹣b 的值为﹣3.22.(12分)对于含绝对值的算式 在有些情况下 可以不需要计算出结果也能将绝对值符号去掉 例如:|7﹣6|=7﹣6;|6﹣7|=7﹣6;|3121-|=3121-;|2131-|=2131-. 观察上述式子的特征 解答下列问题:(1)把下列各式写成去掉绝对值符号的形式(不用写出计算结果):①|23﹣47|= ;②|5232-|= ; (2)当a >b 时 |a ﹣b |= a ﹣b ;当a <b 时 |a ﹣b |= b ﹣a ;(3)计算:2021120221...31412131121-++-+-+-. 【分析】(1)结合有理数加法减法运算法则以及绝对值的意义进行化简;(2)根据绝对值的意义进行化简;(3)根据有理数减法运算法则结合绝对值的意义先化简绝对值 然后根据数字的变化规律进行分析计算.【解答】解:(1)①|23﹣47|=47﹣23;②=﹣;故答案为:47﹣23 ﹣;(2)当a>b时|a﹣b|=a﹣b;当a<b时|a﹣b|=b﹣a;故答案为:a﹣b b﹣a;(3)原式=1﹣+﹣+﹣+•+﹣=1﹣=.23.(12分)【知识回顾】七年级学习代数式求值时遇到这样一类题“代数式ax﹣y+6+3x﹣5y﹣1的值与x的取值无关求a的值”通常的解题方法是:把x、y看作字母a看作系数合并同类项因为代数式的值与x的取值无关所以含x项的系数为0 即原式=(a+3)x﹣6y+5 所以a+3=0 则a=﹣3.(1)若关于x的多项式(2x﹣3)m+m2﹣3x的值与x无关求m的值【能力提升】(2)7张如图1的小长方形长为a宽为b按照图2方式不重叠地放在大长方形ABCD内大长方形中未被覆盖的两个部分(图中阴影部分)设右上角的面积为S1左下角的面积为S2当AB的长变化时S1﹣S2的值始终保持不变求a与b的等量关系.【分析】(1)根据含x项的系数为0建立方程解方程即可得;(2)设AB=x先求出S1、S2从而可得S1﹣S2再根据“当AB的长变化时S1﹣S2的值始终保持不变”可知S1﹣S2的值与x的值无关由此即可得.【解答】解:(1)(2x﹣3)m+m2﹣3x=2mx﹣3m+m2﹣3x=(2m﹣3)x+3m+m2∵关于x的多项式(2x﹣3)m+m2﹣3x的值与x的取值无关∴2m﹣3=0解得m=.(2)设AB=x由图可知S1=a(x﹣3b)=ax﹣3ab S2=2b(x﹣2a)=2bx﹣4ab则S1﹣S2=ax﹣3ab﹣(2bx﹣4ab)=ax﹣3ab﹣2bx+4ab=(a﹣2b)x+ab.∵当AB的长变化时S1﹣S2的值始终保持不变∴S1﹣S2的值与x的值无关∴a﹣2b=0∴a=2b.24.(14分)定义:数轴上有A B两点若点A到原点的距离为点B到原点的距离的两倍则称点A为点B的2倍原距点.已知点A M N在数轴上表示的数分别为4 m n.(1)若点A是点M的2倍原距点①当点M在数轴正半轴上时则m=;②当点M在数轴负半轴上且为线段AN的中点时判断点N是否是点A的2倍原距点并说明理由;(2)若点M N分别从数轴上表示数10 6的点出发向数轴负半轴运动点M每秒运动速度为2个单位长度点N每秒运动速度为a个单位长度.若点M为点A的2倍原距点时点A恰好也是点N的2倍原距点请直接写出a所有可能的值.【分析】(1)①点A到原点的距离为4 根据定义可知点M到原点距离为2 点M在数轴正半轴进而可求出m.②m<0 则m=﹣2 4﹣(﹣2)=﹣2﹣n得出n的值再根据定义来判断.(2)设t秒时点M为点A的2倍原距点点A恰好也是点N的2倍原距点;由|10﹣2t|=2×4求出t 的值将t代入4=2×|6﹣at| 求出a的所有可能值即可.【解答】解:(1)①∴m=±2.∵m>0∴m=2.故答案为:2.②∵m<0∴m=﹣2.∵点M为线段AN的中点∴4﹣(﹣2)=﹣2﹣n解得n=﹣8.∴ON=8 ON=2OA故N点是点A的2倍原距点.(2)设t秒时点M为点A的2倍原距点点A恰好也是点N的2倍原距点.∴解①得:t1=9 t2=1.将t1=9代入②得:4=2×|6﹣9t|解得:;将t2=1代入②得:4=2×|6﹣a|解得:a3=4 a4=8.故a所有的可能值为:4 8 .。

