高介电常数电介质

合集下载

高介电常数陶瓷

高介电常数陶瓷

高介电常数陶瓷高介电常数陶瓷是一种具有较高介电常数的陶瓷材料。

介电常数是材料对电场的响应能力的度量,表示材料在电场作用下的极化程度。

高介电常数的陶瓷材料广泛应用于电子器件、电子通信、储能设备等领域,具有重要的应用价值。

高介电常数陶瓷的高介电常数主要归功于其特殊的晶体结构和成分。

一些常见的高介电常数陶瓷材料包括铁电体、钛酸锶钡(BST)陶瓷、铌酸锂(LiNbO3)陶瓷等。

这些材料具有较高的介电常数,使得它们在电场作用下能够产生较大的极化效应,从而实现对电场的响应和调节。

高介电常数陶瓷在电子器件中的应用非常广泛。

例如,在电容器中,高介电常数陶瓷材料可以作为电介质层,用于储存和释放电荷。

由于其较高的介电常数,可以在有限的体积内实现较大的电荷储存能力,从而提高电容器的性能。

高介电常数陶瓷还可以应用于微波设备中,用于实现信号的调制、滤波和耦合等功能。

除了在电子器件中的应用,高介电常数陶瓷还可以用于电子通信领域。

在无线通信系统中,高介电常数陶瓷材料可以用于天线的调谐和匹配。

通过调节陶瓷材料的介电常数,可以实现天线对特定频率的信号的接收和发送。

高介电常数陶瓷还可以用于超声波传感器中,通过改变材料的介电常数来调节超声波的传播速度和散射特性,从而实现对材料的检测和成像。

高介电常数陶瓷还被广泛应用于储能设备中。

例如,铁电体陶瓷具有较高的介电常数和压电效应,在电场作用下可以发生极化和变形,因此被广泛应用于压电陶瓷储能器件中。

这些储能器件可以将电能转化为机械能,实现能量的存储和释放,具有较高的能量密度和快速响应的特点。

高介电常数陶瓷是一类具有重要应用价值的陶瓷材料。

其高介电常数使其具有优异的电场响应能力,可广泛应用于电子器件、电子通信和储能设备等领域。

高介电常数陶瓷的应用不仅能够提高设备的性能,还能够推动科技的发展和进步。

未来,随着科技的不断发展,高介电常数陶瓷在各个领域的应用将会越来越广泛。

High-K和Low-K电介质材料

High-K和Low-K电介质材料

High-K和Low-K电介质材料不同电介质的介电常数k 相差很大,真空的k 值为1,在所有材料中最低;空气的k值为1.0006;橡胶的k值为2.5~3.5;纯净水的k值为81。

工程上根据k值的不同,把电介质分为高k(high-k)电介质和低k(low-k)电介质两类。

介电常数k >3.9 时,判定为high-k;而k≤3.9时则为low-k。

IBM将low-k标准规定为k≤2.8,目前业界大多以2.8作为low-k电介质的k 值上限。

一、High-K电介质材料随着集成电路的飞速发展,SiO2作为传统的栅介质将不能满足MOSFET,器件高集成度的要求,需要一种新型High-k材料来代替传统的SiO2。

[1]所谓High-K电介质材料,是一种可取代二氧化硅作为栅介质的材料。

它具备良好的绝缘属性,同时可在栅和硅底层通道之间产生较高的场效应(即高-K)。

两者都是高性能晶体管的理想属性。

High-K电介质材料应满足的要求::(1) 高介电常数,≤50 nm CMOS 器件要求k >20;(2)与Si 有良好的热稳定性;(3)始终是非晶态,以减少泄漏电流;(4)有大的带隙和高的势垒高度,以降低隧穿电流;(5) 低缺陷态密度/ 固定电荷密度,以抑制器件表面迁移率退化。

