2020-2021学年重庆一中高三(上)期中考试数学(文科)试题Word版含解析

合集下载

重庆市第一中学2021届高三数学上学期期中试题 文.doc

重庆市第一中学2021届高三数学上学期期中试题 文.doc

重庆市第一中学2021届高三数学上学期期中试题 文注意事项:1. 答卷前,考生务必将自己的姓名、准考证号码填写在答卷上。

2. 作答时,务必将答案写在答题卡上,写在本试卷及草稿纸上无效。

3. 考试结束后,将答题卡交回。

第Ⅰ卷(选择题,共60分)一、选择题(本题共12小题,每小题5分,共60分. 在下列各题的四个选项中,只有一个选项是符合题意的)1.设全集U Z =,集合{}2|20A x Z x x =∈--≥,则U A =( ) A .{0} B .{1} C .{0,1} D .{}1,0,1,2-2.若复数z 满足(1)12z i i +=+,则z 在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限 3.等比数列{}n a 中,5a 、7a 是函数()243f x x x =-+的两个零点,则39=a a ⋅( )A.3-B. 3C.4-D. 44.已知向量()2,1a =,()2,sin 1b α=-,()2,cos c α=-,若()a b +//c ,则tan α的值为( )A. 2B. 12C.12-D. 2-5.(原创)“26m <<”是“方程22126x y m m-=--表示的曲线为双曲线”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件6.过点(12)A ,的直线在两坐标轴上的截距之和为零,则该直线方程为( ) A .10x y -+= B .30x y +-=C .20+30x y x y -=-=或D .2010x y x y -=-+=或 7.已知()2145f x x x -=+-,则()1f x +=( )A.287x x ++B.26x x +C.223x x +-D.2610x x +-8.(原创)定义域为R 的奇函数()y f x =的图象关于直线2x =对称,且(1)2018f =,(2)2019f =,则(2018)(2019)f f +=( )A. 4035B. 4036C. 4037D. 40389.如图,正三棱柱111ABC A B C -中,12AA AB =,D 是1BB 的中点,则AD 与平面11AAC C 所成角的正弦值等于( ) A.22 B.326 10 10.已知正实数,x y 满足3x y xy ++=,若对任意满足条件的,,x y 都有2()()60x y a x y +-++≥恒成立,则实数a 的最大值为( )A .26B .7C .46.811.(原创)已知ABC ∆的三个内角,,A B C 所对的边分别为,,a b c ,ABC ∆的外接圆的面积为3π,且222cos cos cos A B C -+1sin sin A C =+,则ABC ∆的最大边长为( )A. 2B. 332312.设函数2()sin f x x ππ=-在(0,)+∞上最小的零点为0x ,曲线()y f x =在点0(,0)x 处的切线上有一点P ,曲线23ln 2y x x =-上有一点Q ,则||PQ 的最小值为( ) A.105 5 31035 第Ⅱ卷(非选择题,共90分)二、填空题(本题共4小题,每小题5分,共20分)13.cos 27cos18sin 27sin18︒︒︒︒-= __________.14.已知(2)n a a n a =-+,若数列{}n a 是递增数列,则实数a 的取值范围是________.15.(原创)在直三棱柱111ABC A B C -中,90BAC ︒∠=且3AB =14BB =,设其外接球的球心为O ,且球O 的表面积为28π,则ABC ∆的面积为__________.16.已知双曲线C :22221(0,0)x y a b a b-=>>的右焦点为F ,左顶点为A ,以F 为圆心,FA 为半径的圆交C 的右支于M ,N 两点,且线段AM 的垂直平分线经过点N ,则C 的离心率为_________.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.)17.(12分)(原创)已知函数22()332sin cos f x x x x x =-+. (1)求()f x 的对称轴;(2)当[0,]απ∈时,若()1f α=,求α的值.18.(12分)已知数列{}n a 中,11a =,()*121n n a a n N +=+∈. (1)求n a 的通项公式;(2)设()()21log 1n n n b a a =+⋅+,求{}n b 的前n 项和.19.(12分)如图,在三棱柱111ABC A B C -中,,P Q 分别是1AA 、11A C 的中点.(1)设棱1BB 的中点为D ,证明:1//C D 平面1PQB ;(2)若2AB =,114AC AA AC ===,1160AA B ∠=且平面11AA C C ⊥平面11AA B B ,求三棱柱111ABC A B C -的高.20.(12分)已知点()1,0F 和直线1:1l x =-,直线2l 过直线1l 上的动点M 且与直线1l 垂直,线段MF 的垂直平分线l 与直线2l 相交于点P .(1)求点P 的轨迹C 的方程;(2)设直线PF 与轨迹C 相交于另一点Q ,与直线1l 相交于点N ,求NP NQ ⋅的最小值.21.(12分)已知函数()()2e 2R R x f x mx m x m =--∈∈,.(1)讨论函数()f x 的单调性;(2)若1m =,不等式()ln ln2f x x bx -≥+对一切0x >恒成立,求实数b 的取值范围.选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按第一题计分.22.(10分)在直角坐标系xOy 中,已知曲线1C的参数方程为4,x y t⎧=⎪⎨=-⎪⎩(t 为参数),曲线2C的参数方程为,sin 2x y θθ⎧=⎪⎨=⎪⎩(θ为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线1C ,2C 的极坐标方程;(2)在极坐标系中,射线3πθ=与曲线1C 交于点M ,射线6πθ=与曲线2C 交于点N ,求MON ∆的面积(其中O 为坐标原点).23.(10分)已知函数()13f x x x =-+-.(1)解不等式()1f x x ≤+;(2)设函数()f x 的最小值为c ,实数ab 满足0a >,0b >,a b c +=, 求证:22111a b a b +≥++.2021年重庆一中高2021级高三上期半期考试参考答案1-12 CA B D C D A C C B B D13.2 14. 2a <15. 2 16. 43 17.(1)()fx sin 222sin 23x x x π⎛⎫==+⎪⎝⎭ ...............2分 得:2()32x k k Z πππ+=+∈ ...............4分 所以对称轴为:()212k x k Z ππ=+∈ ...............6分 (2)因为0απ≤≤,所以72333πππα≤+≤, ...............8分 又因为()1f α=,即1sin 232πα⎛⎫+= ⎪⎝⎭, ...............10分所以5236ππα+=或136π,则4πα=或1112π ................12分 18.(1)因为()*121n n a a n N +=+∈,所以112(1)n n a a ++=+,...............2分 则数列{1}n a +是首项为2公比为2的等比数列,...............4分则:12n n a +=即21n n a =-;...............6分(2)()()21log 12nn n n b a a n =+⋅+=⋅,...............7分 则:123122232...2n n S n =⋅+⋅+⋅++⋅,23412122232...2n n S n +=⋅+⋅+⋅++⋅, (9)分 两式相减:1231112(12)1222 (22)22(1)212n n n n n n S n n n +++-=-⋅----+⋅=-+⋅=+-⋅-. 则{}n b 的前n 项和为:12(1)2n n ++-⋅. ...............12分19.(1)连接AD ,在三棱柱111ABC A B C -中,11//AA BB , D 是1BB 的中点,P 是1AA 的中点,1//AP DB ∴,∴四边形1ADB P 是平行四边形, ...............2分1//AD PB ∴,AD ⊄平面1PQB ,1PB ⊂平面1PQB ,//AD ∴平面1PQB . P 、Q 分别是1AA 、11A C 的中点,1//AC PQ ∴,又1AC ⊄平面1PQB ,PQ ⊂平面1PQB ,1//AC ∴平面1PQB , ...............4分 1AD AC A =,AD 、1AC ⊂平面1AC D ,∴平面1//AC D 平面1PQB . 1C D ⊂平面1AC D ,1//C D ∴平面1PQB ; ...............6分(2)三棱柱的高转化成三棱锥1C ABC -的高,过点B 作1BM A A ⊥交1A A 于点M , 因为平面11AA C C ⊥平面11AA B B ,平面11AAC C 平面111AA B B A A =, 又因为1BM A A ⊥,BM ⊂平面11AA B B ,所以BM ⊥平面1ACC ,...............8分在ABM ∆中,1160BAM AA B ∠=∠=,sin BM AB BAM ∴=∠=又因为122ABC S ∆=⨯=114442ACC S ∆=⨯⨯=................10分 所以11C ABC B ACC V V --=,所以1133ABC h S ∆⨯⨯=解得h =................12分 20.(1)l 为线段MF 的垂直平分线 PF PM ∴= ...............2分 即点P 到定点()1,0F 的距离等于点P 到定直线1 : =-1l x 的距离由抛物线的定义可知,点P 的轨迹为:24y x =...............4分(2)由已知得直线PF 斜率存在,且斜率不为零,设()11,P x y ,()22,Q x y , 将直线():1PF y k x =-代入抛物线方程得()2222240k x k x k -++= 则()224224416160k k k ∆=+-=+> ...............5分212212241k x x k x x ⎧++=⎪∴⎨⎪=⎩...............8分又()1,2N k -- ()111,NP x kx k ∴=++,()221,NQ x kx k ∴=++ ()()()()()()2212121212111111NP NQ x x k x x k x x x x ∴⋅=+++++=++++⎡⎤⎣⎦()242222222448441248816k k k k k k k k ⎛⎫+++=+⋅+==++≥= ⎪⎝⎭........10分 当且仅当2244k k =,即1k =±时取等号 ()min 16NP NQ ∴⋅= ...............12分21.(1)()f x 的定义域是R ,()2'2e 2x f x m =-...............1分①0m ≤时,()'0f x >,()f x 在R 上单调递增:...............3分 ②0m >时,()2'2e 20x f x m =-=,解得1ln 2x m =,当1ln 2x m <时,()'0f x <,则()f x 在1ln 2m ⎛⎫-∞ ⎪⎝⎭,上递减; 当1ln 2x m >时,()'0f x >,则()f x 在1ln 2m ⎛⎫+∞ ⎪⎝⎭,上递增................5分 (2)当1m =时,()2e 21x f x x =--,依题意知不等式()ln ln2f x x bx -≥+,即2e 21ln ln 2x x x bx ---≥+在()0+∞,上恒成立, 即()2e ln 2ln2e x x b x --+≥在()0+∞,上恒成立,设()()2e ln 2x g x x b x =--+,()()21'2e 2x g x b x =--+, 令()()02001'2e 20x g x b x =--+=,()020012e 20x b x x -=+>,...............7分 易知()g x 在()00x ,上递减,在()0,x +∞上递增,则()()()()002200000min e ln 212e ln 1ln2e x x g x g x x b x x x ==--+=--+≥,.........9分即()020021e ln20x x x -+≤,设020t x =>,则()()1e ln 0t h t t t =-+≤,()1'e 0t h t t t =+>,则()h t 递增,又()10h =,故0021t x <=≤,0102x <≤,........10分 ∴020122e 2e 2x b x +=-≤-,解得2e 4b ≤-................12分22.(1)由曲线1C:4,,x y t ⎧=⎪⎨=-⎪⎩(t 为参数),消去参数t得:4x += 化简极坐标方程为:sin 26πρθ⎛⎫+= ⎪⎝⎭...............2分曲线2C:,,2x y sin θθ⎧=⎪⎨=⎪⎩(θ为参数)消去参数θ得:224177x y += 化简极坐标方程为:()2213sin 7ρθ+=...............5分 (2)联立263sin πρθπθ⎧⎛⎫+= ⎪⎪⎪⎝⎭⎨⎪=⎪⎩ 23ρπθ=⎧⎪⇒⎨=⎪⎩即2,3M π⎛⎫ ⎪⎝⎭...............7分 联立()2213sin 76ρθπθ⎧+=⎪⎨=⎪⎩ 26ρπθ=⎧⎪⇒⎨=⎪⎩即2,6N π⎛⎫ ⎪⎝⎭...............9分 故11··sin 22sin 12236MON S OM ON MON ππ∆⎛⎫=∠=⨯⨯⨯-= ⎪⎝⎭...............10分 23.(1)①当1x <时,不等式可化为421x x -≤+,1x ≥.又∵1x <,∴x 无解;...............1分②当13x ≤≤时,不等式可化为21x ≤+,1x ≥.又∵13x ≤≤,∴13x ≤≤................2分③当3x >时,不等式可化为241x x -≤+,5x ≤.又∵3x >,∴35x <≤...............3分∴原不等式的解集为[]1,5................5分(2)证明:由绝对值不等式性质得,()()13132x x x x -+-≥-+-=, ∴2c =,即2a b +=..............7分令1a m +=,1b n +=,则1m >,1n >,1,1a m b n =-=-,4m n +=, ()()22221111m n a b a b m n --+=+++ 114m n m n =+-++ 4mn = 2412m n ≥=+⎛⎫ ⎪⎝⎭......10分。