七年级数学上册期中模拟卷人教版2024

七年级数学上册期中模拟卷人教版2024

七年级数学上学期期中模拟卷(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:人教版2024七年级上册1.1-3.2。

5.难度系数:0.85。

第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如图,数轴上的两个点分别表示数a 和2-,则a 的值可以是( )A .2B .1-C .4-D .02.在数轴上表示2-的点与原点的距离为( )A .2B .2-C .2±D .03.下列各对数中,互为相反数的是( )A .2与12B .(3)﹣﹣和3+﹣C .(2)﹣﹣与2﹣﹣ D .(5)+﹣与()5+﹣4.若0,0a b <>,则,,,b b a b a ab +-中最大的一个数是( )A .b a -B .b a +C .bD .ab5.根据地区生产总值统一核算结果,2023年上半年,子州县生产总值完成3665000000元,将数据3665000000用科学记数法表示为( )A .6366510⨯B .7366.510⨯C .93.66510⨯D .100.366510⨯6.周末小明与同学相约在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的菜单总共为10个汉堡,x 杯饮料,y 份沙拉,则他们点的B 餐份数为( )A .10x -B .10y-C .x y-D .10x y--7.如图,a ,b 是数轴上的两个有理数,以下结论:①b a -<-;②0a b +>;③b a a b -<<-<;④+=-a b a b ,其中正确的是( )A .①②③B .②③④C .②③D .②④8.定义一种新运算:*a b ab b =-.例如:1*21220=⨯-=.则()()4*2*3⎡⎤--⎣⎦的值为( )A .3-B .9C .15D .279.已知数a ,b ,c 在数轴上的位置如图所示,化简a b a b a c +--+-的结果为( )A .2a b c ---B .a b c---C .a c--D .2a b c--+10.如图,这是由一些火柴棒摆成的图案,按照这种方式摆下去,摆第20个图案需用火柴棒的根数为( )A .20B .41C .80D .81第Ⅱ卷二、填空题:本题共5小题,每小题3分,共15分。

2022-2023学年新人教版数学七年级上册期中学习质量检测卷(附参考答案)

2022-2023学年新人教版数学七年级上册期中学习质量检测卷(附参考答案)