[2]最有希望取代SiO2栅介质的高K材料主要有两大类:氮化物和金属氧化物。

1.氮化物氮化物主要包括Si3N4,SiON等。

Si3N4介电常数比SiO2高,作栅介质时漏电流比SiO2小几个数量级,Si3N4和Si的界面状态良好,不存在过渡层。

但Si3N4具有难以克服的硬度和脆性,因此Si3N4并非理想的栅介质材料。

超薄SiOxNy可代替SiO2作为栅介质,这主要是由于SiOxNy的介电常数比SiO2要高,在相同的等效栅氧化层厚度下,SiOxNy的物理厚度大于SiO2,漏电流有所降低。

在SiO2-Si界面附近含有少量的氮,这可以降低由热电子引起的界面退化,而且氮可以阻挡硼的扩散。

电介质的介电常数与极化特性

电介质的介电常数与极化特性

电介质的介电常数与极化特性电介质是电场中的一种物质,具有一定的极化特性和介电常数。

电介质的极化和介电常数的研究在物理学和工程学领域有着重要的应用价值。

本文将从介电常数的概念、极化现象的原理以及电介质中的极化类型等角度展开讨论。

1. 介电常数的概念介电常数是描述电介质对电场的响应能力的物理量,它可理解为电介质在电场作用下的极化程度。

通常用ε表示,分为静态介电常数(ε0)和频率相关的介电常数(εr)两种。

静态介电常数是在频率趋于零的情况下的介电常数,而频率相关的介电常数是在介质中电场的频率不为零时的介电常数。

2. 极化现象的原理电介质的极化现象是指当电介质处于外电场作用下,电介质中的正负电荷发生位移,使得电介质的原子或分子发生重新排列,从而形成了电偶极子。

这种电偶极子的形成导致了电介质内部的极化现象,即正负电荷的不均匀分布。

3. 电介质中的极化类型电介质中的极化可以分为电子极化、离子极化和取向极化三种类型。

3.1 电子极化电子极化是指电介质中原子中的电子由于受到电场的作用而相对于原子核发生位移,使得电介质内部产生电偶极矩。

电子极化主要发生在共价键形成的电介质中,如氧化物、硅酸盐等。

3.2 离子极化离子极化是指电介质中的正负离子在电场作用下发生位移,使得电介质中形成正负电荷的分离。

离子极化主要发生在离子晶体和电解质溶液等中。

3.3 取向极化取向极化是指电介质中的分子由于电场的作用而发生取向排列,使得电介质内部形成偶极矩。

取向极化主要发生在极性分子中,如水和有机物中。

4. 介电常数与极化特性的关系电介质的极化程度与其介电常数密切相关。

介电常数越大,表示电介质的极化能力越强。

当电介质处于较强的电场中时,其极化程度较大,介电常数也就相应较大。

不同类型的极化对介电常数的贡献是不同的,电子极化对介电常数的贡献最大,而离子极化和取向极化的贡献次之。

5. 电介质的应用电介质的极化特性和介电常数在工程学领域有着广泛的应用。

High-K和Low-K电介质材料

High-K和Low-K电介质材料

High-K和Low-K电介质材料不同电介质的介电常数k 相差很大,真空的k 值为1,在所有材料中最低;空气的k值为1.0006;橡胶的k值为2.5~3.5;纯净水的k值为81。

工程上根据k值的不同,把电介质分为高k(high-k)电介质和低k(low-k)电介质两类。

介电常数k >3.9 时,判定为high-k;而k≤3.9时则为low-k。

IBM将low-k标准规定为k≤2.8,目前业界大多以2.8作为low-k电介质的k 值上限。

一、High-K电介质材料随着集成电路的飞速发展,SiO2作为传统的栅介质将不能满足MOSFET,器件高集成度的要求,需要一种新型High-k材料来代替传统的SiO2。

[1]所谓High-K电介质材料,是一种可取代二氧化硅作为栅介质的材料。

它具备良好的绝缘属性,同时可在栅和硅底层通道之间产生较高的场效应(即高-K)。

两者都是高性能晶体管的理想属性。

High-K电介质材料应满足的要求::(1) 高介电常数,≤50 nm CMOS 器件要求k >20;(2)与Si 有良好的热稳定性;(3)始终是非晶态,以减少泄漏电流;(4)有大的带隙和高的势垒高度,以降低隧穿电流;(5) 低缺陷态密度/ 固定电荷密度,以抑制器件表面迁移率退化。