2021届重庆市第一中学高三上学期期末考试数学(文)试题(原卷版)参照模板

2021届重庆市第一中学高三上学期期末考试数学(文)试题(原卷版)参照模板

2020年重庆一中高2020级高三上期期末考试数学(文科)试题卷一、选择题1.已知集合{1,2,3}A =,{|(1)(2)0,}B x x x x Z =+-<∈,则A B ⋃= A. {1} B. {12}, C. {0123},,, D. {10123}-,,,, 2.复数341iz i-=-(其中i 为虚数单位)在复平面内对应的点位于( ) A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.设3434a -⎛⎫= ⎪⎝⎭,243b ⎛⎫= ⎪⎝⎭,23log 2c =,则a ,b ,c的大小顺序是( )A. b a c <<B. c a b <<C. b c a <<D. a c b <<4.设a 为实数,直线1:10l ax y +-=,()2:120l x a y a +--=,则“12a =”是“12l l ⊥”的( ) A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5.执行如下图所示的程序框图,输出的结果是( )A.89B.910C.1011D.11126.一个几何体的三视图如图所示(单位:m ),则该几何体的体积为( )3mA. 6π+B. 5π+C. 62π+D. 52π+7.正三角形ABC 中,D 是线段BC 上的点,3AB =,2BD =,则AB AD ⋅=( ) A. 3B. 6C. 9D. 128.已知函数()()sin 0,0,22f x A x A ωϕωϕππ⎛⎫=+>>-<< ⎪⎝⎭的部分图象如图所示,则函数()f x 在,44x ππ⎛⎫∈- ⎪⎝⎭上的值域为( )A. 2,2⎡-⎣B. (2,2-C. 2⎡⎤-⎣⎦D. (2⎤-⎦9.在平面直角坐标系xOy 中,双曲线()2222:10,0x y E a b a b-=>>离心率为2,其焦点到渐近线的距离为3()2,1P 的直线m 与双曲线E 交于A ,B 两点.若P 是AB 的中点,则直线m 的斜率为( )A. 2B. 4C. 6D. 810.一次猜奖游戏中,1,2,3,4四扇门里摆放了a ,b ,c ,d 四件奖品(每扇门里仅放一件).甲同学说:1号门里是b ,3号门里是c ;乙同学说:2号门里是b ,3号门里是d ;丙同学说:4号门里是b ,2号门里是c ;丁同学说:4号门里是a ,3号门里是c .如果他们每人都猜对了一半,那么4号门里是( ) A. aB. bC. cD. d11.在锐角三角形ABC 中,内角A 、B 、C 的对边分别为a 、b 、c .若2a =,且()()cos sin 2sin 22A B C C ππ⎛⎫-+-=- ⎪⎝⎭,则c 的取值范围为( )A. 2⎫⎪⎪⎝⎭B. 2,23⎛⎫⎪⎝⎭C. ⎝⎭D. 23⎛⎝⎭12.定义在R 上且周期为4的函数()f x 满足:当[)1,3x ∈-时,()1,102ln 2,03xx f x x x ⎧⎛⎫-≤≤⎪ ⎪=⎨⎝⎭⎪+<<⎩,若在区间[]0,4上函数()()1g x f x ax =--恰有三个不同的零点,则实数a 的取值范围是( ) A. 1ln 310,,143+⎡⎤⎛⎫⋃⎪⎢⎥⎣⎦⎝⎭B. 1ln 310,,133+⎡⎤⎛⎫⋃⎪⎢⎥⎣⎦⎝⎭ C. 1ln 310,,243+⎡⎤⎛⎫⋃⎪⎢⎥⎣⎦⎝⎭D. 1ln 310,,233+⎡⎤⎛⎫⋃⎪⎢⎥⎣⎦⎝⎭二、填空题13.等比数列{}n a 中,已知15a =,91040a a =,则18a =________.14.已知()f x 是定义在R 上的奇函数,若0x >时,()2ln 2f x x =+,则曲线()y f x =在点()1,2--处的切线斜率为______.15.设不等式组0x y x y y ⎧-≤⎪⎪+≥-⎨⎪≤⎪⎩M ,函数y =x 轴所围成的区域为N ,向M 内随机投一个点,则该点不落在N 内的概率为______.16.已知一个圆锥,其母线与底面的夹角的余弦值为13.圆锥内有一个内接正方体,该内接正方体的顶点都在圆锥的底面或侧面上,则这个正方体的外接球表面积为_________.三、解答题17.已知数列{}n a 中,11a =,121n n a a n +=+-,n n b a n =+.(1)求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .18.对某居民最近连续几年的月用水量进行统计,得到该居民月用水量T (单位:吨)的频率分布直方图,如图一.(1)求a 的值,并根据频率分布直方图估计该居民月平均用水量T 月;(2)已知该居民月用水量T 与月平均气温t (单位:℃)的关系可用回归直线0.42ˆTt =+模拟.2019年当地月平均气温t 统计图如图二,把2019年该居民月用水量高于和低于T 月的月份作为两层,用分层抽样的方法选取5个月,再从这5个月中随机抽取2个月,求这2个月中该居民恰有1个月用水量超过T 月的概率. 19.已知四棱锥S ABCD -中,底面ABCD 是边长为2的菱形,60BAD ∠=︒,5SA SD ==,7SB =.点E 是棱AD 的中点,点F 在棱SC 上,且SFSCλ=,SA 平面BEF .(1)求实数λ的值;(2)求四棱锥F EBCD -的体积.20.已知椭圆()2222:10x y C a b a b +=>>过圆22:4230Q x y x y +--+=的圆心Q ,且右焦点与抛物线23y x =的焦点重合.(1)求椭圆C 的方程;(2)过点()0,1P 作直线l 交椭圆C 于A ,B 两点,若tan AQBSAQB =∠,求直线l 的方程.21.已知函数()ln f x x m x =-,m R ∈,()f x '是()f x 的导函数. (1)讨论函数()f x 的极值点个数;(2)若0m >,120x x <<,若存在0x ,使得()()()12012f x f x f x x x --'=,试比较12x x +与02x 的大小.22.在平面直角坐标系xOy 中,已知曲线1C 的参数方程为212222x y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),以O 为极点,x 轴的非负半轴为极轴,曲线2C 的极坐标方程为:()23cos24ρθ-=.(1)求曲线1C 的普通方程和曲线2C 的参数方程;(2)若点M 在曲线2C 上运动,求点M 到曲线1C 距离的最小值及对应的点M 的坐标. 23.已知函数()()0,0f x x a x b a b =-++>>. (1)当1ab =时,证明:()2f x ≥;(2)若()f x 的值域为[)2,+∞,且()35f =,解不等式()4f x ≥.百度文库精品文档1、想想自己一路走来的心路历程,真的很颓废一事无成。

2020-2021学年重庆一中高三上学期期中数学试卷(文科)(含解析)

2020-2021学年重庆一中高三上学期期中数学试卷(文科)(含解析)

2020-2021学年重庆一中高三上学期期中数学试卷(文科)一、单选题(本大题共12小题,共60.0分) 1.已知A ={a,b ,c},B ={a,b},则下列关系不正确的是( )A. A ∩B =BB. ∁A B ⊆BC. A ∪B ⊆AD. B ⊊A2.下面四个命题(1)0比−i 大(2)两个复数互为共轭复数,当且仅当其和为实数 (3)x +yi =1+i 的充要条件为x =y =1(4)复数z =x +yi(x,y ∈R)中,其有序数对(x,y)与复平面上的点一一对应. 其中正确命题的个数是( )A. 1B. 2C. 3D. 43.首项为−15的等差数列,从第6项开始为正数,则公差d 的取值范围为( )A. d >3B. d <154C. 3≤d ≤154D. 3<d ≤1544.空间中,与向量同向共线的单位向量为( )A.B.或C.D.或5.“直线x −y +k =0与圆(x −1)2+y 2=2有两个不同的交点”的充要条件是( )A. k ∈(−3,1)B. k ∈[−3,1]C. k ∈(0,1)D. k ∈(−∞,−3)∪(1,+∞)6.直线l 过点(−4,−1)且横截距是纵截距的两倍,则直线l 的方程为( )A. x +2y +6=0B. y =14xC. x +2y +6=0或y =14xD. 2x −y +7=0或y =14x7.已知函数f(x)={2x −1,x ≥0f(f(x +2)),x <0,则f(−1)=( )A. 0B. 2C. 1D. 38.奇函数f(x)在区间[1,3]上是单调递减函数,则函数f(x)在区间[−3,−1]上是( )A. 单调递减函数,且有最小值−f(1)B. 单调递减函数,且有最大值−f(1)C. 单调递增函数,且有最小值f(1)D. 单调递增函数,且有最大值f(1)9.如图1,在等腰△中,,,分别是上的点,,为的中点.将△沿折起,得到如图2所示的四棱锥.若平面,则与平面所成角的正弦值等于()A. B. C. D.10.设变量x,y满足约束条件{x+y≥0x−y+2≥0x≤1,则目标函数z=2x−y的最小值为()A. 1B. −1C. 3D. −311.在△ABC中,A,B,C所对的边分别为a,b,c,cos2C2=a+b2a,则△ABC的形状是()A. 直角三角形B. 等边三角形C. 等腰三角形D. 等腰直角三角形12.已知曲线y=x 4+ax 2+1在点(−1,a+2)处切线的斜率为8,则a=().A. 9B. 6C. −9D. −6二、单空题(本大题共4小题,共20.0分)13.在△ABC中,内角A,B,C的对边分别为a,b,c,已知cosA=35,sinC=2cosB,且a=4,则△ABC的面积是______ .14.定义函数f(x)={x{x}},其中{x}表示不小于x的最小整数,如{1.4}=2,{−2.3}=−2,当x∈(0,n](n∈N∗)时,函数f(x)的值域为A n,记集合A n中元素的个数为a n,则a n=______.15.已知正三棱锥P−ABC,点P、A、B、C同在半径为的球面上,若PA,PB,PC两两相互垂直,则三棱锥P−ABC的体积为.16.已知△ABC中,角A、B、C的对边分别为a、b、c且a=1,∠B=45°,S△ABC=2,则b=______.三、解答题(本大题共7小题,共82.0分)17.已知函数f(x)=12sin2xsinφ+cos2xcosφ−sin(π2+φ)(0<φ<π2),且函数图象过点(π4,14).(Ⅰ)求φ的值;(Ⅱ)将函数y=f(x)的图象上各点的横坐标缩短到原来的23,纵坐标不变,得到函数y=g(x)的图象求函数y=g(x)在区间[0,π3]上的最大值和最小值.18.设数列{b n}满足b n+2=−b n+1−b n,(n∈N∗),b2=2b1.(I)若b3=3,求b1的值;(II)求证数列{b n b n+1b n+2+n}是等差数列;(III)设数列{T n}满足:T n+1=T n b n+1(n∈N∗),且T1=b1=−12,若存在实数p,q,对任意n∈N∗都有p≤T1+T2+T3+⋯+T n<q成立,试求q−p的最小值.19.在如图的多面体中,AE⊥底面BEFC,AD//EF//BC,BE=AD=EF=12BC,G是BC的中点.(1)求证:AB//平面DEG;(2)求证:平面EGD⊥平面BDF.20.己知椭圆x2a2+y2b2=1(a>b>0)与抛物线y2=2px(p>0)共焦点F2,抛物线上的点M到y轴的距离等于|MF2|−1,且椭圆与抛物线的交点Q满足|QF2|=52.(I)求抛物线的方程和椭圆的方程;(II)过抛物线上的点P作抛物线的切线y=kx+m交椭圆于A,B两点,设线段AB的中点为C(x0,y0),求x0的取值范围.21.已知函数f(x)=e x,若函数g(x)满足f(x)≥g(x)恒成立,则称g(x)为函数f(x)的下界函数.(1)若函数g(x)=kx是f(x)的下界函数,求实数k的取值范围;(2)证明:对任意的m≤2,函数ℎ(x)=m+lnx都是f(x)的下界函数.22.已知直线l的参数方程为{x=−√3ty=3+t(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=3.(1)写出曲线C的参数方程,直线L的普通方程.(2)过曲线C上任意一点P作与L夹角为45°的直线,交于点A,求|PA|的最大值与最小值.23.已知函数f(x)=m−|2−x|,且f(x+2)>0的解集为(−1,1).(1)求m的值;(2)若正实数a、b,满足a+2b=m.求1a +12b的最小值.【答案与解析】1.答案:B解析:解:∵A={a,b,c},B={a,b},∴B⊊A∴A∩B=B且A∪B=A⊆A∁A B={C}⊈B,综上知,B选项不正确故选:B.由已知中A={0,1,2},B={0,1},易得B⊊A,A∩B=B,A∪B=A⊆A均成立.本题考查的知识点是集合的包含关系判断及应用,熟练掌握集合包含关系的定义是解答的关键.2.答案:A解析:解:虚数不能比较大小,故(1)0比−i大,错误;(2)两个复数互为共轭复数,其和为实数,但两个复数和为实数,却不一定共轭,故错误;(3)若x,y均为实数,x+yi=1+i的充要条件为x=y=1,故(3)错误;(4)复数z=x+yi(x,y∈R)中,其有序数对(x,y)与复平面上的点一一对应.正确;其中正确命题的个数是1个,故选:A.根据虚数不能比较大小,可判断(1);根据两个复数和为实数,却不一定共轭,可判断(2);根据复数相等的充要条件,可判断(3);根据复数的几何意义,可判断(4).本题以命题的真假判断与应用为载体,考查了复数的相关内容,难度中档.3.答案:D解析:由于从第6项开始为正数,可得a6>0,a5≤0,解出即可得出.本题考查了等差数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.需要注意第5项可以取0.解:a n=−15+(n−1)d,∵从第6项开始为正数,∴a6=−15+5d>0,a5=−15+4d≤0,解得3<d≤15,4。