2022-2023学年新人教版数学七年级上册期中学习质量检测卷学校:_____________班级:____________ 姓名:____________(时间:120分钟 分值:120分)一、选择题(共10小题,满分30分,每小题3分) 1.(3分)−12018的倒数是( ) A .12018B .−12018C .2018D .﹣20182.(3分)已知2017|a +1|与2016|b +3|互为相反数,则a ﹣b 的值为( ) A .﹣1B .0C .1D .23.(3分)某超市出售的三种品牌月饼袋上,分别标有质量为(500±5)g ,(500±10)g ,(500±20)g 的字样,从中任意拿出两袋,它们的质量最多相差( ) A .10gB .20gC .30gD .40g4.(3分)点A 为数轴上一点,距离原点4个单位长度,一只蚂蚁从A 点出发,向右爬了2个单位长度到达B 点,则点B 表示的数是( ) A .﹣2B .6C .﹣2或6D .﹣6或25.(3分)下列计算正确的是( ) A .3a +2b =5abB .ab ﹣2ba =﹣abC .2a +a =2a 2D .3a ﹣a =26.(3分)给出下列判断: ①2πa 2b 与13a 2b 是同类项;②多项式5a +4b ﹣1中,常数项是1; ③x+y 4,x 2+1,a4都是整式;④几个数相乘,积的符号一定由负因数的个数决定. 其中判断正确的是( ) A .①②③B .①③C .①③④D .①②③④7.(3分)数字98990000用科学记数法表示为( ) A .0.9899×108B .9.899×107C .9.899×108D .98.99×1068.(3分)对于五个整式,A :2x 2;B :x +1;C :﹣2x ;D :y 2;E :2x ﹣y 有以下几个结论:①若y 为正整数,则多项式B ⋅C +A +D +E 的值一定是正数;③若关于x的多项式M=3(A﹣B)+m•B•C(m为常数)不含x的一次项,则该多项式M的值一定大于﹣3上述结论中,正确的个数是()A.0B.1C.2D.39.(3分)如图,在一个大长方形中放入三个边长不等的小正方形①,②,③,若要求两个阴影部分的周长差,只要知道下列哪两条线段的差的绝对值()A.|AB﹣CD|B.|CD﹣EF|C.|DE﹣CD|D.|DE﹣EF|10.(3分)设abc≠0,且a+b+c=0,则a|a|+b|b|+c|c|+abc|abc|的值可能是()A.0B.±1C.±2D.0或±2二、填空题(共5小题,满分15分,每小题3分)11.(3分)若单项式x4y n+1与﹣3x m y2是同类项,则m+n=.12.(3分)若a2﹣3b=5,则6b﹣2a2+2020=.13.(3分)已知:(a﹣2)2+|2b﹣1|=0,则a2021•b2022的值为.14.(3分)在计算:A﹣(5x2﹣3x﹣6)时,小明同学将括号前面的“﹣”号抄成了“+”号,得到的运算结果是﹣2x2+3x﹣4,则多项式A是.15.(3分)定义一种新运算(a,b),若a c=b,则(a,b)=c,例(2,8)=3,(3,81)=4.已知(4,8)+(4,7)=(4,x),则x的值为.三、解答题(共10小题,满分75分)16.(7分)在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,﹣9,+8,﹣7,+13,﹣6,+12,﹣5.(1)请你帮忙确定B地相对于A地的方位?(2)救灾过程中,冲锋舟离出发点A最远处有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?17.(7分)阅读下面文字:对于(﹣556)+(﹣923)+1734+(﹣312)可以如下计算:原式=[(﹣5)+(−56)]+[(﹣9)+(−23)]+(17+34)+[(﹣3)+(−12)] =[(﹣5)+(﹣9)+17+(﹣3)]+[(−56)+(−23)+34+(−12)] =0+(﹣114)=﹣114上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,请你计算:(﹣112)+(﹣200056)+400034+(﹣199923)18.(7分)如图,数轴上点A ,B ,C ,D 表示的数分别为a ,b ,c ,d ,相邻两点间的 距离均为2个单位长度.(1)若a 与c 互为相反数,求a +b +c +d 的值;(2)若这四个数中最小数与最大数的积等于7,求a 的值.19.(7分)已知a ,b ,c 满足a ﹣b =12,ab +3c 2+36=0. (1)用含b 的代数式表示a ,则a = ; (2)求2a +b +c 的值.20.(7分)已知(x ﹣3)2+|y ﹣2|=0,求式子2x 2+(﹣x 2﹣2xy +2y 2)﹣2(x 2﹣xy +2y 2)的值.21.(7分)如图,学校操场主席台前计划修建一块凹字形花坛.(单位:米) (1)用含a ,b 的整式表示花坛的面积;(2)若a =2,b =1.5,工程费为500元/平方米,求建花坛的总工程费为多少元?22.(7分)已知关于x 的多项式A ,当A ﹣(x ﹣2)2=x (x +7)时,完成下列各题: (1)求多项式A ;(2)若x 2+32x +1=0,求多项式A 的值.23.(8分)计算:(1)﹣3÷(−34)÷(−34); (2)(﹣12)÷(﹣4)÷(﹣115);(3)(−23)×(−78)÷0.25; (4)(﹣212)÷(﹣5)×(﹣313).24.(9分)已知数轴上的点A ,B 对应的有理数分别为a ,b ,且(12ab +10)2+|a −2|=0,点P 是数轴上的一个动点. (1)求出A ,B 两点之间的距离.