[2]最有希望取代SiO2栅介质的高K材料主要有两大类:氮化物和金属氧化物。

1.氮化物氮化物主要包括Si3N4,SiON等。

Si3N4介电常数比SiO2高,作栅介质时漏电流比SiO2小几个数量级,Si3N4和Si的界面状态良好,不存在过渡层。

但Si3N4具有难以克服的硬度和脆性,因此Si3N4并非理想的栅介质材料。

超薄SiOxNy可代替SiO2作为栅介质,这主要是由于SiOxNy的介电常数比SiO2要高,在相同的等效栅氧化层厚度下,SiOxNy的物理厚度大于SiO2,漏电流有所降低。

在SiO2-Si界面附近含有少量的氮,这可以降低由热电子引起的界面退化,而且氮可以阻挡硼的扩散。

电介质的极化与介电常数

电介质的极化与介电常数

电介质的极化与介电常数电介质,是指材料中的电荷在外加电场作用下发生的极化现象。

在电介质中,原子和分子中的电子和正离子会受到外加电场的作用,从而产生电偶极矩,导致材料整体上出现正负电荷的分离,这种现象也称为电介质的极化。

电介质的极化可以通过介电常数来描述。

介电常数是一个用来衡量材料中电介质极化程度的物理量。

它代表了电介质相对于真空或空气的极化能力,通常用符号ε来表示。

介电常数可以分为静电介电常数和动态介电常数。

静电介电常数是在恒定电场下材料发生极化的能力,而动态介电常数则是在变化的电场下电介质对电磁波的响应程度。

电介质的极化可以分为电子极化和离子极化两种情况。

电子极化是指电介质中的电子沿着外加电场的方向产生位移,使得电介质内部出现正负电荷的分离。

这种极化主要发生在共价键结构的材料中,例如氧化物、氢氧化物和塑料等。

离子极化则是指电介质中的化学键断裂,正负离子沿着外加电场方向运动,形成分离的电荷。

这种极化主要发生在离子晶体中,例如盐类和石英等。

对于理想的电介质而言,其极化过程可以用简单的电偶极子模型来描述。

电偶极子由正负等量的电荷构成,它们之间的距离称为电偶极矩。

当外加电场作用下,电偶极子会倾向于与电场方向相同的方向对齐,这就是电介质的极化现象。

然而,在现实材料中,电介质的极化过程往往比较复杂。

除了电子极化和离子极化外,还存在位移极化、界面极化和空间电荷极化等多种极化形式。

位移极化是由于电介质存在自由电荷或固有偶极矩时产生的现象,使得电荷在电场作用下产生位移。

例如金属中的自由电子就会受到外加电场的作用而运动,产生位移极化。

界面极化则是由于电介质与其他物体或界面的相互作用而产生的极化过程。

当电介质与真空或其他材料接触时,其表面产生一个电荷层,从而形成界面极化。

空间电荷极化是由于电荷在电磁场作用下发生运动,形成电场梯度,使得电介质内部产生极化。

这种极化在高频电场下比较明显,对介电常数的影响较大。

通过了解电介质的极化过程及其影响因素,可以更好地理解介电常数的概念。

电介质中的极化现象与介电常数

电介质中的极化现象与介电常数

电介质中的极化现象与介电常数电介质是一种能将电场中的电荷正负离子重新分布的材料,当电介质置于外加电场中时,其内部的正负离子会发生极化现象,使介质中产生一个与外加电场方向相反但大小相同的极化电场。

这个极化过程是由于正负离子在电场作用下移动所引起的。

本文将讨论电介质中的极化现象与介电常数。

一、极化现象的机理在电介质中,正负离子之间存在有电相互作用,当外加电场作用于电介质时,电场力会将正负离子向相反方向移动,这种离子移动产生了两种电极化现象:取向极化和电荷极化。