重庆市第一中学2021届高三数学上学期期中试题 文

重庆市第一中学2021届高三数学上学期期中试题 文

重庆市第一中学2021届高三数学上学期期中试题 文注意事项:1. 答卷前,考生务必将自己的姓名、准考证号码填写在答卷上。

2. 作答时,务必将答案写在答题卡上,写在本试卷及草稿纸上无效。

3. 考试结束后,将答题卡交回。

第Ⅰ卷(选择题,共60分)一、选择题(本题共12小题,每小题5分,共60分. 在下列各题的四个选项中,只有一个选项是符合题意的)1.设全集U Z =,集合{}2|20A x Z x x =∈--≥,则U A =( ) A .{0} B .{1} C .{0,1} D .{}1,0,1,2-2.若复数z 满足(1)12z i i +=+,则z 在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限 3.等比数列{}n a 中,5a 、7a 是函数()243f x x x =-+的两个零点,则39=a a ⋅( )A.3-B. 3C.4-D. 44.已知向量()2,1a =,()2,sin 1b α=-,()2,cos c α=-,若()a b +//c ,则tan α的值为( )A. 2B. 12C.12-D. 2-5.(原创)“26m <<”是“方程22126x y m m-=--表示的曲线为双曲线”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件6.过点(12)A ,的直线在两坐标轴上的截距之和为零,则该直线方程为( ) A .10x y -+= B .30x y +-=C .20+30x y x y -=-=或D .2010x y x y -=-+=或 7.已知()2145f x x x -=+-,则()1f x +=( )A.287x x ++B.26x x +C.223x x +-D.2610x x +-8.(原创)定义域为R 的奇函数()y f x =的图象关于直线2x =对称,且(1)2018f =,(2)2019f =,则(2018)(2019)f f +=( )A. 4035B. 4036C. 4037D. 40389.如图,正三棱柱111ABC A B C -中,12AA AB =,D 是1BB 的中点,则AD 与平面11AAC C 所成角的正弦值等于( ) A.22 B.326 10 10.已知正实数,x y 满足3x y xy ++=,若对任意满足条件的,,x y 都有2()()60x y a x y +-++≥恒成立,则实数a 的最大值为( )A .26B .7C .46.811.(原创)已知ABC ∆的三个内角,,A B C 所对的边分别为,,a b c ,ABC ∆的外接圆的面积为3π,且222cos cos cos A B C -+1sin sin A C =+,则ABC ∆的最大边长为( )A. 2B. 332312.设函数2()sin f x x ππ=-在(0,)+∞上最小的零点为0x ,曲线()y f x =在点0(,0)x 处的切线上有一点P ,曲线23ln 2y x x =-上有一点Q ,则||PQ 的最小值为( ) A.105 5 31035 第Ⅱ卷(非选择题,共90分)二、填空题(本题共4小题,每小题5分,共20分)13.cos 27cos18sin 27sin18︒︒︒︒-= __________.14.已知(2)n a a n a =-+,若数列{}n a 是递增数列,则实数a 的取值范围是________.15.(原创)在直三棱柱111ABC A B C -中,90BAC ︒∠=且3AB =14BB =,设其外接球的球心为O ,且球O 的表面积为28π,则ABC ∆的面积为__________.16.已知双曲线C :22221(0,0)x y a b a b-=>>的右焦点为F ,左顶点为A ,以F 为圆心,FA 为半径的圆交C 的右支于M ,N 两点,且线段AM 的垂直平分线经过点N ,则C 的离心率为_________.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.)17.(12分)(原创)已知函数22()332sin cos f x x x x x =-+. (1)求()f x 的对称轴;(2)当[0,]απ∈时,若()1f α=,求α的值.18.(12分)已知数列{}n a 中,11a =,()*121n n a a n N +=+∈. (1)求n a 的通项公式;(2)设()()21log 1n n n b a a =+⋅+,求{}n b 的前n 项和.19.(12分)如图,在三棱柱111ABC A B C -中,,P Q 分别是1AA 、11A C 的中点.(1)设棱1BB 的中点为D ,证明:1//C D 平面1PQB ;(2)若2AB =,114AC AA AC ===,1160AA B ∠=且平面11AA C C ⊥平面11AA B B ,求三棱柱111ABC A B C -的高.20.(12分)已知点()1,0F 和直线1:1l x =-,直线2l 过直线1l 上的动点M 且与直线1l 垂直,线段MF 的垂直平分线l 与直线2l 相交于点P .(1)求点P 的轨迹C 的方程;(2)设直线PF 与轨迹C 相交于另一点Q ,与直线1l 相交于点N ,求NP NQ ⋅的最小值.21.(12分)已知函数()()2e 2R R x f x mx m x m =--∈∈,.(1)讨论函数()f x 的单调性;(2)若1m =,不等式()ln ln2f x x bx -≥+对一切0x >恒成立,求实数b 的取值范围.选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按第一题计分.22.(10分)在直角坐标系xOy 中,已知曲线1C的参数方程为4,x y t⎧=⎪⎨=-⎪⎩(t 为参数),曲线2C的参数方程为,sin 2x y θθ⎧=⎪⎨=⎪⎩(θ为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线1C ,2C 的极坐标方程;(2)在极坐标系中,射线3πθ=与曲线1C 交于点M ,射线6πθ=与曲线2C 交于点N ,求MON ∆的面积(其中O 为坐标原点).23.(10分)已知函数()13f x x x =-+-.(1)解不等式()1f x x ≤+;(2)设函数()f x 的最小值为c ,实数ab 满足0a >,0b >,a b c +=, 求证:22111a b a b +≥++.2021年重庆一中高2021级高三上期半期考试参考答案1-12 CA B D C D A C C B B D13.2 14. 2a <15. 2 16. 43 17.(1)()fx sin 222sin 23x x x π⎛⎫==+⎪⎝⎭ ...............2分 得:2()32x k k Z πππ+=+∈ ...............4分 所以对称轴为:()212k x k Z ππ=+∈ ...............6分 (2)因为0απ≤≤,所以72333πππα≤+≤, ...............8分 又因为()1f α=,即1sin 232πα⎛⎫+= ⎪⎝⎭, ...............10分所以5236ππα+=或136π,则4πα=或1112π ................12分 18.(1)因为()*121n n a a n N +=+∈,所以112(1)n n a a ++=+,...............2分 则数列{1}n a +是首项为2公比为2的等比数列,...............4分则:12n n a +=即21n n a =-;...............6分(2)()()21log 12nn n n b a a n =+⋅+=⋅,...............7分 则:123122232...2n n S n =⋅+⋅+⋅++⋅,23412122232...2n n S n +=⋅+⋅+⋅++⋅, (9)分 两式相减:1231112(12)1222 (22)22(1)212n n n n n n S n n n +++-=-⋅----+⋅=-+⋅=+-⋅-. 则{}n b 的前n 项和为:12(1)2n n ++-⋅. ...............12分19.(1)连接AD ,在三棱柱111ABC A B C -中,11//AA BB , D 是1BB 的中点,P 是1AA 的中点,1//AP DB ∴,∴四边形1ADB P 是平行四边形, ...............2分1//AD PB ∴,AD ⊄平面1PQB ,1PB ⊂平面1PQB ,//AD ∴平面1PQB . P 、Q 分别是1AA 、11A C 的中点,1//AC PQ ∴,又1AC ⊄平面1PQB ,PQ ⊂平面1PQB ,1//AC ∴平面1PQB , ...............4分 1AD AC A =,AD 、1AC ⊂平面1AC D ,∴平面1//AC D 平面1PQB . 1C D ⊂平面1AC D ,1//C D ∴平面1PQB ; ...............6分(2)三棱柱的高转化成三棱锥1C ABC -的高,过点B 作1BM A A ⊥交1A A 于点M , 因为平面11AA C C ⊥平面11AA B B ,平面11AAC C 平面111AA B B A A =, 又因为1BM A A ⊥,BM ⊂平面11AA B B ,所以BM ⊥平面1ACC ,...............8分在ABM ∆中,1160BAM AA B ∠=∠=,sin BM AB BAM ∴=∠=又因为122ABC S ∆=⨯=114442ACC S ∆=⨯⨯=................10分 所以11C ABC B ACC V V --=,所以1133ABC h S ∆⨯⨯=解得h =................12分 20.(1)l 为线段MF 的垂直平分线 PF PM ∴= ...............2分 即点P 到定点()1,0F 的距离等于点P 到定直线1 : =-1l x 的距离由抛物线的定义可知,点P 的轨迹为:24y x =...............4分(2)由已知得直线PF 斜率存在,且斜率不为零,设()11,P x y ,()22,Q x y , 将直线():1PF y k x =-代入抛物线方程得()2222240k x k x k -++= 则()224224416160k k k ∆=+-=+> ...............5分212212241k x x k x x ⎧++=⎪∴⎨⎪=⎩...............8分又()1,2N k -- ()111,NP x kx k ∴=++,()221,NQ x kx k ∴=++ ()()()()()()2212121212111111NP NQ x x k x x k x x x x ∴⋅=+++++=++++⎡⎤⎣⎦()242222222448441248816k k k k k k k k ⎛⎫+++=+⋅+==++≥= ⎪⎝⎭........10分 当且仅当2244k k =,即1k =±时取等号 ()min 16NP NQ ∴⋅= ...............12分21.(1)()f x 的定义域是R ,()2'2e 2x f x m =-...............1分①0m ≤时,()'0f x >,()f x 在R 上单调递增:...............3分 ②0m >时,()2'2e 20x f x m =-=,解得1ln 2x m =,当1ln 2x m <时,()'0f x <,则()f x 在1ln 2m ⎛⎫-∞ ⎪⎝⎭,上递减; 当1ln 2x m >时,()'0f x >,则()f x 在1ln 2m ⎛⎫+∞ ⎪⎝⎭,上递增................5分 (2)当1m =时,()2e 21x f x x =--,依题意知不等式()ln ln2f x x bx -≥+,即2e 21ln ln 2x x x bx ---≥+在()0+∞,上恒成立, 即()2e ln 2ln2e x x b x --+≥在()0+∞,上恒成立,设()()2e ln 2x g x x b x =--+,()()21'2e 2x g x b x =--+, 令()()02001'2e 20x g x b x =--+=,()020012e 20x b x x -=+>,...............7分 易知()g x 在()00x ,上递减,在()0,x +∞上递增,则()()()()002200000min e ln 212e ln 1ln2e x x g x g x x b x x x ==--+=--+≥,.........9分即()020021e ln20x x x -+≤,设020t x =>,则()()1e ln 0t h t t t =-+≤,()1'e 0t h t t t =+>,则()h t 递增,又()10h =,故0021t x <=≤,0102x <≤,........10分 ∴020122e 2e 2x b x +=-≤-,解得2e 4b ≤-................12分22.(1)由曲线1C:4,,x y t ⎧=⎪⎨=-⎪⎩(t 为参数),消去参数t得:4x += 化简极坐标方程为:sin 26πρθ⎛⎫+= ⎪⎝⎭...............2分曲线2C:,,2x y sin θθ⎧=⎪⎨=⎪⎩(θ为参数)消去参数θ得:224177x y +=化简极坐标方程为:()2213sin 7ρθ+=...............5分(2)联立263sin πρθπθ⎧⎛⎫+= ⎪⎪⎪⎝⎭⎨⎪=⎪⎩ 23ρπθ=⎧⎪⇒⎨=⎪⎩即2,3M π⎛⎫⎪⎝⎭...............7分 联立()2213sin 76ρθπθ⎧+=⎪⎨=⎪⎩ 26ρπθ=⎧⎪⇒⎨=⎪⎩即2,6N π⎛⎫ ⎪⎝⎭ (9)分 故11··sin 22sin 12236MON S OM ON MON ππ∆⎛⎫=∠=⨯⨯⨯-= ⎪⎝⎭...............10分23.(1)①当1x <时,不等式可化为421x x -≤+,1x ≥.又∵1x <,∴x 无解;...............1分②当13x ≤≤时,不等式可化为21x ≤+,1x ≥.又∵13x ≤≤,∴13x ≤≤................2分③当3x >时,不等式可化为241x x -≤+,5x ≤.又∵3x >,∴35x <≤...............3分∴原不等式的解集为[]1,5................5分(2)证明:由绝对值不等式性质得,()()13132x x x x -+-≥-+-=, ∴2c =,即2a b +=..............7分令1a m +=,1b n +=,则1m >,1n >,1,1a m b n =-=-,4m n +=, ()()22221111m n a b a b m n --+=+++ 114m n m n =+-++ 4mn =2412m n ≥=+⎛⎫ ⎪⎝⎭......10分。