(2)若点P 到点A 和点B 的距离相等,求出此时点P 所对应的数.(3)数轴上一点C 距A 点7.2个单位长度,其对应的数c 满足|ac |=﹣ac .当P 点满足PB =2PC 时,求P 点对应的数.25.(9分)如图,半径为1个单位长度的圆形纸片上有一点Q 与数轴上的原点重合.(提示:圆的周长C =2πr ,π取值为3.14)(1)把圆形纸片沿数轴向左滚动1周,点Q 到达数轴上点A 的位置,则点A 表示的数是 ;(2)圆形纸片在数轴上向右滚动的周数记为正数,圆形纸片在数轴上向左滚动的周数记为负数,依次运动周数记录如下:+2,﹣1,﹣5,+4,+3,﹣2.当圆形纸片结束运动时,Q 点运动的路程共是多少?此时点Q 所表示的数是多少?参考答案一、选择题(共10小题,满分30分,每小题3分)1.D ; 2.D ; 3.D ; 4.C ; 5.B ; 6.B ; 7.B ; 8.B ; 9.B ; 10.A ; 二、填空题(共5小题,满分15分,每小题3分) 11.5 12.2010 13.1214.﹣7x 2+6x+2 15.56;三、解答题(共10小题,满分75分)16.解:(1)∵14﹣9+8﹣7+13﹣6+12﹣5=20, ∴B 地在A 地的东边20千米;(2)∵路程记录中各点离出发点的距离分别为: 14千米;14﹣9=5千米; 14﹣9+8=13千米; 14﹣9+8﹣7=6千米; 14﹣9+8﹣7+13=19千米; 14﹣9+8﹣7+13﹣6=13千米; 14﹣9+8﹣7+13﹣6+12=25千米; 14﹣9+8﹣7+13﹣6+12﹣5=20千米. ∴最远处离出发点25千米;(3)这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+12+|﹣5|=74千米, 应耗油74×0.5=37(升),故还需补充的油量为:37﹣28=9(升)17.解:原式=[(﹣1)+(−12)]+[(﹣2000)+(−56)]+(4000+34)+[(﹣1999)+(−23)]=[(﹣1)+(﹣2000)+4000+(﹣1999)]+[(−12)+(−56)+34+(−23)]=−54.18.解:(1)∵a与c互为相反数,∴b=0,a=﹣2,c=2,d=4,∴a+b+c+d=﹣2+0+2+4=4;(2)∵这四个数中最小数与最大数的积等于7,∴ad=7,∴a(a+6)=7,∴a2+6a﹣7=0,∴(a+7)(a﹣1)=0,∴a+7=0或a﹣1=0,∴a=﹣7或1.19.解:(1)∵a﹣b=12,∴a=b+12,故答案为:a=b+12;(2)∵a=b+12,ab+3c2+36=0,∴(b+12)b+3c2+36=0,即(b+6)2+3c2=0,又∵(b+6)2≥0,3c2≥0,∴b=﹣6,c=0,∴a=6,∴2a+b+c=12﹣6+0=6.20.解:∵(x﹣3)2≥0,|y﹣2|≥0,(x﹣3)2+|y﹣2|=0,∴x﹣3=0,y﹣2=0,解得:x=3,y=2,∴原式=2x2﹣x2﹣2xy+2y2﹣2x2+2xy﹣4y2=﹣x2﹣2y2,当x=3,y=2时,原式=﹣9﹣8=﹣17.21.解:(1)(a+3b+a)(2a+b)﹣2a•3b=4a2+8ab+3b2﹣6ab=(4a2+2ab+3b2)(平方米).答:花坛的面积是(4a2+2ab+3b2)平方米.(2)当a=2,b=1.5时,4a2+2ab+3b2=4×22+2×2×1.5+3×1.52=16+6+6.75=28.75(平方米),28.75×500=14375(元).答:建花坛的总工程费为14375元.22.解:(1)由题意将原式整理得:A=(x﹣2)2+x(x+7),=x2﹣4x+4+x2+7x,=2x2+3x+4;(2)∵x2+32x+1=0,∴2x2+3x=﹣2,∴A=﹣2+4=2,则多项式A的值为2.23.解:(1)原式=﹣3×(−43)×(−43)=−163;(2)原式=(﹣12)×(−14)×(−56)=−52;(3)原式=(−23)×(−78)×4=73;(4)原式=(−52)×(−15)×(−103)=−53.24.(1)∵(12ab+10)2≥0,|a﹣2|≥0,又∵(12∴(12ab +10)2=0,|a ﹣2|=0, ∴12ab +10=0,a ﹣2=0,∴a =2,b =﹣10,∴A 点对应的数为2,B 点对应的数为﹣10, ∴AB 的距离=2﹣(﹣10)=12. (2)∵P 到A ,B 的距离相等, ∴P 为AB 中点, ∴P 点对应的数为:2+(−10)2=−4.(3)∵C 距离A 点7.2个单位长度, ∴C 对应的数为:(2+7.2)或(2﹣7.2), 又∵|ac |=﹣ac ,∴ac <0,即a 和c 异号, ∵a =2,∴c =2﹣7.2=﹣5.2, 设P 点对应的数为m ,则PB =|m ﹣(﹣10)|=|m +10|,PC =|m ﹣(﹣5.2)|=|m +5.2|, ∵PB =2PC , ∴|m +10|=2|m +5.2|,∴m +10=2(m +5.2)或m +10=﹣2(m +5.2), 解方程得,m =﹣0.4或m =﹣6.8. 综上所述,P 点对应的数为﹣0.4或﹣6.8. 25.解:(1)∵2πr =2×3.14×1=6.28, ∴点A 表示的数是﹣6.28, 故答案为:﹣6.28;(2)∵|+2|+|﹣1|+|﹣5|+|+4|+|+3|+|﹣2|=17, ∴17×2π×1=106.76,∴当圆片结束运动时,Q 点运动的路程共有106.76, ∵2﹣1﹣5+4+3﹣2=1, ∴1×2π×1≈6.28,∴此时点Q 所表示的数是6.28.答:当圆片结束运动时,Q 点运动的路共是106.76,此时点Q 所表示的数是6.28.。