1. 取向极化取向极化主要指的是电介质中的分子在电场作用下,由于自发定向而出现极化现象。

电场力可以使分子的正极和负极重新排序,使得整个电介质的正极和负极方向与外加电场方向相反,从而形成一个与外加电场方向相反但大小相同的极化电场。

2. 电荷极化电荷极化是由电介质中的正负离子在电场作用下发生移动而产生的。

正离子会向电场方向移动,而负离子则向相反的方向移动,导致电介质中产生一个内部电场,与外加电场方向相反。

二、介电常数的概念介电常数是反映电介质中电极化程度的物理量,用ε或ε_r表示。

它定义为电介质中产生的电场强度与外加电场强度之比。

介电常数越大,说明电介质在外加电场下电极化程度越高。

介电常数既可以是常数,也可以是频率相关的量。

对于静态或低频区域,介电常数是常数,而在高频区域,介电常数则会随频率的增加而变化。

三、介电常数的影响因素介电常数的大小受到多个因素的影响,以下是其中几个主要因素:1. 分子结构和极性分子结构和极性对电介质的介电常数有重要影响。

极性分子的电介质通常具有较高的介电常数,因为极性分子能更容易受到电场的影响,形成较强的极化。

2. 温度介电常数通常随着温度的升高而减小。

这是因为温度的升高会增加电介质中分子的热运动,使分子难以保持定向,从而降低电介质的极化程度。

3. 频率介电常数在不同频率下也会有所不同。

在高频区域,极化过程会受到分子间相互作用和电场反向作用的影响,导致介电常数的变化。

介质和电介质的特性和应用有哪些

介质和电介质的特性和应用有哪些

介质和电介质的特性和应用有哪些一、介质的概念介质,又称传播介质,是指电磁波传播的媒介。

介质可以是固体、液体、气体,甚至是真空。

不同的介质对电磁波的传播有不同的影响。

介质中电磁波的传播速度与介质的性质有关,如介质的折射率、介电常数等。

二、电介质的特性电介质是指在电场作用下,其内部会产生极化现象,从而影响电场分布的物质。

电介质的主要特性有:1.极化:电介质在外加电场的作用下,内部会产生极化现象,即正负电荷分别向电场方向和相反方向移动,形成局部电荷分布。

2.介电常数:电介质的介电常数(ε)是描述电介质极化程度的物理量,反映了电介质对电场的响应能力。

介电常数越大,电介质的极化程度越高。

3.绝缘性:电介质具有良好的绝缘性能,可以阻止电流的流动。

绝缘材料广泛应用于电力系统和电子设备中,以防止漏电和短路。

4.存储电荷:电介质在去除电场后,仍能保留一定量的电荷,称为电容。

电容是电介质储存电能的能力,广泛应用于电容器中。

三、电介质的应用1.电容器:电容器是利用电介质的储存电荷能力,实现电能存储和释放的元件。

电容器广泛应用于电子设备、电力系统、通讯等领域。

2.绝缘材料:电介质具有良好的绝缘性能,可以阻止电流的流动。

绝缘材料广泛应用于电力系统和电子设备中,以防止漏电和短路。

3.屏蔽材料:电介质可以用于屏蔽电磁干扰,保护电子设备免受外部干扰。

4.介质波导:电介质波导是一种用于传输电磁波的介质管道,广泛应用于光纤通信、微波传输等领域。

四、介质的分类及应用1.固体介质:如陶瓷、玻璃、塑料等。

固体介质在电子元件和微波器件中有广泛应用,如微波谐振器、滤波器等。

2.液体介质:如水、油、酸碱盐溶液等。

液体介质在电力系统中作为绝缘材料和冷却剂,以及化学实验室中的试剂。

3.气体介质:如空气、氮气、氧气等。

气体介质在电力系统中作为绝缘气体,以及灯泡中的填充气体。

4.真空介质:真空是一种特殊的介质,具有极低的介电常数。

在某些高频电路和微波器件中,真空介质可以作为优良的传播介质。

电介质极化现象与介电常数

电介质极化现象与介电常数

电介质极化现象与介电常数引言:电介质是指在电场作用下发生极化现象的材料,其极化现象涉及到电子和离子在外电场作用下的移动与重新排列。