2020-2021重庆市高中必修一数学上期中试题及答案

2020-2021重庆市高中必修一数学上期中试题及答案

2020-2021重庆市高中必修一数学上期中试题及答案一、选择题1.若偶函数()f x 在区间(]1-∞-,上是增函数,则( ) A .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭B .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭C .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭D .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭2.函数()ln f x x x =的图像大致是( )A .B .C .D .3.函数tan sin tan sin y x x x x =+--在区间(2π,32π)内的图象是( ) A . B .C .D .4.不等式()2log 231a x x -+≤-在x ∈R 上恒成立,则实数a 的取值范围是( ) A .[)2,+∞B .(]1,2C .1,12⎡⎫⎪⎢⎣⎭D .10,2⎛⎤ ⎥⎝⎦5.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③6.对于实数x ,规定[]x 表示不大于x 的最大整数,那么不等式[][]2436450x x -+<成立的x 的取值范围是( ) A .315,22⎛⎫⎪⎝⎭B .[]28,C .[)2,8D .[]2,77.已知0.6log 0.5a =,ln0.5b =,0.50.6c =,则( ) A .a c b >>B .a b c >>C .c a b >>D .c b a >>8.函数()sin lg f x x x =-的零点个数为( ) A .0B .1C .2D .39.设x ∈R ,若函数f (x )为单调递增函数,且对任意实数x ,都有f (f (x )-e x)=e +1(e 是自然对数的底数),则f (ln1.5)的值等于( ) A .5.5B .4.5C .3.5D .2.510.已知函数2221,2,()2,2,x x x x f x x -⎧-++<=⎨≥⎩且存在三个不同的实数123,,x x x ,使得123()()()f x f x f x ==,则123x x x ++的取值范围为( )A .(4,5)B .[4,5)C .(4,5]D .[4,5] 11.若a >b >0,0<c <1,则A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b12.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =I ,则实数a 的取值范围是( ) A .(,2]-∞-B .[2,)+∞C .(,2]-∞D .[2,)-+∞二、填空题13.设25a b m ==,且112a b+=,则m =______. 14.若函数()f x 满足()3298f x x +=+,则()f x 的解析式是_________. 15.若1∈{}2,a a, 则a 的值是__________16.已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________. 17.函数的定义域为______________.18.已知2()y f x x =+是奇函数,且f (1)1=,若()()2g x f x =+,则(1)g -=___.19.定义在[3,3]-上的奇函数()f x ,已知当[0,3]x ∈时,()34()x xf x a a R =+⋅∈,则()f x 在[3,0]-上的解析式为______.20.已知函数42()(0)f x x ax bx c c =+++<,若函数是偶函数,且4((0))f f c c =+,则函数()f x 的零点共有________个.三、解答题21.已知函数()()221+0g x ax ax b a =-+>在区间[2,3]上有最大值4和最小值1.(1)求a 、b 的值; (2)设()()2g x f x x =-,若不等式()0f x k ->在x ∈(]2,5上恒成立,求实数k 的取值范围.22.2019年某开发区一家汽车生产企业计划引进一批新能源汽车制造设备,通过市场分析,全年需投入固定成本3000万元,每生产x (百辆),需另投入成本()f x 万元,且210200,050()100006019000,50x x x f x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每辆车售价6万元,且全年内生产的车辆当年能全部销售完.(1)求出2019年的利润()L x (万元)关于年产量x (百辆)的函数关系式;(利润=销售额-成本)(2)2019年产量为多少(百辆)时,企业所获利润最大?并求出最大利润. 23.已知函数()()22log f x x a x =+-是R 上的奇函数,()2g x t x a =--.(1)求a 的值;(2)记()f x 在3,24⎡⎤-⎢⎥⎣⎦上的最大值为M ,若对任意的3,24x ⎡⎤∈-⎢⎥⎣⎦,()M g x ≤恒成立,求t 的取值范围.24.一种放射性元素,最初的质量为500g ,按每年10﹪衰减. (Ⅰ)求t 年后,这种放射性元素质量ω的表达式;(Ⅱ)由求出的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需要的时间).(精确到0.1;参考数据:)25.我校高一年级某研究小组经过调查发现:提高北环隧道的车辆通行能力可有效改善交通状况,在一般情况下,隧道内的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米,车流密度指每千米道路上车辆的数量)的函数.当隧道内的车流密度达到210辆/千米时,将造成堵塞,此时车流速度为0;当车流密度不超过30辆/千米时,车流速度为60千米/小时,研究表明:当30210x ≤≤时,车流速度v 是车流密度x 的一次函数. (1)求函数()v x 的表达式;(2)当车流密度为多大时,车流量(单位时间内通过某观测点的车辆数,单位:辆/小时) ()()f x x v x =⋅可以达到最大,并求出最大值.26.已知定义域为R 的函数()122x x bf x a++=+- 是奇函数.(Ⅰ)求a ,b 的值;(Ⅱ)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-2k )<0恒成立,求k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】函数()f x 为偶函数,则()()f x f x =-则()()22f f =-,再结合()f x 在(]1-∞-,上是增函数,即可进行判断. 【详解】函数()f x 为偶函数,则()()22f f =-.又函数()f x 在区间(]1-∞-,上是增函数. 则()()3122f f f ⎛⎫<-<- ⎪⎝⎭-,即()()3212f f f ⎛⎫<-<- ⎪⎝⎭故选:D. 【点睛】本题考查函数奇偶性和单调性的应用,考查化归与转化的思想,属于基础题.2.A解析:A 【解析】 【分析】从图象来看图象关于原点对称或y 轴对称,所以分析奇偶性,然后再用特殊值确定. 【详解】因为函数()ln f x x x =是奇函数,排除C ,D 又因为2x = 时()0f x >,排除B 故选:A 【点睛】本题主要考查了函数的图象的判断,还考查了数形结合的思想,属于基础题.3.D解析:D【解析】解:函数y=tanx+sinx-|tanx-sinx|=2tan ,tan sin {2sin ,tan sin x x xx x x<≥分段画出函数图象如D 图示, 故选D .4.C解析:C 【解析】 【分析】由()2223122-+=-+≥x x x 以及题中的条件,根据对数函数的单调性性,对a 讨论求解即可. 【详解】由()2log 231a x x -+≤-可得()21log 23log -+≤a ax x a, 当1a >时,由()2223122-+=-+≥x x x 可知2123-+≤x x a无实数解,故舍去; 当01a <<时,()2212312-+=-+≥x x x a在x ∈R 上恒成立,所以12a ≤,解得112a ≤<. 故选:C 【点睛】本题主要考查对数函数的单调性,涉及到复合函数问题,属于中档题.5.C解析:C 【解析】 【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案. 【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴Q 为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .6.C解析:C 【解析】 【分析】 【详解】分析:先解一元二次不等式得315[]22x <<,再根据[]x 定义求结果. 详解:因为[][]2436450x x -+<,所以315[]22x << 因为[][]2436450x x -+<,所以28x ≤<, 选C.点睛:本题考查一元二次不等式解法以及取整定义的理解,考查基本求解能力.7.A解析:A 【解析】由0.50.6log 0.51,ln 0.50,00.61><<<,所以1,0,01a b c ><<<,所以a c b >>,故选A .8.D解析:D 【解析】 【分析】画出函数图像,根据函数图像得到答案. 【详解】如图所示:画出函数sin y x =和lg y x =的图像,共有3个交点. 当10x >时,lg 1sin x x >≥,故不存在交点. 故选:D .【点睛】本题考查了函数的零点问题,画出函数图像是解题的关键.9.D解析:D【解析】【分析】利用换元法将函数转化为f(t)=e+1,根据函数的对应关系求出t的值,即可求出函数f (x)的表达式,即可得到结论【详解】设t=f(x)-e x,则f(x)=e x+t,则条件等价为f(t)=e+1,令x=t,则f(t)=e t+t=e+1,∵函数f(x)为单调递增函数,∴t=1,∴f(x)=e x+1,即f(ln5)=e ln1.5+1=1.5+1=2.5,故选:D.【点睛】本题主要考查函数值的计算,利用换元法求出函数的解析式是解决本题的关键.10.A解析:A【解析】不妨设123x x x <<,当2x <时,()()212f x x =--+,此时二次函数的对称轴为1x =,最大值为2,作出函数()f x 的图象如图,由222x -=得3x =,由()()()123f x f x f x ==,,且1212x x +=,即122x x +=,12332,x x x x ∴++=+ 由图可知3323,425x x <<∴<+<, 即123x x x ++的取值范围是()4,5,故选A.11.B解析:B 【解析】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <<Q ,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用cy x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.12.B解析:B 【解析】由题意可得{}|2A x x =<,结合交集的定义可得实数a 的取值范围是[)2,+∞ 本题选择B 选项.二、填空题13.【解析】【分析】变换得到代入化简得到得到答案【详解】则故故答案为:【点睛】本题考查了指数对数变换换底公式意在考查学生的计算能力【解析】 【分析】变换得到2log a m =,5log b m =,代入化简得到11log 102m a b+==,得到答案. 【详解】25a b m ==,则2log a m =,5log b m =,故11log 2log 5log 102,m m m m a b+=+==∴=【点睛】本题考查了指数对数变换,换底公式,意在考查学生的计算能力.14.【解析】【分析】设带入化简得到得到答案【详解】设代入得到故的解析式是故答案为:【点睛】本题考查了利用换元法求函数解析式属于常用方法需要学生熟练掌握解析:()32f x x =+ 【解析】 【分析】设32t x =+,带入化简得到()32f t t =+得到答案. 【详解】()3298f x x +=+,设32t x =+ 代入得到()32f t t =+故()f x 的解析式是()32f x x =+ 故答案为:()32f x x =+ 【点睛】本题考查了利用换元法求函数解析式,属于常用方法,需要学生熟练掌握.15.-1【解析】因为所以或当时不符合集合中元素的互异性当时解得或时符合题意所以填解析:-1 【解析】 因为{}21,a a∈,所以1a =或21a=,当1a =时,2a a =,不符合集合中元素的互异性,当21a =时,解得1a =或1a =-,1a =-时2a a ≠,符合题意.所以填1a =-.16.6【解析】【分析】先求函数周期再根据周期以及偶函数性质化简再代入求值【详解】由f(x+4)=f(x-2)可知是周期函数且所以【点睛】本题考查函数周期及其应用考查基本求解能力解析:6 【解析】 【分析】先求函数周期,再根据周期以及偶函数性质化简()()9191f f =-,再代入求值. 【详解】由f (x +4)=f (x -2)可知,()f x 是周期函数,且6T =,所以()()()919615311f f f =⨯+=()16f =-=.【点睛】本题考查函数周期及其应用,考查基本求解能力.17.-11【解析】【分析】根据定义域基本要求可得不等式组解不等式组取交集得到结果【详解】由题意得:1-x2≥02cosx -1>0⇒-1≤x≤1cosx>12cosx>12⇒x ∈-π3+2kππ3+2kπ 解析:【解析】 【分析】根据定义域基本要求可得不等式组,解不等式组取交集得到结果. 【详解】 由题意得:,函数定义域为:【点睛】本题考查具体函数定义域的求解问题,关键是根据定义域的基本要求得到不等式组.18.-1【解析】试题解析:因为是奇函数且所以则所以考点:函数的奇偶性解析:-1 【解析】试题解析:因为2()y f x x =+是奇函数且(1)1f =,所以, 则,所以.考点:函数的奇偶性.19.f (x )=4﹣x ﹣3﹣x 【解析】【分析】先根据计算再设代入函数利用函数的奇偶性得到答案【详解】定义在﹣33上的奇函数f (x )已知当x ∈03时f (x )=3x+a4x (a ∈R )当x =0时f (0)=0解得解析:f (x )=4﹣x ﹣3﹣x【解析】【分析】先根据()00f =计算1a =-,再设30x ≤≤﹣ ,代入函数利用函数的奇偶性得到答案.【详解】定义在[﹣3,3]上的奇函数f (x ),已知当x ∈[0,3]时,f (x )=3x +a 4x (a ∈R ), 当x =0时,f (0)=0,解得1+a =0,所以a =﹣1.故当x ∈[0,3]时,f (x )=3x ﹣4x .当﹣3≤x ≤0时,0≤﹣x ≤3,所以f (﹣x )=3﹣x ﹣4﹣x ,由于函数为奇函数,故f (﹣x )=﹣f (x ),所以f (x )=4﹣x ﹣3﹣x .故答案为:f (x )=4﹣x ﹣3﹣x【点睛】本题考查了利用函数的奇偶性求函数解析式,属于常考题型.20.2【解析】因为是偶函数则解得又所以故令所以故有2个零点点睛:本题涉及函数零点方程图像等概念和知识综合性较强属于中档题一般讨论函数零点个数问题都要转化为方程根的个数问题或两个函数图像交点的个数问题本题 解析:2【解析】因为()42(0)f x x ax bx c c =+++<是偶函数,则()()f x f x -=,解得0b =,又()()4240()f f f c c ac c c c ==++=+,所以0a =,故4()f x x c =+,令4()0f x x c =+=,40x c =->,所以x =2个零点.点睛:本题涉及函数零点,方程,图像等概念和知识,综合性较强,属于中档题.一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑方程来解决,转化为方程根的个数,同时注意偶函数性质在本题中的应用.三、解答题21.(1)1,0a b ==;(2)4k <.【解析】【分析】(1)函数()g x 的对称轴方程为1x =,开口向上,则在[]2,3上单调递增,则可根据最值列出方程,可解得,a b 的值.(2)由题意只需()min k f x <,则只需要求出()f x 在(]2,5上的最小值,然后运用基本不等式求最值即可.【详解】解:(1)()g x Q 开口方向向上,且对称轴方程为 1x =,()g x ∴在[]2,3上单调递增()()()()min max2441139614g x g a a b g x g a a b ⎧==-++=⎪∴⎨==-++=⎪⎩. 解得1a =且0b =.(2)()0f x k ->Q 在(]2,5x ∈上恒成立所以只需()min k f x <.有(1)知()221112224222x x f x x x x x x -+==+=-++≥=--- 当且仅当122x x -=-,即3x =时等号成立. 4k ∴<.【点睛】本题考查二次函数的最值的求法,注意讨论对称轴和区间的位置关系,考查不等式恒成立问题的解法,注意运用参数分离和基本不等式的应用,属于中档题. 22.(1)()2104003000,050100006000,50x x x L x x x x ⎧-+-<<⎪=⎨--+≥⎪⎩;(2)2019年年产量为100百辆时,企业所获利润最大,最大利润为5800万元.【解析】【分析】(1)先阅读题意,再分当050x <<时,当50x ≥时,求函数解析式即可;(2)当050x <<时,利用配方法求二次函数的最大值,当50x ≥时,利用均值不等式求函数的最大值,一定要注意取等的条件,再综合求分段函数的最大值即可.【详解】解:(1)由已知有当050x <<时,()22600(10200)3000104003000L x x x x x x =-+-=-+- 当50x ≥时,()1000010000600(6019000)30006000L x x x x x x=-+--=--+, 即()2104003000,050100006000,50x x x L x x x x ⎧-+-<<⎪=⎨--+≥⎪⎩, (2)当050x <<时,()2210400300010(20)1000L x x x x =-+-=--+, 当20x =时,()L x 取最大值1000, 当50x ≥时,()10000600060005800L x x x =--+≤-+=,当且仅当10000x x=,即100x =时取等号, 又58001000>故2019年年产量为100百辆时,企业所获利润最大,最大利润为5800万元.【点睛】本题考查了函数的综合应用,重点考查了分段函数最值的求法,属中档题.23.(1) 1a = (2) [)4,+∞【解析】【分析】(1)根据函数()f x 是R 上的奇函数,得到()00f = ,即可求得a 的值;(2)由(1)可得函数()g x 的解析式,分别求得函数()f x 和()g x 的单调性与最值,进而得出关于t 的不等式,即可求解.【详解】(1)因为())2log f x x =是R 上的奇函数,所以()00f = ,即log 0=,解得1a =.(2)由(1)可得())2log f x x =,()212121x t g x t x x t -++⎧=--=⎨+-⎩ 1,21,2x x ≥< . 因为奇函数())22log log f x x ==,所以()f x 在3,24⎡⎤-⎢⎥⎣⎦上是减函数,则()f x 在3,24⎡⎤-⎢⎥⎣⎦上的最大值为233log 144M f ⎫⎛⎫⎛⎫⎪=-=-= ⎪ ⎪⎪⎝⎭⎝⎭⎭ , 因为()2121x t g x x t -++⎧=⎨+-⎩ 1,21,2x x ≥<,所以()g x 在31,42⎡⎫-⎪⎢⎣⎭上是增函数,在1,22⎡⎤⎢⎥⎣⎦上是减函数,则()g x 的最小值为34g ⎛⎫- ⎪⎝⎭和()2g 中的较小的一个. 因为33521442g t t ⎛⎫⎛⎫-=⨯-+-=- ⎪ ⎪⎝⎭⎝⎭,()22213g t t =-⨯++=-,所以()()min 23g x g t ==-, 因为对任意的3,24x ⎡⎤∈-⎢⎥⎣⎦,()M g x ≤恒成立,所以13t ≤-, 解得4t ≥.故t 的取值范围为[)4,+∞.【点睛】本题主要考查了函数的基本性质的综合应用,以及恒成立问题的求解,其中解答中熟记函数的基本性质,合理应用奇偶性、单调性和最值列出相应的方程或不等式是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.24.(Ⅰ)ω=500×0.9t . (Ⅱ)6.6年【解析】【分析】【详解】试题分析:(Ⅰ)最初的质量为500g ,经过1年,ω=500(1-10﹪)=500×10.9,经过2年,ω=500×20.9,……,由此推出,t 年后,ω=500×0.9t .(Ⅱ)解方程500×0.9t =250. 0.9t =0.5,lg 0.9lg 0.5t =,lg 0.5 6.6lg 0.9t =≈, 所以,这种放射性元素的半衰期约为6.6年.考点:指数函数应用题及只属于对数的互化点评:本题第一问由经过一年,二年……的剩余质量归纳出t 年后的剩余含量,第二问涉及到指数式与对数式的转化x a b =转化为log a x b =25.(1) 60,030()170,302103x v x x x ≤≤⎧⎪=⎨-+≤≤⎪⎩;(2) 当车流密度为105辆/小时车流量达到最大值3675【解析】【分析】(1)根据题意可知, ()v x 为分段函数,且当030x ≤≤时()60v x =,再根据当30x =与210x =时()v x 的值,设()v x ax b =+代入求解即可.(2)根据(1)中的分段函数解析式,求出()()f x x v x =⋅的解析式,再分段求解函数的最大值分析即可.【详解】(1)由题意可知, 当030x ≤≤时()60v x =,当210x =时, ()0v x =,又当30210x ≤≤时,车流速度v 是车流密度x 的一次函数,故设()v x ax b =+,所以02106030a b a b =+⎧⎨=+⎩,解得1370a b ⎧=-⎪⎨⎪=⎩ ,故当30210x ≤≤时,1()703v x x =-+. 故60,030()170,302103x v x x x ≤≤⎧⎪=⎨-+≤≤⎪⎩. (2)由题, 260,030()()170,302103x x f x x v x x x x ≤≤⎧⎪=⋅=⎨-+≤≤⎪⎩,故 当030x ≤≤时,()f x 最大值为(30)1800f =.当30210x ≤≤时, 21703()f x x x -+=开口向下且对称轴为70105123x =-=⎛⎫⨯- ⎪⎝⎭,故此时()f x 最大值为2(105)10517031053675f -⨯+⨯==. 综上,当车流密度为105辆/小时车流量达到最大值3675【点睛】本题主要考查了分段函数与二次函数在实际中的模型运用,需要根据题意设函数方程求解参数,再根据二次函数性质求最值,属于中档题.26.(Ⅰ)2,1a b ==(Ⅱ)16k <-【解析】【分析】(Ⅰ)根据()00f =解得1b =,根据()()11f f =--解得2a =(Ⅱ)判断函数为奇函数减函数,将不等式化简为223311()2236k t t t <-=--,求二次函数的最小值得到答案.【详解】 (Ⅰ)定义域为R 的函数()1-22x x b f x a++=+是奇函数 则()100,12b f b a-+===+()-2114f a +=+,()12-111f a+-=+, 根据()()11f f =--,解得2a = ,经检验,满足函数为奇函数 (Ⅱ)12111()22221x x x f x +-+==-+++ 易知21x +为增函数,故11()221x f x =-++为减函数 22()(220)2f t t f t k --+<即2222222)()()2(f t t f t k f t k =-<+---即22222t t t k ->-+ 所以223311()2236k t t t <-=-- 恒成立,即2min3111()2366k t ⎡⎤<--=-⎢⎥⎣⎦ 当13t =时,有最小值16- 故k 的取值范围是16k <-【点睛】本题考查了函数的单调性,奇偶性,恒成立问题,将恒成立问题通过参数分离转化为二次函数的最值问题是解题的关键.。

2020届重庆一中高三年级上学期期中考试数学(文)答案

2020届重庆一中高三年级上学期期中考试数学(文)答案
21.(1) 的定义域是 , ...............1分
① 时, , 在 上单调递增:...............3分
② 时, ,解得 ,
当 时, ,则 在 上递减;
当 时, ,则 在 上递增................5分
(2)当 时, ,
依题意知不等式 ,
即 在 上恒成立,
即 在 上恒成立,
又因为 , 平面 ,所以 平面 ,...............8分
在 中, , .
又因为 , ................10分
所以 ,所以 ,
解得 ................12分
20.(1) 为线段 的垂直平分线 ...............2分
即点 到定点 的距离等于点 到定直线 的距离
由抛物线的定义可知,点 的轨迹为: ...............4分
(2)由已知得直线 斜率存在,且斜率不为零,设 , ,
将直线 代入抛物线方程得
则 ...............5分
...............8分
又 ,
........10分
当且仅当 ,即 时取等号
...............12分
绝密★启用前 【考试时间:11月22日15:00 — 17:00】
重庆市第一中学2020届高三上学期期中质量检测
数学(文)试题答案
1-5CABDC
6-10DACCB
11-12 B D
13.
14.
15.
16.
17.(1) ...............2分
得: ...............4分
所以对称轴为: ...............6分

2019-2020学年重庆一中高三(上)期中数学试卷 试题及答案(文科)

2019-2020学年重庆一中高三(上)期中数学试卷 试题及答案(文科)