人教版七年级上学期期中考试数学试题(含答案)

人教版七年级上学期期中考试数学试题(含答案)

人教版七年级上学期期中数学试卷及答案一、选择题(每小题3分,共36分)1.﹣2022的绝对值是()A.B.﹣2022C.2022D.﹣2.检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数,在其下方标注了检测结果,其中质量最接近标准的是()A.﹣0.3B.+0.4C.﹣0.1D.﹣0.63.如图,表示互为相反数的两个点是()A.点A和点D B.点B和点C C.点A和点C D.点B和点D4.下列等式正确的是()A.|﹣9|=﹣9B.|﹣|=3C.﹣|﹣7|=7D.﹣(+2)=﹣25.在代数式m,﹣2,4ab2,,中,单项式有()A.3个B.4个C.5个D.6个6.低碳奥运,能源先行,2022冬奥会所有场馆在奥运历史上首次100%使用绿色电力,其中数据14000000000用科学记数法表示为()A.1.4×1010B.1.4×1012C.14×109D.0.14×10117.将多项式x3﹣4xy2+7y3+6x2y按字母y升幂排列的是()A.7y3+4xy2+6x2y+x3B.7y3﹣4xy2+6x2y+x3C.x3﹣6x2y+4xy2+7y3D.x3+6x2y﹣4xy2+7y38.一个点从数轴的原点开始,先向左移动2个单位长度,再向右移动7个单位长度()A.﹣9B.+9C.﹣5D.+59.若|a|=4,|b|=2,且|a+b|=﹣(a+b)()A.﹣2B.﹣6C.﹣2或﹣6D.2或610.《九章算术》中记载一问题:今有共买物,人出八,盈三,不足四.问人数、物价各几何?意思是:今有人合伙购物,每人出8钱;每人出7钱,又差4钱.问人数、物价各多少?设人数为x人()A.8x﹣3B.8x+3C.7x﹣4D.7(x+4)11.一个含有多个字母的整式,如果把其中任何两个字母互换位置,所得的结果与原式相同,x2+y2+z2是对称整式.x2﹣2y2+3z2不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式;②一个多项式是对称整式,那么该多项式中各项的次数必相同;③单项式不可能是对称整式:④若某对称整式只含字母z,y,z,且其中有一项为x2y,则该多项式的项数至少为3.以上结论中错误的个数是()A.4B.3C.2D.112.如图是一个运算程序的示意图,若开始输入x的值为125,则第2022次输出的结果为()A.5B.25C.1D.125二、填空题(每小题3分,共18分)13.﹣1 ﹣0.5.(填“>”、“<”或“=”)14.如果零上2℃记作+2℃,那么零下5℃记作℃.15.用代数式表示:x减去y的平方的差.16.如果6x2﹣3x+5=11,那么代数式2x2﹣x+3的值是.17.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“1cm”和“9cm”分别对应数轴上的﹣5和x.18.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,是世界上最早的“幻方”.如图是仅可以看到部分数值的“九宫格”,则其中x﹣y的值为.三、解答题:(共计66分)19.(12分)计算.(1)25+(﹣18)+4+(﹣10);(2)(﹣3)﹣(﹣15)÷(﹣3);(3)(﹣+﹣)×(﹣12);(4)(﹣1)10×2+(﹣2)3÷4.20.(6分)规定一种运算:=ad﹣bc,例如,,请你按照这种运算的规定,计算.21.(6分)有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|a+b|.22.(6分)若x,y互为相反数,a,b互为倒数,求()2022﹣(﹣ab)2022+c2的值.23.(8分)小明读一本共m页的书,第一天读了该书的,第二天读了剩下的.(1)用含m的代数式表示小明两天共读的页数;(2)当m=120时,求小明两天共读的页数.24.(8分)已知关于x的多项式mx4+(m﹣3)x3﹣(n+2)x2+4x﹣n不含二次项和三次项.(1)求出这个多项式;(2)求当x=2时代数式的值.25.(8分)当今,人们对健康意加重视,跑步成了人们进行体育锻炼的首要选择(即手机应用小程序)应运而生.小明苦爸给自己定了健身目标,每天跑步a千米.以目标路程为基准,不足的部分记为“﹣”,他记下了“十一”长假期间七天跑步的实际路程如下:日期1日2日3日4日5日6日7日略程(千米)+1.72+3.20﹣1.92﹣0.90﹣1.88+3.30+0.08(1)10月5日小明爸爸的跑步路程是千米;(用舍a的代数式表示)(2)小明爸爸给自己定的健身目标是每天跑5千米,若跑步一千米消耗的热量为60千卡,求小明爸爸这七天跑步一共清耗了多少热量?26.(12分)在数轴上点A表示a,点B表示b,且a、b满足|a+5|+|b﹣7|=0.(1)求a,b的值,并计算点A与点B之间的距离.(2)若动点P从A点出发,以每秒2个单位长度的速度沿数轴正方向匀速运动,运动几秒后(3)若动点P从A点出发,以每秒1个单位长度的速度沿数轴向右匀速运动,同时动点Q从B点出发,运动几秒后,P、Q两点间的距离为4个单位长度?参考答案与试题解析1.【解答】解:﹣2022的绝对值是2022.故选:C.2.【解答】解:|﹣0.3|=2.3,|+0.2|=0.4,|﹣2.6|=0.6,∵0.1<2.3<0.3<0.6,∴C选项的排球最接近标准质量.故选:C.3.【解答】解:2和﹣2互为相反数,故选:C.4.【解答】解:A.