电介质的极化现象与介电常数紧密相关,介电常数是描述介质在电场中的性质的物理量,本文将探讨电介质极化现象与介电常数之间的关系。

一、电介质极化现象在电介质中,当外加电场从无到有时,电子和离子在电场力作用下发生了移动以及重新排列的现象。

这种现象被称为电介质的极化。

电介质的极化可以由以下两种类型来描述:1. 电子极化:当电介质中存在自由电子时,外电场对自由电子的作用会使电子产生位移,从而在材料中产生电荷分布不均的现象。

电子极化是导致电介质具有介电性质的重要因素之一。

2. 离子极化:当电介质为离子晶体或者液体时,外电场会对离子产生作用,使得正负离子发生位移,导致电介质内部发生异种电荷的聚集。

这种离子的位移和重新排列又分为电子云位移和离子团聚两种形式,共同导致电介质极化。

二、介电常数的定义和意义介电常数是描述介质对电场作用的响应程度的物理量。

它可以通过电介质在极化过程中储存的电能和电场强度之间的关系来定义。

在一个恒定电场下,介电常数可以用来衡量电介质能储存多少电场能量。

介电常数用来比较电场作用下不同介质的性质,具有以下几点重要意义:1. 储存电能:通过极化现象,电介质可以吸收并储存电荷,从而形成电场梯度。

介电常数越大,说明介质储存的电能越高,这也是一些电容器的重要性能指标。

2. 屏蔽电场:介电常数高的材料对电场有较好的屏蔽作用。

在电子设备中,为了防止电磁辐射对周围环境产生干扰,常常使用具有高介电常数的材料进行屏蔽。

3. 改善电容器性能:对于电容器而言,介电常数的大小决定了电容器的储能量,同时也影响着电容器的电容值。

通过选择不同介电常数的材料,可以改变电容器的性能,以适应不同的应用需求。

三、影响介电常数的因素介电常数受多种因素影响,以下列举了几个主要因素:1. 材料种类:不同的电介质材料具有不同的化学成分和晶格结构,因此其极化现象和介电常数也有所不同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• • • • E作用下电子的偏移 Ba离子核外空轨道:4f.5p.5d.6S。能量均较低,可以比 较容易地容纳电子。 Ti-O-Ti层电子的丢失 :Ba外层电子轨道俘获从Ti-O-Ti 层偏移来电子 电滞(Pr)出现:电子在Ba层中的滞留


正反电滞的出现:BaTiO3晶体层状对称性, 反向电场(-E)使电子偏向Ti-O-Ti层另一侧 的Ba层,表现为反向的电滞(-Pr)。 Pr的出现使电滞回线不再沿开始的极化曲 线返回原点
外来离子的影响:
•如在Ba层中引入结构比较复杂 的离子如:La系,由于La系有(n2)f,(n-1)d等能级更低的轨道,故 电滞Pr较大;若在Ti-O-Ti层中引 入La等,则电子不易偏向Ba层, 从而使Pr更小。(图)。
二、CCTO及陶瓷的介电、压敏特性
1. CCTO陶瓷的晶体结构
非铁电体
无相变(目前未发现)
极化主要是空点电荷极化
CCTO晶体结构
TO 陶瓷的介电性能
2001年,Ramirez 和 Subramanian 等人发现 具有类钙钛矿结构的 CaCu3Ti4O12(CCTO) 具有优异的介电性能


介电常数高,可达105以上 介电常数在100K~600K范围 几乎不随温度而变化

二、电介质的介电常数
平行板电容器示意图
无介质
Q0 C0 V
有介质
C Q0 Q' V
r
C C0
A C 0 r d
介电常数:表征电介质极化能力的参数
理想电容器加上交变电压
V V0
回路电流: I
it
= iωC0V
实际情况:
物理意义: 相对介电常数(实部和虚部)随所加电场的频率而变化。
TO 陶瓷的压敏特性
非线性系数a是表征压敏电阻 器压敏性能好坏的重要参数。 2004年S.Chung等人发现 CCTO陶瓷样品在 5~100mA 的 范围内测得的非线性系数a高达 912。 2005年V.P.B.Marques 等人 也报到了CCTO具有优良的压敏 电阻特征。
I KV