2019-2020学年重庆一中高三(上)期中数学试卷(文科)一、选择题(本题共12小题,每小题5分,共60分.在下列各题的四个选项中,只有一个选项是符合题意的)1.设全集U Z =,集合2{|20}A x Z x x =∈--…,则(U A =ð ) A .{0}B .{1}C .{0,1}D .{1-,0,1,2}2.若复数z 满足(1)12z i i +=+,则z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.等比数列{}n a 中,5a 、7a 是函数2()43f x x x =-+的两个零点,则39a a 等于( ) A .3-B .3C .4-D .44.已知向量(2,1)a =,(2,sin 1)b α=-,(2,cos )c α=-,若()//a b c +,则tan α的值为( )A .2B .12 C .12-D .2-5.“26m <<”是“方程22126x y m m -=--表示的曲线为双曲线”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.过点(1,2)A 的直线在两坐标轴上的截距之和为零,则该直线方程为( ) A .10x y -+=B .30x y +-=C .20x y -=或30x y +-=D .20x y -=或10x y -+=7.已知2(1)45f x x x -=+-,则(1)(f x += ) A .287x x ++B .26x x +C .223x x +-D .2610x x +-8.定义域为R 的奇函数()y f x =的图象关于直线2x =对称,且f (1)2018=,f (2)2019=,则(2018)(2019)(f f += ) A .4035B .4036C .4037D .40389.如图,正三棱柱111ABC A B C -中,12AA AB =,D 是1BB 的中点,则AD 与平面11AA C C 所成角的正弦值等于( )A B C D 10.己知正实数x ,y 满足3x y xy ++=,若对任意满足条件的x ,y ,都有2()()60x y a x y +-++…恒成立,则实数a 的最大值为( )A .B .7C .D .811.已知ABC ∆的三个内角A ,B ,C 所对的边分别为a ,b ,c ,ABC ∆的外接圆的面积为3π,且222cos cos cos 1sin sin A B C A C -+=+,则ABC ∆的最大边长为( )A .2B .3CD .12.设函数2()sin f x x ππ=-在(0,)+∞上最小的零点为0x ,曲线()y f x =在点0(x ,0)处的切线上有一点P ,曲线232y x lnx =-上有一点Q ,则||PQ 的最小值为( )A B C D 二、填空题(本题共4小题,每小题5分,共20分) 13.cos 27cos18sin 27sin18︒︒-︒︒= .14.已知(2)n a a n a =-+,若数列{}n a 是递增数列,则实数a 的取值范围是 .15.在直三棱柱111ABC A B C -中,90BAC ∠=︒且AB =,14BB =,设其外接球的球心为O ,且球O 的表面积为28π,则ABC ∆的面积为 .16.已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为F ,左顶点为A ,以F 为圆心,||FA 为半径的圆交C 的右支于M ,N 两点,且线段AM 的垂直平分线经过点N ,则C 的离心率为 .三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.)17.已知函数22()2sin cos f x x x x x =+. (1)求()f x 的对称轴;(2)当[0α∈,]π时,若()1f α=,求α的值. 18.己知数列{}n a 中,11a =,121(*)n n a a n N +=+∈. (1)求n a 的通项公式;(2)设2(1)log (1)n n n b a a =++.求{}n b 的前n 项和:19.如图,在三棱柱111ABC A B C -中,P 、Q 分别是1AA 、11A C 的中点. (1)设棱1BB 的中点为D ,证明:1//C D 平面1PQB ;(2)若2AB =,114AC AA AC ===,1160AA B ∠=︒,且平面11AA C C ⊥平面11AA B B ;求三棱柱111ABC A B C -的高.20.已知点(1,0)F 和直线1:1l x =-,直线2l 过直线1l 上的动点M 且与直线1l 垂直,线段MF 的垂直平分线l 与直线2l 相交于点P . ()I 求点P 的轨迹C 的方程;()II 设直线PF 与轨迹C 相交于另一点Q ,与直线1l 相交于点N ,求NP NQ 的最小值.21.已知函数2()2(,)x f x e mx m x R m R =--∈∈.(1)讨论函数()f x 的单调性;(2)若1m =,不等式()2f x lnx ln bx -+…对一切0x >恒成立,求实数b 的取值范围 选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按第一题计分.22.在直角坐标系xOy 中,已知曲线1C的参数方程为4(x t y t ⎧=+⎪⎨=-⎪⎩为参数).曲线2C 的参数方程为(x y θθθ⎧=⎪⎨=⎪⎩为参数),在以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线1C ,2C 的极坐标方程; (2)在极坐标系中,射线3πθ=与曲线1C 交于点M ,射线6πθ=与曲线2C 交于点N ,求MON ∆的面积(其中O 为坐标原点). 23.已知函数()|1||3|f x x x =-+-. (Ⅰ)解不等式()1f x x +…;(Ⅱ)设函数()f x 的最小值为c ,实数a ,b 满足0a >,0b >,a b c +=,求证:22111a b a b +++….2019-2020学年重庆一中高三(上)期中数学试卷(文科)参考答案与试题解析一、选择题(本题共12小题,每小题5分,共60分.在下列各题的四个选项中,只有一个选项是符合题意的)1.设全集U Z =,集合2{|20}A x Z x x =∈--…,则(U A =ð ) A .{0}B .{1}C .{0,1}D .{1-,0,1,2}【解答】解:集合2{|20}{|2A x Z x x x Z x =∈--=∈厖或1}x -…,则{0z A =ð,1}, 故选:C .2.若复数z 满足(1)12z i i +=+,则z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【解答】解:由(1)12z i i +=+,得12(12)(1)311(1)(1)22i i i z i i i i ++-===+++-, z ∴在复平面内对应的点的坐标为3(2,1)2,位于第一象限.故选:A .3.等比数列{}n a 中,5a 、7a 是函数2()43f x x x =-+的两个零点,则39a a 等于( ) A .3-B .3C .4-D .4【解答】解:5a 、7a 是函数2()43f x x x =-+的两个零点, 5a ∴、7a 是方程2430x x -+=的两个根, 573a a ∴=,由等比数列的性质可得:39573a a a a ==. 故选:B .4.已知向量(2,1)a =,(2,sin 1)b α=-,(2,cos )c α=-,若()//a b c +,则tan α的值为( )A .2B .12 C .12-D .2-【解答】解:向量(2,1)a =,(2,sin 1)b α=-,(2,cos )c α=-,∴(4,sin )a b α+=, 若()//a b c +,则4sin tan 2cos ααα==-,则tan 2α=-, 故选:D .5.“26m <<”是“方程22126x y m m -=--表示的曲线为双曲线”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【解答】解:方程表示的曲线为双曲线221(2)(6)026x y m m m m -=⇔-->--.解得26m <<; ∴ “26m <<”是“方程表示的曲线为双曲线”的充分必要条件.故选:C .6.过点(1,2)A 的直线在两坐标轴上的截距之和为零,则该直线方程为( ) A .10x y -+=B .30x y +-=C .20x y -=或30x y +-=D .20x y -=或10x y -+= 【解答】解:当直线过原点时,可得斜率为20210k -==-, 所以直线方程为2y x =,即20x y -=; 当直线不过原点时,设方程为1x y a a+=-, 代入点(1,2)可得121a a-=,解得1a =-, 所以直线方程为10x y -+=;综上知,所求直线方程为:20x y -=或10x y -+=. 故选:D .7.已知2(1)45f x x x -=+-,则(1)(f x += ) A .287x x ++ B .26x x +C .223x x +-D .2610x x +-【解答】解:2(1)45f x x x -=+-,2()6f x x x ∴=+, 2(1)87f x x x ∴+=++故选:A .8.定义域为R 的奇函数()y f x =的图象关于直线2x =对称,且f (1)2018=,f (2)2019=,则(2018)(2019)(f f += ) A .4035B .4036C .4037D .4038【解答】解:奇函数()y f x =的图象关于直线2x =对称, (2)(2)(2)f x f x f x ∴+=-=--,即(4)()f x f x +=-,则(8)(4)()f x f x f x +=-+=, 即()f x 是周期为8的周期函数, 则f (1)2018=,f (2)2019=,(2018)(25282)f f f ∴=⨯+=(2)2019=,(2019)(25283)f f f =⨯+=(3)(14)(1)f f f =-+=--=(1)2018=,则(2018)(2019)201820194037f f +=+=, 故选:C .9.如图,正三棱柱111ABC A B C -中,12AA AB =,D 是1BB 的中点,则AD 与平面11AA C C 所成角的正弦值等于( )ABCD【解答】解:以C 为原点,在平面ABC 中,过C 作CB 的垂线为x 轴,CB 为y 轴,1CC 为z 轴,建立空间直角坐标系, 设122AA AB ==,则A ,12,0),(0C ,0,0),1(0C ,0,2),(0D ,1,1), 3(CA =12,0),1(0CC =,0,2),(AD =-12,1), 设平面11AA C C 的法向量(n x =,y ,)z ,则13102220n CA x y n CC z ⎧=+=⎪⎨⎪==⎩,取1x =,得(1n =,0),设AD 与平面11AA C C 所成角为θ,则||3sin 4||||24AD n AD n θ===,AD ∴与平面11AA C C 故选:C .10.己知正实数x ,y 满足3x y xy ++=,若对任意满足条件的x ,y ,都有2()()60x y a x y +-++…恒成立,则实数a 的最大值为( )A .B .7C .D .8【解答】解:正实数x ,y 满足3x y xy ++=,而2()2x y xy +…, 23()2x y x y +∴++…, 2()4()120x y x y ∴+-+-…,6x y ∴+…或2x y +-…(舍去), 6x y ∴+….又正实数x ,y 有2()()60x y a x y +-++…恒成立, 6a x y x y ∴+++…恒成立, 6()min a x y x y∴+++…, 令(6,)x y t t +=…,6()g t t t=+,由双钩函数的性质得()g t 在[6,)+∞上单调递增, ∴6()()min min x y g t g x y ++==+(6)6676=+=. 7a ∴…,即a 的最大值为7.故选:B.11.已知ABC∆的三个内角A,B,C所对的边分别为a,b,c,ABC∆的外接圆的面积为3π,且222cos cos cos1sin sinA B C A C-+=+,则ABC∆的最大边长为()A.2B.3C D.【解答】解:222cos cos cos1sin sinA B C A C-+=+,222(1sin)(1sin)(1sin)1sin sinA B C A C∴---+-=+,∴可得222sin sin sin sin sinA CB A C+-=-,∴根据正弦定理得222a cb ac+-=-,所以2221cos22a c bBac+-==-,(0,180)B∈︒︒,120B∴=︒,所以b最大,又ABC∆的外接圆半径为R,面积为23Rππ=,R=,所以32sin33b R B===,故选:B.12.设函数2()sinf x xππ=-在(0,)+∞上最小的零点为x,曲线()y f x=在点(x,0)处的切线上有一点P,曲线232y x lnx=-上有一点Q,则||PQ的最小值为()A B C D【解答】解:函数2()sinf x xππ=-的零点为x k=,k Z∈,由题意可得1x=,()f x的导数为()2cosf x xπ'=-,曲线()y f x=在点(1,0)处的切线斜率为2cos2π-=,可得切线方程为22y x=-,232y x lnx=-的导数为13y xx'=-,设与切线22y x=-平行的直线与曲线232y x lnx=-相切的切点为(,)m n,可得232n m lnm=-,0m>,而132m m-=,解得1m =(负的舍去),则切点为3(1,)2,可得切点到直线22y x =-的距离为d ==则||PQ , 故选:C .二、填空题(本题共4小题,每小题5分,共20分)13.cos 27cos18sin 27sin18︒︒-︒︒【解答】解:cos 27cos18sin 27sin18cos(2718)cos 45︒︒-︒︒=︒+︒=︒=. 14.已知(2)n a a n a =-+,若数列{}n a 是递增数列,则实数a 的取值范围是 (,2)-∞ . 【解答】解:已知(2)n a a n a =-+,若数列{}n a 是递增数列, 则20a ->,求得2a <,故实数a 的取值范围为(,2)-∞, 故答案为:(,2)-∞.15.在直三棱柱111ABC A B C -中,90BAC ∠=︒且AB =,14BB =,设其外接球的球心为O ,且球O 的表面积为28π,则ABC ∆ 【解答】解:如图,由于90BAC ∠=︒,连接上下底面外心PQ , O 为PQ 的中点,OP ⊥平面ABC ,则球的半径为OB ,球O 的表面积为28π,OB ∴=由题意,14BB =,90BAC ∠=︒,所以BC ===所以3AC ==,则ABC ∆的面积为12S AB AC =⨯⨯=.16.已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为F ,左顶点为A ,以F 为圆心,||FA 为半径的圆交C 的右支于M ,N 两点,且线段AM 的垂直平分线经过点N ,则C 的离心率为3. 【解答】解:如图所示,设左焦点为1F ,圆与x 轴的另一个交点为B , 根据对称性,可得AM AN =.又线段AM 的垂直平分线经过点N ,AN NM ∴=, AMN ∴∆时正三角形. 30MAF ∠=︒,60MBF ∠=︒, MF AF a c ∴==+,13MF a c ∴=+,在1MFF ∆中,由余弦定理可得2221112cos120MF MF FF MF FF =+-︒; 22340c ac a ∴--=, 2340e e ∴--=, 43e =. 故答案为:43三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.)17.已知函数22()2sin cos f x x x x x =+. (1)求()f x 的对称轴;(2)当[0α∈,]π时,若()1f α=,求α的值.【解答】解:(1)22()2sin cos f x x x x x =+22)sin 22sin 22sin(2)3cos x sin x x x x x π=-+=+=+.由232x k πππ+=+,得122k x ππ=+,k Z ∈. ()f x ∴的对称轴为122k x ππ=+,k Z ∈; (2)由()1f α=,得2sin(2)13πα+=,1sin(2)32πα∴+=, [0α∈,]π,∴2[33ππα+∈,7]3π, 则5236ππα+=或11236ππα+=, 即4πα=或34πα=. 18.己知数列{}n a 中,11a =,121(*)n n a a n N +=+∈. (1)求n a 的通项公式;(2)设2(1)log (1)n n n b a a =++.求{}n b 的前n 项和: 【解答】(1)解:设12()n n a k a k ++=+;则12n n a a k +=+; 1k ∴=;令1n n c a =+,其中1112c a =+=;则等比数列{}n c 的通项公式为:1*222()n n n c n N -=⨯=∈; ∴数列{}n a 的通项公式为:*121()n n n a c n N =-=-∈(2)解:由(1)可知,2222n n n n b log n ==,*()n N ∈; 设数列{}n b 的前n 项和为n T ,则1231222322n n T n =⨯+⨯+⨯+⋯+⨯,⋯①234121222322n n T n +=⨯+⨯+⨯+⋯+⨯,⋯②①-②,可得123122222n n n T n +-=+++⋯+-12(12)212n n n +-=--整理可得,数列{}n b 的前n 项和.1*(1)22()n n T n n N +=-+∈19.如图,在三棱柱111ABC A B C -中,P 、Q 分别是1AA 、11A C 的中点. (1)设棱1BB 的中点为D ,证明:1//C D 平面1PQB ;(2)若2AB =,114AC AA AC ===,1160AA B ∠=︒,且平面11AA C C ⊥平面11AA B B ;求三棱柱111ABC A B C -的高.【解答】(1)证明:连接AD ,D 是1BB 的中点,P 是1AA 的中点,可由棱柱的性质知1//AP DB ,且1AP DB =;∴四边形1ADB P 是平行四边形,1//AD PB ∴.P ,Q 分别是1AA 、11A C 的中点,1//AC PQ ∴,∴平面1//AC D 平面1PQB .1C D ⊂平面1AC D , 1//C D ∴平面1PQB .(2)解:三棱柱的高转化成三棱锥1C ABC -的高,设为h , 过点1B 作11B M A A ⊥交1A A 于点M ,因为平面11AA C C ⊥平面11AA B B ,平面11AA C C ⋂平面111AA B B A A =, 又因为11B M A A ⊥,所以1B M ⊥平面1ACC ,在△11A B P 中求得1B M =,又因为122ABC S ∆=⨯=,114442ACC S =⨯⨯=. 所以11C ABC B ACC V V --=,所以1133ABC h S h ∆⨯⨯==.20.已知点(1,0)F 和直线1:1l x =-,直线2l 过直线1l 上的动点M 且与直线1l 垂直,线段MF 的垂直平分线l 与直线2l 相交于点P . ()I 求点P 的轨迹C 的方程;()II 设直线PF 与轨迹C 相交于另一点Q ,与直线1l 相交于点N ,求NP NQ 的最小值.【解答】解:()I 连接PF ,MF 的中垂线l 交2l 于点P ,||||PF PM ∴=,即点P 到点(1,0)F 的距离等于点P 到直线1:1l x =-的距离,由抛物线的定义可得点P 的轨迹C 是以F 为焦点,以直线1:1l x =-为准线的抛物线,方程为24y x =.()II 把直线PF 的方程(1)y k x =-代入24y x =可得2222(24)0k x k x k -++=,0k ≠,且△0>.且212224k x x k ++=,121x x =.NP NQ 和 同向,(1,2)N k --,∴222121212||||1|1|1|1|(1)(1NP NQ NP NQ k x k x k x x x x ==++++=++++)2214(2)16k k =++…,当且仅当1k =±时,等号成立. ∴NP NQ 的最小值为16.21.已知函数2()2(,)x f x e mx m x R m R =--∈∈. (1)讨论函数()f x 的单调性;(2)若1m =,不等式()2f x lnx ln bx -+…对一切0x >恒成立,求实数b 的取值范围 【解答】解:(1)()f x 的定义域是R ,2()22x f x e m '=-. ①0m …时,()0f x '>,()f x 在R 上单调递增: ②0m >时,2()220x f x e m '=-=,解得12x lnm =,当12x lnm <时,()0f x '<,则()f x 在1(,)2lnm -∞上递减;当12x lnm >时,()0f x '>,则()f x 在1(,)2lnm +∞上递增.(2)当1m =时,2()21x f x e x =--, 依题意知不等式()2f x lnx ln bx -+…,即2212x e x lnx ln bx ---+…在(0,)+∞上恒成立,即2(2)2x e lnx b x ln e --+…在(0,)+∞上恒成立, 设2()(2)x g x e lnx b x =--+,21()2(2)x g x e b x '=--+, 令02001()2(2)0x g x e b x '=--+=,0200122(0)x e b x x -=+>, 易知()g x 在0(0,)x 上递减,在0(x ,)+∞上递增,则002200000()()(2)(12)12x x min g x g x e lnx b x x e lnx ln e ==--+=--+…, 即0200(21)20x x e ln x -+…,设020t x =>,则()(1)0h t t e lnt '=-+…,1()0h t te t''=+>,则()h t 递增,又h (1)0=, 故0021t x <=…,0102x <…, ∴02012222x b e e x +=--…, 解得24b e -….选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按第一题计分.22.在直角坐标系xOy 中,已知曲线1C的参数方程为4(x t y t ⎧=+⎪⎨=-⎪⎩为参数).曲线2C 的参数方程为(x y θθθ⎧=⎪⎨=⎪⎩为参数),在以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线1C ,2C 的极坐标方程; (2)在极坐标系中,射线3πθ=与曲线1C 交于点M ,射线6πθ=与曲线2C 交于点N ,求MON ∆的面积(其中O 为坐标原点). 【解答】解:(1)由曲线14:(x C t y t ⎧=⎪⎨=-⎪⎩为参数),消去参数t得:4x = 化简极坐标方程为:sin()26πρθ+=曲线2:(x C y θθθ⎧=⎪⎨=⎪⎩为参数) 消去参数θ得:224177x y += 化简极坐标方程为:22(13sin )7ρθ+=(2)联立2sin()2633πρρθππθθ⎧=+=⎧⎪⎪⎪⇒⎨⎨=⎪⎪=⎩⎪⎩,即(2,)3M π联立222(13sin )766ρρθππθθ=⎧+=⎧⎪⎪⇒⎨⎨==⎪⎪⎩⎩, 即(2,)6N π故11||||sin 22sin()12236MON S OM ON MON ππ∆=∠=⨯⨯⨯-= 23.已知函数()|1||3|f x x x =-+-. (Ⅰ)解不等式()1f x x +…;(Ⅱ)设函数()f x 的最小值为c ,实数a ,b 满足0a >,0b >,a b c +=,求证:22111a b a b +++…. 【解答】(本小题满分10分)选修45-:不等式选讲 (Ⅰ)解:()1f x x +…,即|1||3|1x x x -+-+….①当1x <时,不等式可化为421x x -+…,1x …. 又1x <,x ∴∈∅;②当13x 剟时,不等式可化为21x +…,1x …. 又13x 剟,13x ∴剟. ③当3x >时,不等式可化为241x x -+…,5x …. 又3x >,35x ∴<….综上所得,13x 剟,或35x <…,即15x 剟. ∴原不等式的解集为[1,5].⋯⋯⋯⋯⋯⋯⋯(Ⅱ)证明:由绝对值不等式性质得,|1||3||(1)(3)|2x x x x -+--+-=…, 2c ∴=,即2a b +=.令1a m +=,1b n +=,则1m >,1n >,1a m =-,1b n =-,4m n +=,22222(1)(1)11444111()2a b m n m n m n a b m n m n mn --+=+=+++-==+++…, 原不等式得证.。