根据绝对值的定义,那么A错误.B.根据绝对值的定义,,故B不符合题意.C.根据绝对值的定义,那么C错误.D.根据相反数的定义,那么D正确.故选:D.5.【解答】解:代数式m,﹣22,,中,单项式有m,4ab4,共3个.故选:A.6.【解答】解:14000000000=1.4×1010.故选:A.7.【解答】解:将多项式x3﹣4xy6+7y3+7x2y按字母y升幂排列的是7y7﹣4xy2+3x2y+x3,故选:B.8.【解答】解:∵点从原点向左移动2个单位长度,∴该点移动到数轴上的﹣2处,∵再向右移动5个单位长度,∴﹣2+7=3,∴这个点最终所对应的数是5,故选:D.9.【解答】解:∵|a|=4,|b|=2,∴a=±7,b=±2,∵|a+b|=﹣(a+b),∴a+b≤0,∴当a=﹣7时,b=2或﹣2,∴a﹣b=﹣2﹣2=﹣6或a﹣b=﹣2﹣(﹣2)=﹣2,∴a﹣b的值为﹣3或﹣6.故选:C.10.【解答】解:根据题意得,物价为:8x﹣3或8x+4;故选:A.11.【解答】解:①假设两个对称整式分别为M和N(含相同的字母),由题意可知:任何两个字母互换位置,所得的结果与原式相同,则M+N的结果不变,故①不符合题意;②反例:x3+y3+z4+x+y+z为对称整式,x3与y互换后,所得的结果都不会是一个对称的整式;③反例:xyz为单项式,但也是对称整式;④对称整式只含字母x,y,z,且其中有一项为x2y,若x,y互换3y:y2x,则有一项为y2x;若z,x互换2y:z2y,则有一项为z2y;若y,z互换8y:x2z,则有一项为x2z;第三项中x,y,z的次数相同,同理:可以换不相同的字母,至少含有四项:xy2,x2y,x2z,yz5,则该多项式的项数至少为4.故④符合题意.所以以上结论中错误的是②③④,共3个.故选:B.12.【解答】解:第一次:当x=125,,第二次:当x=25,,第三次:当x=4,,第四次:当x=1,x+4=4,第五次:当x=5,,……根据前五次输出结果可知从第二次开始,第奇数次输出结果为1.∴第2022次输出的结果为4.故选:A.13.【解答】解:|﹣1|=1,|﹣3.5|=0.5,∵1>0.7,∴﹣1<﹣0.7,故答案为:<.14.【解答】解:∵零上2℃记作+2℃,∴零下3℃记作﹣5℃.故答案为:﹣5.15.【解答】解:y的平方即y2,则x减去y的平方的差就可以表示为:x﹣y2故答案为:x﹣y616.【解答】解:∵6x2﹣7x+5=11,∴6x7﹣3x=6,∴5(2x2﹣x)=4,即2x2﹣x=3,∴2x2﹣x+2=2+3=8.故答案为:5.17.【解答】解:∵刻度尺上“1cm”对应数轴上的﹣5,∴刻度尺上“3cm”对应数轴上的0,∴刻度尺上“9cm”对应数轴上的3,故答案为:3.18.【解答】解:这九个数的和为1+2+2+...+9=45,∵每一行、每一列的数之和均相对,∴每一行、每一列的数之和为15.∴下中为15﹣9﹣6=1,下右为15﹣8﹣7=6,左中为15﹣4﹣2=3,∴x﹣y=4﹣6=﹣3.故答案为:﹣3.19.【解答】解:(1)25+(﹣18)+4+(﹣10)=25﹣18+4﹣10=2;(2)(﹣3)﹣(﹣15)÷(﹣3)=﹣3﹣5=﹣8;(3)(﹣+﹣)×(﹣12)=×(﹣12)﹣×(﹣12)﹣=﹣9+8﹣4+10=3;(4)(﹣1)10×6+(﹣2)3÷8=1×2+(﹣5)÷4=2﹣7=0.20.【解答】解:∵=ad﹣bc,∴=(﹣1)2018×(﹣2)﹣4×1.25=5×(﹣9)﹣5=﹣5﹣5=﹣14.21.【解答】解:∵在数轴上原点右边的数大于0,左边的数小于0,b<a<8,∴|a﹣b|=a﹣b,|a+b|=﹣a﹣b,∴原式=a﹣b﹣a﹣b=﹣2b.22.【解答】解:∵x,y互为相反数,a,c的绝对值等于2,∴x+y=0,ab=7,c2=4,∴()2022﹣(﹣ab)2022+c2=()2022﹣(﹣1)2022+4=6﹣1+4=7.23.【解答】解:(1)∵第一天读了该书的,∴小明第一天读了m页;∵第二天读了剩下的,∴小明第二天读了(4﹣m(页).∴小明两天共读的页数为:m+m(页).(2)当m=120时,m=×120=56(页).答:当m=120时,小明两天共读的页数为56 页.24.【解答】解:(1)∵关于x的多项式mx4+(m﹣3)x2﹣(n+2)x2+7x﹣n不含二次项和三次项,∴m﹣3=0,﹣(n+2)=0,∴m=3,n=﹣3,∴这个多项式为:3x4+4x+2;(2)当x=2时,7x4+4x+4=3×28+4×2+4=58.25.【解答】解:(1)由题意得:10月5日小明爸爸的跑步路程是(a﹣1.88)千米,故答案为:(a﹣6.88);(2)根据题意得:(5×7+2.72+3.20﹣1.92﹣6.90﹣1.88+3.30+5.08)×60=2316(千卡),答:小明爸爸这七天跑步一共消耗了2316千卡热量.26.【解答】解:(1)∵|a+5|+|b﹣7|=8,∴a=﹣5,b=7,∴A与点B之间的距离为6﹣(﹣5)=12;(2)∵A与点B之间的距离为12,∴12÷2=7(秒),答:运动6秒后,点P到达B点;(3)P、Q相遇前:(12﹣4)÷(3+3)=2(秒),P、Q相遇后:(12+7)÷(1+3)=6(秒),答:运动2秒或4秒后,P、Q两点间的距离为3个单位长度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《一次函数》教学设计与教学反思
一、教学目标:
1、知识与技能:
①让学生经历对具体情境的探究过程,通过举出生活实例观察、比较、探索、归纳得出一次函数概念。