lg( I 2 I 1 ) lg(V2 V1 )
TO 巨介电常数及压敏特性的解释机理
IBLC阻挡层模型
电介质在恒定电场作用下,从建立极化到其稳定 状态,一般来说要经过一定时间; 建立电子位移极化和离子位移极化,到达其稳态 所 需 时 间 约 为 10-16~10-12 秒 在 无 线 电 频 率 ( 5×1012Hz 以下)范围,仍可认为是极短的, 因此这类极化又称为无惯性极化或瞬时位移极化; 这类极化几乎不产生能量损耗; 偶极子转向极化和空间电荷极化,在电场作用下 则要经过相当长的时间(10-10秒或更长)才能达 到其稳态,所以这类极化称为有惯性极化或驰豫 极化;这种极化损耗能量;
4000 2000
mv2
n 可见 r 越大居里点越高。当然
56e 14e 40 rG 0 rG
2
2
0 150 200 250 300 350 400
这只是一种趋向,不能由此计算 居里点(经典理论不适用于原子 尺寸)。
T(K)
电滞出现的条件: • • • • • 温度在居里点以下 正离子为多质子核,且n/r 足够大 正离子核外有空的且能级比较低的轨道 负离子为非强电负性 晶体结构为对称的层状结构
工艺简单,空气中一次烧成 无相变发生
3.优良的压敏特性
(1).压敏电阻 “压敏电阻是中国大陆的名词,意思是"在一定电流电压范围内电阻值 随电压而变",或者是说"电阻值对电压敏感"的阻器。相应的英文名称 叫“Voltage Dependent Resistor”
压敏电阻器是一种具有瞬态电 压抑制功能的元件,可以用来代替 瞬态抑制二极管、齐纳二极管和电 容器的组合。压敏电阻器可以对IC 及其它设备的电路进行保护,防止 因静电放电、浪涌及其它瞬态电流 (如雷击等)而造成对它们的损坏。
三、铁电体BaTiO3的极化机理 • 一般铁电体的晶体结构和成键特点和 电子分布 • BaTiO3 的电子构型 • BaTiO3极化特性的解释 • 对居里点的解释 • 电滞出现的条件 • 外来离子的影响
• BaTiO3晶体结构
• 一般铁电体的晶体 结构:一般为层状 钙钛矿型。 • 铁电体的成键特点 和电子分布:正离 子一般为多层多电 子型,以较弱的离 子键成键。 • Ti-O-Ti以网格状分 布与一层中,Ba 离子单独于一层中。 (见图)
高介电陶瓷的介电响应机理
李涛 2012.5.29
一、高介电电介质陶瓷的应用
• 电容器的用途
• (1)能量储存 • (2)调谐、振荡 • (3)滤波旁路
有机介质电容器 电容器的种类
云母电容器 玻璃釉电容器 陶瓷电容器 独石电容器
无机介质电容器
电解电容器
可变电容器
铁电陶瓷电容器 陶瓷电容器 (按介质分类) 反铁电陶瓷电容器 非铁电陶瓷电容器 半导体陶瓷电容器 表层陶瓷电容器 晶界层陶瓷电容器
离子位移极化
BaTiO3 的电子构型
Ba正离子: 1S 2 2S 2 2 P 6 3S 2 3P 6 3d 10 4S 2 4 P 6 4d 10 5S 2 5P 6 2 2 6 2 6 1 S 2 S 2 P 3 S 3 P Ti正离: 1S 2 2S 2 2P 6 O负离子:
BaTiO3极化特性的解释:
BaTiO3的居里温度:铁电体向顺电体转变的温度。
对居里点得解释:
电子的能量也可以依靠热运动来 获得。一定的温度使得Ba的外层 电子轨道无法再俘获外来的电子, 使得极化不再出现,这一温度叫 居里点。利用经典的方法:
10000
8000
10kHz Heating 10kHz Cooling
6000
'
相关文档
最新文档