2020-2021重庆市一中高中必修一数学上期中一模试卷(附答案)

2020-2021重庆市一中高中必修一数学上期中一模试卷(附答案)

2020-2021重庆市一中高中必修一数学上期中一模试卷(附答案)一、选择题1.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭2.已知函数()1ln 1xf x x -=+,则不等式()()130f x f x +-≥的解集为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .11,32⎛⎤ ⎥⎝⎦C .12,43⎡⎫⎪⎢⎣⎭ D .12,23⎡⎫⎪⎢⎣⎭3.在ABC ∆中,内角A 、B 、C 所对应的边分别为a 、b 、c ,则“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件4.1()xf x e x=-的零点所在的区间是( ) A .1(0,)2B .1(,1)2C .3(1,)2D .3(,2)25.对于实数x ,规定[]x 表示不大于x 的最大整数,那么不等式[][]2436450x x -+<成立的x 的取值范围是( )A .315,22⎛⎫ ⎪⎝⎭B .[]28,C .[)2,8D .[]2,76.如图,U 为全集,M 、P 、S 是U 的三个子集,则阴影部分所表示的集合是( )A .()M P S ⋂⋂B .()M P S ⋂⋃C .()()U M P S ⋂⋂ð D .()()U M P S ⋂⋃ð7.函数()f x 在(,)-∞+∞单调递增,且为奇函数,若(1)1f =,则满足1(2)1f x -≤-≤的x 的取值范围是( ). A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]8.已知111,2,,3,23a ⎧⎫∈-⎨⎬⎩⎭,若()a f x x =为奇函数,且在(0,)+∞上单调递增,则实数a 的值是( )A .1,3- B.1,33C .11,,33-D .11,,3329.函数()f x 的图象如图所示,则它的解析式可能是( )A .()212xx f x -= B .()()21xf x x =-C .()ln f x x =D .()1xf x xe =-10.函数()245f x xx =-+在区间[]0,m 上的最大值为5,最小值为1,则实数m 的取值范围是( ) A .[)2,+∞B .[]2,4C .[]0,4D .(]2,411.函数y =2x 2–e |x |在[–2,2]的图像大致为( )A .B .C .D .12.三个数20.420.4,log 0.4,2a b c ===之间的大小关系是( ) A .a c b <<B .b a c <<C .a b c <<D .b c a <<二、填空题13.方程组240x y x +=⎧⎨-=⎩的解组成的集合为_________. 14.某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算.某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为____元.15.1232e 2(){log (1)2x x f x x x ,,-<=-≥,则f (f (2))的值为____________.16.若42x ππ<<,则函数3tan 2tan y x x =的最大值为 .17.如果关于x 的方程x 2+(m -1)x -m =0有两个大于12的正根,则实数m 的取值范围为____________.18.已知函数()f x 是定义在R 上的偶函数,且当0x ≥时,2()2f x x x =-. 若关于x 的方程()0f x m -=有四个不同的实数解,则实数m 的取值范围是_____.19.有15人进家电超市,其中有9人买了电视,有7人买了电脑,两种均买了的有3人,则这两种都没买的有 人.20.非空有限数集S 满足:若,a b S ∈,则必有ab S ∈.请写出一个..满足条件的二元数集S =________.三、解答题21.学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数y 与听课时间x (单位:分钟)之间的关系满足如图所示的图象,当(]0,12x ∈时,图象是二次函数图象的一部分,其中顶点()10,80A ,过点()12,78B ;当[]12,40x ∈时,图象是线段BC ,其中()40,50C .根据专家研究,当注意力指数大于62时,学习效果最佳.(Ⅰ)试求()y f x =的函数关系式;(Ⅱ)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由. 22.已知函数f (x )=4x -2·2x +1-6,其中x ∈[0,3]. (1)求函数f (x )的最大值和最小值;(2)若实数a 满足f (x )-a ≥0恒成立,求a 的取值范围.23.某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出第一次服药后,y 与t 之间的函数关系式y =f(t);(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗有效.求服药一次后治疗有效的时间是多长?24.已知函数()222,00,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩是奇函数.(1)求实数m 的值;(2)若函数()f x 在区间[]1,2a --上单调递增,求实数a 的取值范围.25.已知()42log ,[116]f x x x =+∈,,函数()()()22[]g x f x f x =+.(1)求函数()g x 的定义域;(2)求函数()g x 的最大值及此时x 的值.26.已知二次函数()f x 满足()(1)2f x f x x -+=-且(0)1f =. (1)求()f x 的解析式;(2)当[1,1]x ∈-时,不等式()2x m f x >+恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果. 【详解】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩, 所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C.【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.2.D解析:D 【解析】 【分析】根据题意可得函数()f x 的奇偶性以及单调性,据此原不等式转化为()()31f x f x ≥-,求解可得x 的取值范围,即可得出结论. 【详解】根据题意,函数()1ln 1xf x x-=+, 则有101xx->+,解可得11x -<<, 即函数的定义域为()1,1-,关于原点对称, 又由()()11lnln 11x xf x f x x x+--==-=--+, 即函数()f x 为奇函数, 设11xt x -=+,则y lnt =, 12111x t x x -==-++,在()1,1-上为减函数, 而y lnt =在()0,∞+上为增函数, 故()1ln1xf x x-=+在区间()1,1-上为减函数, ()()()()13013f x f x f x f x +-≥⇒≥-- ()()3131111311x x f x f x x x ≤-⎧⎪⇒≥-⇒-<<⎨⎪-<-<⎩,解可得:1223x ≤<,即不等式的解集为12,23⎡⎫⎪⎢⎣⎭; 故选:D . 【点睛】本题考查函数的奇偶性与单调性的综合应用,解题时不要忽略函数的定义域,属于中档题.3.B解析:B 【解析】【分析】化简cos cos a A b B =得到A B =或2A B π+=,再判断充分必要性.【详解】cos cos a A b B =,根据正弦定理得到:sin cos sin cos sin 2sin 2A A B B A B =∴=故22A B A B =∴=或222A B A B ππ=-∴+=,ABC ∆为等腰或者直角三角形.所以“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的必要非充分条件 故选B 【点睛】本题考查了必要非充分条件,化简得到A B =或2A B π+=是解题的关键,漏解是容易发生的错误.4.B解析:B 【解析】函数f (x )=e x ﹣1x 是(0,+∞)上的增函数,再根据f (12)2<0,f (1)=e ﹣1>0,可得f (12)f (1)<0,∴函数f (x )=e x ﹣1x 的零点所在的区间是(12,1),故选B .点睛:判定函数的零点所在区间,只需计算区间端点处的函数值,并判断是否异号,只要异号,则区间内至少有一个零点存在.5.C解析:C 【解析】 【分析】 【详解】分析:先解一元二次不等式得315[]22x <<,再根据[]x 定义求结果. 详解:因为[][]2436450x x -+<,所以315[]22x << 因为[][]2436450x x -+<,所以28x ≤<, 选C.点睛:本题考查一元二次不等式解法以及取整定义的理解,考查基本求解能力.6.C解析:C 【解析】 【分析】先根据图中的阴影部分是M∩P 的子集,但不属于集合S ,属于集合S 的补集,然后用关系式表示出来即可. 【详解】图中的阴影部分是: M∩P 的子集,不属于集合S ,属于集合S 的补集,即是C U S 的子集则阴影部分所表示的集合是(M∩P )∩(∁U S). 故选C . 【点睛】本题主要考查了Venn 图表达集合的关系及运算,同时考查了识图能力,属于基础题.7.D解析:D 【解析】 【分析】 【详解】()f x 是奇函数,故()()111f f -=-=- ;又()f x 是增函数,()121f x -≤-≤,即()(1)2(1)f f x f -≤-≤ 则有121x -≤-≤ ,解得13x ≤≤ ,故选D.【点睛】解本题的关键是利用转化化归思想,结合奇函数的性质将问题转化为()(1)2f f x -≤-(1)f ≤,再利用单调性继续转化为121x -≤-≤,从而求得正解.8.B解析:B 【解析】 【分析】先根据奇函数性质确定a 取法,再根据单调性进行取舍,进而确定选项. 【详解】因为()af x x =为奇函数,所以11,3,3a ⎧⎫∈-⎨⎬⎩⎭因为()()0,f x +∞在上单调递增,所以13,3a ⎧⎫∈⎨⎬⎩⎭因此选B. 【点睛】本题考查幂函数奇偶性与单调性,考查基本判断选择能力.9.B解析:B 【解析】 【分析】根据定义域排除C ,求出()1f 的值,可以排除D ,考虑()100f -排除A . 【详解】根据函数图象得定义域为R ,所以C 不合题意;D 选项,计算()11f e =-,不符合函数图象;对于A 选项, ()10010099992f -=⨯与函数图象不一致;B 选项符合函数图象特征.故选:B 【点睛】此题考查根据函数图象选择合适的解析式,主要利用函数性质分析,常见方法为排除法.10.B解析:B 【解析】 【分析】由函数的解析式可得函数f (x )=x 2﹣4x +5=(x ﹣2)2+1的对称轴为x =2,此时,函数取得最小值为1,当x =0或x =4时,函数值等于5,结合题意求得m 的范围. 【详解】∵函数f (x )=x 2﹣4x +5=(x ﹣2)2+1的对称轴为x =2,此时,函数取得最小值为1, 当x =0或x =4时,函数值等于5.且f (x )=x 2﹣4x +5在区间[0,m ]上的最大值为5,最小值为1, ∴实数m 的取值范围是[2,4], 故选:B . 【点睛】本题主要考查二次函数的性质应用,利用函数图像解题是关键,属于中档题.11.D解析:D 【解析】试题分析:函数f (x )=2x 2–e |x|在[–2,2]上是偶函数,其图象关于轴对称,因为,所以排除选项;当时,有一零点,设为,当时,为减函数,当时,为增函数.故选D12.B解析:B 【解析】20.4200.41,log 0.40,21<<Q ,01,0,1,a b c b a c ∴<<∴<<,故选B.二、填空题13.【解析】【分析】解方程组求出结果即可得答案【详解】由解得或代入解得或所以方程组的解组成的集合为故答案为【点睛】该题考查的是有关方程组解集的问题需要注意的问题是解是二维的再者就是需要写成集合的形式属于解析:()(){}2,2,2,2--【解析】 【分析】解方程组2040x y x +=⎧⎨-=⎩,求出结果即可得答案.【详解】由240x -=,解得2x =或2x =-,代入0x y +=, 解得22x y =⎧⎨=-⎩或22x y =-⎧⎨=⎩,所以方程组2040x y x +=⎧⎨-=⎩的解组成的集合为{}(2,2),(2,2)--,故答案为{}(2,2),(2,2)--. 【点睛】该题考查的是有关方程组解集的问题,需要注意的问题是解是二维的,再者就是需要写成集合的形式,属于简单题目.14.1120【解析】【分析】明确折扣金额y 元与购物总金额x 元之间的解析式结合y =30>25代入可得某人在此商场购物总金额减去折扣可得答案【详解】由题可知:折扣金额y 元与购物总金额x 元之间的解析式y ∵y =解析:1120 【解析】 【分析】明确折扣金额y 元与购物总金额x 元之间的解析式,结合y =30>25,代入可得某人在此商场购物总金额, 减去折扣可得答案. 【详解】由题可知:折扣金额y 元与购物总金额x 元之间的解析式,y ()()006000.0560060011000.11100251100x x x x x ⎧≤⎪=-≤⎨⎪-+⎩,<,<,> ∵y =30>25 ∴x >1100∴0.1(x ﹣1100)+25=30 解得,x =1150, 1150﹣30=1120,故此人购物实际所付金额为1120元. 【点睛】本题考查的知识点是分段函数,正确理解题意,进而得到满足条件的分段函数解析式是解答的关键.15.2【解析】【分析】先求f (2)再根据f (2)值所在区间求f (f (2))【详解】由题意f (2)=log3(22–1)=1故f (f (2))=f (1)=2×e1–1=2故答案为:2【点睛】本题考查分段函数解析:2 【解析】 【分析】先求f (2),再根据f (2)值所在区间求f (f (2)). 【详解】由题意,f (2)=log 3(22–1)=1,故f (f (2))=f (1)=2×e 1–1=2,故答案为:2. 【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.16.