②理解一次函数与正比例函数的联系和区别。

③培养学生独立思考与合作交流的能力。

初步发展他们抽象思维能力和发展他们的数学应用能力。

2、数学思考:能根据实际条件,分清两个变量间的关系,列出一次函数解析式。

3、解决问题:能在探索一次函数活动中发现并提出数学问题,初步体会在解决问题的过程中与他人合作、交流的重要性。

4、情感与态度目标:体验函数与人类生活的密切联系,增强对函数学习的求知欲,体验数学充满着探索性和创造性,从而培养学生对学习数学的兴趣。

二、教学设计:
课前准备:学生编生活中函数问题。

(一)、创设问题的情境,导入新课。

老师有一个函数问题请同学们解答。

问题1:张三同学第一次来从海口到屯昌,汽车驶上了高速路后,张三同学观察里程碑,发现汽车的平均速度是80千米/时,已知海口直达屯昌的高速公路全程为95千米,张三同学想知道汽车从海口驶出后,距屯昌的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和海口的距离。

你能帮助他吗?学生观看表演、独立思考、尝试解答下列问题,然后和同桌交流。

①题中常量是什么?变量有几个?分别是什么?
②变量与常量间有什么等量关系。

95千米
③用字母表示变量,列出函数关系式。

教师引导点播画出示意图,全班交流讨论。

达成共识:汽车距屯昌的路程随行驶的时间的变化而变化,因此这里涉及两个变量:汽车距屯昌的路程和汽车行驶的时间,为此可设汽车距海口的路程为(S千米),汽车行驶的时间为t (小时),通过观察三名同学表演及所画的示意图可知:S =95- 80 t(0≤t≤2)③
(二)、合作探究新课
1、一次函数定义探究。

问题2 ①Q =400 - 33 t ②y = 30 - 2x ③S
=140-70t这三个函数有什么共同特征呢?你能用一个表达式表示这个共同特征吗?(投影展示)学生思考、讨论、解答、交流。