-8【解析】试题分析:设当且仅当时成立考点:函数单调性与最值解析:-8 【解析】 试题分析:2tan 1tan 1,42xx x ππ∴∴Q设2tan t x =()()()2221412222142248111t t t y t t t t -+-+∴==-=----≤-⨯-=----当且仅当2t =时成立考点:函数单调性与最值17.(-∞-)【解析】【分析】方程有两个大于的根据此可以列出不等式组求得m 的取值范围即可【详解】解:根据题意m 应当满足条件即:解得:实数m 的取值范围:(-∞-)故答案为:(-∞-)【点睛】本题考查根的判解析:(-∞,-12) 【解析】 【分析】 方程有两个大于12的根,据此可以列出不等式组求得m 的取值范围即可. 【详解】解:根据题意,m 应当满足条件2(1)40112211(1)042m m m m m ⎧⎪∆=-+>⎪-⎪->⎨⎪⎪+-->⎪⎩即:2210012m m m m ⎧⎪++>⎪<⎨⎪⎪<-⎩,解得:12m <-,实数m 的取值范围:(-∞,-12). 故答案为:(-∞,-12). 【点睛】 本题考查根的判别式及根与系数的关系,解题的关键是正确的运用判别式及韦达定理,是中档题.18.【解析】【分析】若方程有四个不同的实数解则函数与直线有4个交点作出函数的图象由数形结合法分析即可得答案【详解】因为函数是定义在R 上的偶函数且当时所以函数图象关于轴对称作出函数的图象:若方程有四个不同 解析:(1,0)-【解析】【分析】若方程()0f x m -=有四个不同的实数解,则函数()y f x =与直线y m =有4个交点,作出函数()f x 的图象,由数形结合法分析即可得答案.【详解】因为函数()f x 是定义在R 上的偶函数且当0x ≥时,2()2f x x x =-,所以函数()f x 图象关于y 轴对称,作出函数()f x 的图象:若方程()0f x m -=有四个不同的实数解,则函数()y f x =与直线y m =有4个交点, 由图象可知:10m -<<时,即有4个交点.故m 的取值范围是(1,0)-,故答案为:(1,0)-【点睛】本题主要考查了偶函数的性质以及函数的图象,涉及方程的根与函数图象的关系,数形结合,属于中档题.19.【解析】【分析】【详解】试题分析:两种都买的有人所以两种家电至少买一种有人所以两种都没买的有人或根据条件画出韦恩图:(人)考点:元素与集合的关系解析:【分析】【详解】 试题分析:两种都买的有人,所以两种家电至少买一种有人.所以两种都没买的有人.或根据条件画出韦恩图:(人).考点:元素与集合的关系.20.{01}或{-11}【解析】【分析】因中有两个元素故可利用中的元素对乘法封闭求出这两个元素【详解】设根据题意有所以必有两个相等元素若则故又或所以(舎)或或此时若则此时故此时若则此时故此时综上或填或【解析:{0,1}或{-1,1},【解析】【分析】因S 中有两个元素,故可利用S 中的元素对乘法封闭求出这两个元素.【详解】设{}(),S a b a b =<,根据题意有22,,a ab b S ∈,所以22,,a b ab 必有两个相等元素.若22a b =,则=-a b ,故2ab a =-,又2a a =或2a b a ==-,所以0a =(舎)或1a =或1a =-,此时{}1,1S =-.若 2a ab =,则0a =,此时2b b =,故1b = ,此时{}0,1S =.若2b ab =,则0b =,此时2a a =,故1a =,此时{}0,1S =.综上,{}0,1S =或{}1,1S =-,填{}0,1或{}1,1-.【点睛】集合中元素除了确定性、互异性、无序性外,还有若干运算的封闭性,比如整数集,对加法、减法和乘法运算封闭,但对除法运算不封闭(两个整数的商不一定是整数),又如有理数集,对加法、减法、乘法和除法运算封闭,但对开方运算不封闭.一般地,若知道集合对某种运算封闭,我们可利用该运算探究集合中的若干元素.三、解答题21.(Ⅰ)()()(](]2110800,1229012,40x x f x x x ⎧--+∈⎪=⎨⎪-+∈⎩;(Ⅱ)在()4,28x ∈时段内安排核心内容,能使得学生学习效果最佳,理由见解析【分析】(I )当(]0,12x ∈时,利用二次函数顶点式求得函数解析式,当(]12,40x ∈时,一次函数斜截式求得函数解析式.由此求得()f x 的函数关系式.(II )利用分段函数解析式解不等式()62f x >,由此求得学习效果最佳的时间段.【详解】(Ⅰ)当(]0,12x ∈时,设()()21080f x a x =-+,过点()12,78代入得,则()()2110802f x x =--+, 当(]12,40x ∈时,设y kx b =+,过点()12,78、()40,50,得12784050k b k b +=⎧⎨+=⎩,即90y x =-+,则函数关系式为()()(](]211080,0,12290,12,40x x f x x x ⎧--+∈⎪=⎨⎪-+∈⎩. (Ⅱ)由题意(]0,12x ∈,()211080622x --+>或(]12,40x ∈,9062x -+>. 得412x <≤或1228x <<,∴428x <<.则老师就在()4,28x ∈时段内安排核心内容,能使得学生学习效果最佳.【点睛】本小题主要考查分段函数解析式的求法,考查待定系数法求一次函数、二次函数的解析式,考查函数在实际生活中的应用,考查数形结合的数学思想方法,属于基础题.22.(1)f (x )min =-10,f (x )max =26;(2)(-∞,-10].【解析】试题分析:(1)由题意可得,f (x )=4x -2·2x +1-6,令t=2x ,从而可转化为二次函数在区间[1,8]上的最值的求解(2)由题意可得,a≤f (x )恒成立⇔a ≤f (x )min 恒成立,结合(1)可求试题解析:(1)f (x )=(2x )2-4·2x -6(0≤x ≤3).令t =2x,∵0≤x ≤3,∴1≤t ≤8.则h (t )=t 2-4t -6=(t -2)2-10(1≤t ≤8).当t ∈[1,2]时,h (t )是减函数;当t ∈(2,8]时,h (t )是增函数.∴f (x )min =h (2)=-10,f (x )max =h (8)=26.(2)∵f (x )-a ≥0恒成立,即a ≤f (x )恒成立,∴a ≤f (x )min 恒成立.由(1)知f (x )min =-10,∴a ≤-10.故a 的取值范围为(-∞,-10].23.(1)0.8)4,015(,1t t t y t ≤≤⎧=⎨⋅>⎩n ; (2)服药一次后治疗有效的时间是5-=小时. 【解析】【分析】(1)由函数图象的奥这是一个分段函数,第一段为正比例函数的一段,第二段是指数函数的一段,由于两端函数均过点(1,4),代入点(1,4)的坐标,求出参数的值,即可得到函数的解析式;(2)由(1)的结论将函数值0.25代入函数的解析式,构造不等式,求出每毫升血液中函数不少于0.25微克的起始时刻和结束时刻,即可得到结论.【详解】(1)由题意,根据给定的函数的图象,可设函数的解析式为1)2,01(,1t a kt t y t -≤<⎧⎪=⎨⎪≥⎩n ,又由函数的图象经过点(1,4),则当1t =时,14k ⨯=,解得4k =,又由1t =时,11()42a -=,解得3a =, 所以函数的解析式为1)324,01(,1t t t y t -≤<⎧⎪=⎨⎪≥⎩n . (2)由题意,令0.25y ≥,即当01t ≤<时,40.25t ≥,解得116t ≥, 当1t ≥时,31()0.252t -≥,解得15t ≤≤,综上所述,可得实数t 的取值范围是1516t ≤≤, 所以服药一次后治疗有效的时间是17951616-=小时. 【点睛】本题主要考查了一次函数与指数函数模型的应用,解答中认真审题,合理设出函数的解析式,代入求解是解答的关键,同时应用指数函数模型应注意的问题:(1)指数函数模型的应用类型.常与增长率相结合进行考查,在实际问题中有人口增长、银行利率、细胞分裂等增长问题可以利用指数函数模型来解决.(2)应用指数函数模型时的关键.关键是对模型的判断,先设定模型,再将已知有关数据代入验证,确定参数,从而确定函数模型.24.(1)2;(2)(]1,3.【解析】【分析】(1)设0x <,可得0x ->,求出()f x -的表达式,利用奇函数的定义可得出函数()y f x =在0x <时的解析式,由此可求出实数m 的值;(2)作出函数()y f x =的图象,可得出函数()y f x =的单调递增区间为[]1,1-,于是可得出[][]1,21,1a --⊆-,进而得出关于实数a 的不等式组,解出即可.【详解】 (1)()222,00,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩Q 为奇函数, 当0x <时,0x ->,则()()()2222f x x x x x -=--+⨯-=--,则()()22f x f x x x =--=+,2m ∴=; (2)由(1)可得()222,00,02,0x x x f x x x x x ⎧-+>⎪==⎨⎪+<⎩,作出函数()y f x =如下图所示:由图象可知,函数()y f x =的单调递增区间为[]1,1-,由题意可得[][]1,21,1a --⊆-,则121a -<-≤,解得13a <?.因此,实数a 的取值范围是(]1,3.【点睛】本题考查奇函数解析式的求解,同时也考查了利用函数在区间上的单调性求参数,考查运算求解能力,属于中等题. 25.(1)[1]4,;(2)4x =时,函数有最大值13. 【解析】【分析】(1)由已知()f x 的定义域及复合函数的定义域的求解可知,2116116x x ≤≤⎧⎨≤≤⎩,解不等式可求(2)由已知可求()()()22[]g x f x f x +=,结合二次函数的性质可求函数g x ()的最值及相应的x .【详解】解:(1)()42log [116]f x x x =+∈Q ,,,()()()22[]g x f x f x +=. 由题意可得,2116116x x ≤≤⎧⎨≤≤⎩, 解可得,14x ≤≤即函数()g x 的定义域[1]4,; (2)()42log ,[116]f x x x =+∈Q ,, ()()()()222224444[]2log 2log log 6log 6g x f x f x x x x x ∴=+=+++=++设4log t x =,则[01]t ∈,, 而()()226633g t t t t =++=+-在[0]1,单调递增, 当1t =,即4x =时,函数有最大值13.【点睛】本题主要考查了对数函数的性质,二次函数闭区间上的最值求解,及复合函数的定义域的求解,本题中的函数()g x 的定义域是容易出错点.26.(1)2()1f x x x =-+(2)1m <-【解析】【分析】(1)设2()(0)f x ax bx c a =++≠,带入()(1)2f x f x x -+=-和(0)1f =,即可求出a ,b ,c 的值.(2)首先将题意转化为[1,1]x ∈-时,231x x m -+>恒成立,再求出2min (31)x x -+,2min (31)m x x <-+即可.【详解】(1)设2()(0)f x ax bx c a =++≠,则22()(1)(1)(1)2f x f x ax bx a x b x ax a b -+=+-+-+=---,所以22ax a b x ---=-,解得:1a =,1b =-.又(0)1f c ==,所以2()1f x x x =-+.(2)当[1,1]x ∈-时,()2x m f x >+恒成立,即当[1,1]x ∈-时,231x x m -+>恒成立.设2()31g x x x =-+,[1,1]x ∈-.则min ()(1)1g x g ==-,1m ∴<-.【点睛】本题第一问考查待定系数法求函数的解析式,第二问考查二次函数的恒成立问题,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年重庆一中高三(上)期中考试数学(文科)试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知=2+i,则复数z=()A.﹣1+3i B.1﹣3i C.3+i D.3﹣i2.(5分)设全集I是实数集R,M={x|x≥3}与N={x|≤0}都是I的子集(如图所示),则阴影部分所表示的集合为()A.{x|1<x<3} B.{x|1≤x<3} C.{x|1<x≤3} D.{x|1≤x≤3}3.(5分)已知直线方程为cos300°x+sin300°y=3,则直线的倾斜角为()A.60° B.60°或300°C.30° D.30°或330°4.(5分)函数f(x)=x2+xsinx的图象关于()A.坐标原点对称 B.直线y=﹣x对称C.y轴对称D.直线y=x对称5.(5分)点(﹣1,﹣2)关于直线x+y=1对称的点坐标是()A.(3,2)B.(﹣3,﹣2)C.(﹣1,﹣2)D.(2,3)6.(5分)已知某棱锥的三视图如图所示,则该棱锥的表面积为()A.2+B.3+C.2+D.3+7.(5分)已知函数f(x)=3x+x,g(x)=log3x+x,h(x)=log3x﹣3的零点依次为a,b,c,则()A.c<b<a B.a<b<c C.c<a<b D.b<a<c8.(5分)重庆市乘坐出租车的收费办法如下:(1)不超过3千米的里程收费10元(2)超过3千米的里程2元收费(对于其中不足千米的部分,若其小于0.5千米则不收费,若其大于或等于0.5千米则按1千米收费),当车程超过3千米时,另收燃油附加费1元.相应系统收费的程序框图如图所示,其中x(单位:千米)为行驶里程,用[x]表示不大于x的最大整数,则图中①处应填()A.y=2[x+]+4 B.y=2[x+]+5 C.y=2[x﹣]+4 D.y=2[x﹣]+59.(5分)若不等式组表示的平面区域经过所有四个象限,则实数λ的取值范围是()A.(﹣∞,4)B.[1,2] C.[2,4] D.(2,+∞)10.(5分)已知在△ABC中,∠ACB=90°,BC=6,AC=8,P是线段AB上的点,则P到AC,BC的距离的乘积的最大值为()A.12 B.8 C.D.3611.(5分)当曲线y=与直线kx﹣y﹣2k+4=0有两个相异的交点时,实数k的取值范围是()A.(0,) B.(,] C.(,1] D.(,+∞]12.(5分)已知函数f(x)=ax2+bx﹣2lnx(a>0,b∈R),若对任意x>0都有f(x)≥f(2)成立,则()A.lna>﹣b﹣1 B.lna≥﹣b﹣1 C.lna<﹣b﹣1 D.lna≤﹣b﹣1二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知某长方体的长宽高分别为2,1,2,则该长方体外接球的体积为.14.