教师在学生思考、讨论、回答基础上,评价并引导、点播、探究规律。

概括:像这样,这三个函数解析式都是用自变量的一次整式表示的,我们称它们为一次函数。

同学们说出的“y=kx+b”是这几个式子的共同持征,我们把它叫做一次函数的一般式。

问题3 对于一次函数的一般式y=kx+b中的k可以等于0吗?为什么?b可以等于0吗?若b=0函数式子是什么?同座交流讨论,在此基础上全班交流。

教师引导、启发学生理解。

师生共同归纳得出:k≠0,因为若k=0,则y=kx+b变为y=b,此时没有一次项,就不在是一次函数了。

b可以等于0,若b=0函数式子变为y=kx(k≠0 ,k为常数),此时的函数叫做正比例函数,它是一次函数的特殊情况。

互动2 判断正误。

(投影展示)(1)一次函数是正比例函数;(2)正比例函数是一次函数;(3)x+3y = 2是一次函数; (4)2y-x = 0是正比例函数。

例、小丸子的存折上已经有500元存款了,从现
在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的CD随身听(价值1680元)
(1)列出小丸子的银行存款(不计利息)y与月数x 的函数关系式;
(2)多长时间以后,小丸子的银行存款才能买随身听?
分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱
解:(1)
(2)1680=500+90x解得x=13.…
所以还需要14个月,小丸子才能买随身听
(三)、知识反馈。

1、函数:①y=-2x+1 ; ②x+y=0 ; ③xy=2; ④y= +1; ⑤y=x2+3; ⑥y = - 0.6x中,属于一次函数的有①②⑥;属于正比例函数的有②⑥(填写序号)
2、当m = 0 时,n ≠ 1 时,函数y =(n-1)xm+1+3 是一次函数。

3、写出一个满足条件:当自变量取2时,对应的函数值为-3的一次函数的解析式(只写一个)y = - x -1 。

4、设圆的面积为S,半径为R,那么下列说法正确的是(C )A、S是R的一次函数B、S是R的正比例函数C、S 是R2的正比例函数D、以上说法都不正确。

5某种运动鞋的单价是108元/双,当购买x双时,花费为y元,则y是x的正比例函数,又是一次函数.
(四)、总结评价
(1)内容总结:一次函数、正比例函数的意义和表达式。

(2)方法归纳:在具体问题中,如果涉及两个变量且只包含一个等量关系时,常用两个字母表示这两个变量,通过建立函数模型来解决问题。

识别一个函数是否为一次函数(或正比例函数)的关键是理解它们的意义,能将式子转化为其一般表达形式。

教学自我反思:通过教学活动,充分体现了学生自主、合作、探究的学习方式。

重视学生的数学学习过程和他们的个性体验,充分让学生体会数学源于生活中的实际问题,又应用于生活。

突出人人学有价值的数学的思想。

帮助学生在学习过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得数学活动的经验。

给学生充分思考的空间和时间。

让学生自已互相学习,形成互动的局面。

互相评价、互相尊重和互相信任。

在一种和谐、热烈讨论的气氛中进步成长,从而激发学生的学习兴趣。

但在如何把握好时间,使教学紧凑一些,增大教学容量,教学灵活选用各个教学环节还不够。

2 函数的引入课,为了让学生体会两个变量之间的关系,需要大量引入实际例子,特别是图象的展示,这是黑板与粉笔达不到的效果和信息量。

所以我采用多媒体课件,效果很好。

在讲一次函数的应用时,我采用了多媒体课件,因为涉及到的题目内容比较长,而且需要数形结合,利用课件把题目和图形准确、清晰的展示在学生面前,老师再逐一进行讲解。

在讲解函数的基础知识时,我不采用课件,总感觉上课不得劲,学生的基础知识的训练不牢固,但是,涉及到图象运动的习题,比如:k值的不同,所反映反比例函数图象的不同;x取何值时,y>0或y<0等;函数的应用题;反比例函数上一点向x轴、y轴作垂线所得到的三角形、矩形面积恒定等题,我采用多媒体课件,效果非常好。

总之,多媒体课件有它的优越性,也有它的局限性。

使用时,用优越避局限。

至于制作课件费时,我们通常是整个备课组进行分工制作,制作的内容采用集体的智慧。

这节课的知识容量较大,而且内容较难,为了能更好地帮助学生消化理解该知识,突破难点,为此我准备了多媒体课件。

在教学过程中,我采用通过让学生亲自动手、动脑画图的方式,通过教师的引导,学生的分组交流、归纳等环节较成功地完成了教学目标,收到了较好的效果。

但还存在着不尽人意的地方,由于课的内容容量较大,对于有些知识点,如“随着X值的增大,Y的值分别如何化?”,本应给学生更多的时间练习、讨论,以帮助理解消化该知识,但由于时间紧,学生的这一活动开展的不充分,课堂气氛不够活跃,个别学生的主动性、积极性没有充分调动起来。

这是今后教学中应该注意的问题。

相关文档
最新文档