(5分)若函数y=()x在R上是减函数,则实数 a取值集合是.15.(5分)若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为.16.(5分)已知函数f(x)=如果对任意的n∈N*,定义f n(x)=,例如:f2(x)=f(f(x)),那么f2016(2)的值为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)等差数列{a n}的前n项和为S n,已知a1=2,a2为整数,且a3∈[3,5].(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.18.(12分)在△ABC中,三个内角A,B,C的对边分别为a,b,c,cosA=,asinA+bsinB﹣csinC=asinB.(1)求B的值;(2)设b=10,求△ABC的面积S.19.(12分)如图,在多面体ABCDM中,△BCD是等边三角形,△CMD是等腰直角三角形,∠CMB=90°,平面CMD⊥平面BCD,AB⊥平面BCD,点O为CD的中点,连接OM.(1)求证:OM∥平面ABD;(2)若AB=BC=4,求三棱锥A﹣BDM的体积.20.(12分)已知椭圆C:+=1(a>b>0)的离心率为,以M(1,0)为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+﹣1=0相切.(1)求椭圆C的标准方程;(2)已知点N(3,2),和平面内一点P(m,n)(m≠3),过点M任作直线l与椭圆C相交于A,B两点,设直线AN,NP,BN的斜率分别为k1,k2,k3,k1+k3=3k2,试求m,n满足的关系式.21.(12分)已知y=4x3+3tx2﹣6t2x+t﹣1,x∈R,t∈R.(1)当x为常数,且t在区间[]变化时,求y的最小值φ(x);(2)证明:对任意的t∈(0,+∞),总存在x∈(0,1),使得y=0.[选修4-4:坐标系与参数方程]22.(10分)已知曲线C的参数方程为(α为参数),以直角坐标系原点为极点,x轴正半轴为极轴建立极坐标系.(1)求曲线C的极坐标方程;(2)若直线的极坐标方程为sinθ﹣cosθ=,求直线被曲线C截得的弦长.[选修4-5:不等式选讲]23.已知关于x的不等式|x﹣2|﹣|x﹣3|≤m对x∈R恒成立.(1)求实数m的最小值;(2)若a,b,c为正实数,k为实数m的最小值,且++=k,求证:a+2b+3c≥9.2020-2021学年重庆一中高三(上)期中考试数学(文科)试题参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知=2+i,则复数z=()A.﹣1+3i B.1﹣3i C.3+i D.3﹣i【分析】化简复数直接求解,利用共轭复数可求z.【解答】解:,∴故选B【点评】求复数,需要对复数化简,本题也可以用待定系数方法求解.2.(5分)设全集I是实数集R,M={x|x≥3}与N={x|≤0}都是I的子集(如图所示),则阴影部分所表示的集合为()A.{x|1<x<3} B.{x|1≤x<3} C.{x|1<x≤3} D.{x|1≤x≤3}【分析】由图形可得阴影部分所表示的集合为N∩(C I M)故先化简两个集合,再根据交集的定义求出阴影部分所表示的集合【解答】解:由题意M={x|x≥3}与N={x|≤0}={x|﹣1<x≤3}由图知阴影部分所表示的集合为N∩(C I M)∴N∩(C I M)={x|1<x<3}故选A【点评】本题考查Venn图表达集合的关系及运算,解题的关键是根据图象得出N∩(C I M),再由集合的运算求出阴影部分所表示的集合3.(5分)已知直线方程为cos300°x+sin300°y=3,则直线的倾斜角为()A.60° B.60°或300°C.30° D.30°或330°【分析】设直线的倾斜角为α,α∈[0,π).可得tanα=﹣,利用诱导公式即可得出.【解答】解:设直线的倾斜角为α,α∈[0,π).∴tanα=﹣=﹣==tan30°,∴α=30°.故选:C.【点评】本题考查了直线的斜率与倾斜角的关系、诱导公式、三角函数求值,考查了推理能力与计算能力,属于基础题.4.(5分)函数f(x)=x2+xsinx的图象关于()A.坐标原点对称 B.直线y=﹣x对称C.y轴对称D.直线y=x对称【分析】判断函数的奇偶性,推出结果即可.【解答】解:函数f(x)=x2+xsinx是偶函数,关于y轴对称,故选:C.【点评】本题考查函数的奇偶性的应用,考查计算能力..5.(5分)点(﹣1,﹣2)关于直线x+y=1对称的点坐标是()A.(3,2)B.(﹣3,﹣2)C.(﹣1,﹣2)D.(2,3)【分析】设(﹣1,﹣2)关于直线x+y=1对称点的坐标是( a,b ),则有,解得 a 和b的值,即得结论.【解答】解:设(﹣1,﹣2)关于直线x+y=1对称点的坐标是( a,b ),则有,解得 a=3,b=2,故点(﹣1,﹣2)关于直线x+y=1对称的点坐标是(3,3),故选:A.【点评】本题考查求一个点关于某直线的对称点的坐标的方法,利用了垂直、和中点在对称轴上这两个条件,得到,是解题的关键.6.(5分)已知某棱锥的三视图如图所示,则该棱锥的表面积为()A.2+B.3+C.2+D.3+【分析】由已知中的三视图,可知该几何体是一个以底面为正方形的三棱锥,高为2,累加各个面的面积可得,几何体的表面积.【解答】解:由题意:可知该几何体是一个以底面为正方形其边长AB=1的三棱锥,高AS为2,(如图)AS⊥平面ABCD,∴AC=,SD=SB=,∵AD⊥CD,∴SD⊥CD(三垂线定理)∴△SDC是直角三角形.同理:SB⊥CB,∴△SBC是直角三角形.平面SDC的表面积为:AD×SD=,平面ABS的表面积为:AS×AB=1,平面ABD的表面积为:AS×AD=1,平面SBC的表面积为:BS×CB=.平面ABCD表面积为:AB×BC=1所以该几何体的表面积为:3+.故选D.【点评】本题考查了对三视图的投影的认识和边长之间的关系,由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.7.(5分)已知函数f(x)=3x+x,g(x)=log3x+x,h(x)=log3x﹣3的零点依次为a,b,c,则()A.c<b<a B.a<b<c C.c<a<b D.b<a<c【分析】根据函数零点的定义进行转化,由指数函数、对数函数的图象画出对应的函数图象,由图判断出a、b的范围,利用函数零点的定义和对数的运算求出c的值,可得三个零点的大小关系.【解答】解:①令f(x)=0,得3x+x=0,化为3x=﹣x,分别作出函数y=3x,y=﹣x的图象由图象可知函数f(x)的零点a<0;②令g(x)=log3x+x=0,得log3x=﹣x,分别作出函数y=g(x)=log3x,y=﹣x的图象,由图象可知函数g(x)的零点:0<b<1;③令h(x)=log3x﹣3=0,则log3x=3,解得x=27,即其零点c=27,综上可知,a<b<c.故选B.【点评】本题考查了函数零点的定义以及转化,以及指数函数、对数函数的图象,考查转化思想,数形结合思想.8.(5分)重庆市乘坐出租车的收费办法如下:(1)不超过3千米的里程收费10元(2)超过3千米的里程2元收费(对于其中不足千米的部分,若其小于0.5千米则不收费,若其大于或等于0.5千米则按1千米收费),当车程超过3千米时,另收燃油附加费1元.相应系统收费的程序框图如图所示,其中x(单位:千米)为行驶里程,用[x]表示不大于x的最大整数,则图中①处应填()A.y=2[x+]+4 B.y=2[x+]+5 C.y=2[x﹣]+4 D.y=2[x﹣]+5【分析】根据已知中的收费标准,求当x>3时,所收费用y的表达式,化简可得答案.【解答】解:由已知中,超过3千米的里程按每千米2元收费(对于其中不足千米的部分,若其小于0.5千米则不收费,若其大于或等于0.5千米则按1千米收费);当车程超过3千米时,另收燃油附加费1元.可得:当x>3时,所收费用y=10+[x﹣3+]×2+1=2[x+]+5,故选:B.【点评】本题考查的知识点是分段函数的应用,函数模型的选择与应用,属于基础题.9.(5分)若不等式组表示的平面区域经过所有四个象限,则实数λ的取值范围是()A.(﹣∞,4)B.[1,2] C.[2,4] D.(2,+∞)【分析】平面区域经过所有四个象限可得λ﹣2>0,由此求得实数λ的取值范围.【解答】解:由约束条件不等式组表示的平面区域经过所有四个象限可得λ﹣2>0,即λ>2.∴实数λ的取值范围是(2,+∞).故选:D.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是基础题.10.(5分)已知在△ABC中,∠ACB=90°,BC=6,AC=8,P是线段AB上的点,则P到AC,BC的距离的乘积的最大值为()A.12 B.8 C.D.36【分析】设P到AC的距离为x,到BC的距离为y,根据比例线段的性质可知,整理求得y=8﹣x,进而可求得xy的表达式根据二次函数的性质求得答案.【解答】解:如图,设P到AC的距离为x,到BC的距离为y,,即最上方小三角形和最大的那个三角形相似,它们对应的边有此比例关系,所以4x=24﹣3y,y=8﹣x求xy最大,也就是那个矩形面积最大.xy=x•(8﹣x)=﹣(x2﹣6x),当x=3时,xy有最大值12故选A.【点评】本题主要考查了解三角形的问题.考查了学生转化和化归思想,函数思想的运用.考查了学生分析问题和解决问题的能力.11.(5分)当曲线y=与直线kx﹣y﹣2k+4=0有两个相异的交点时,实数k的取值范围是()A.(0,) B.(,] C.(,1] D.(,+∞]【分析】直线方程变形,判断出直线过定点;求出特殊位置k的值,即可求出满足题意的k的范围.【解答】解:曲线y=即x2+y2=4,(y≥0)表示一个以(0,0)为圆心,以2为半径的位于x轴上方的半圆,如图所示:直线kx﹣y﹣2k+4=0即y=k(x﹣2)+4,表示恒过点A(2,4)斜率为k的直线B(2﹣,0)时,k AB=1,∵=2解得k=∴要使直线与半圆有两个不同的交点,k的取值范围是(,1].故选C.【点评】解决直线与二次曲线的交点问题,常先化简曲线的方程,一定要注意做到同解变形,数形结合解决参数的范围问题.12.(5分)已知函数f(x)=ax2+bx﹣2lnx(a>0,b∈R),若对任意x>0都有f(x)≥f(2)成立,则()A.lna>﹣b﹣1 B.lna≥﹣b﹣1 C.lna<﹣b﹣1 D.lna≤﹣b﹣1【分析】由f(x)≥f(1),知x=1是函数f(x)的极值点,所以f′(2)=0,从而得到b=1﹣4a,作差:lna﹣(﹣b﹣1)=lna+2﹣4a,所以构造函数g(x)=lnx+2﹣4x,通过导数可求得g(x)≤g()<0,即g(x)<0,所以g(a)<0,所以lna<﹣b﹣1.【解答】解:f′(x)=2ax+b﹣,由题意可知,f(x)在x=2处取得最小值,即x=2是f(x)的极值点;∴f′(2)=0,∴4a+b=1,即b=1﹣4a;令g(x)=2﹣4x+lnx(x>0),则g′(x)=;∴当0<x<时,g′(x)>0,g(x)在(0,)上单调递增;当x>时,g′(x)<0,g(x)在(,+∞)上单调递减;∴g(x)≤g()=1+ln=1﹣ln4<0;∴g(a)<0,即2﹣4a+lna=lna+b+1<0;故lna<﹣b﹣1,故选:C.【点评】考查最值的概念,极值的定义,函数导数符号和函数单调性的关系,通过构造函数比较两个式子大小的方法.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知某长方体的长宽高分别为2,1,2,则该长方体外接球的体积为.【分析】根据长方体的对角线长公式,算出该长方体的对角线长,从而算出它的外接球半径,利用球的体积公式即可算出答案.【解答】解:∵长方体从同一顶点出发的三条棱长分别为2,1,2,∴长方体的对角线长为=3,设长方体外接球半径为R,则2R=3,解得R=,∴该长方体外接球的体积为=.故答案为.【点评】本题给出长方体的长、宽、高,求它的外接球的体积.着重考查了长方体的对角线长公式,属于基础题.14.(5分)若函数y=()x在R上是减函数,则实数 a取值集合是.【分析】根据函数在R上是减函数,可得,即,由此可得结论.【解答】解:∵函数在R上是减函数,∴,∴,∴,∴实数a取值集合是.故答案为:.【点评】本题考查复合函数的单调性,考查解对数不等式,考查学生的计算能力,正确转化是关键.15.(5分)若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为.【分析】设圆锥的底面半径为r,高为h,母线长为l,由已知中圆锥的侧面积与过轴的截面面积之比为2π,可得l=2h,进而可得其母线与轴的夹角的余弦值,进而得到答案.【解答】解:设圆锥的底面半径为r,高为h,母线长为l,则圆锥的侧面积为:πrl,过轴的截面面积为:rh,∵圆锥的侧面积与过轴的截面面积之比为2π,∴l=2h,设母线与轴的夹角为θ,则cosθ==,故θ=,故答案为:.【点评】本题考查的知识点是旋转体,其中根据已知求出圆锥的母线与轴的夹角的余弦值,是解答的关键.16.(5分)已知函数f(x)=如果对任意的n∈N*,定义f n(x)=,例如:f2(x)=f(f(x)),那么f2016(2)的值为 2 .【分析】利用函数性质直接求解.【解答】解:∵函数f(x)=,对任意的n∈N*,定义f n(x)=,∴f(0)=2,f(1)=0,f(2)=2﹣1=1,f1(f(2))=f(2)=1,f2(2)=f(f(2))=f(1)=0,f3(2)=f(f(f(2)))=f(f(1))=f(0)=2.f4(2)=f(f(f(f(2)))=f(f(f(1))=f(f(0))=f(2)=1,∵2016÷3=672,∴f2016(2)=f(0)=2.故答案为:2.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)等差数列{a n}的前n项和为S n,已知a1=2,a2为整数,且a3∈[3,5].(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.【分析】(1)判断数列的第二项,然后求解通项公式即可.(2)利用裂项法化简求解即可.【解答】解:(1)由a1=2,a2为整数知,且a3∈[3,5].a3=4,{a n}的通项公式为a n=n+1.(2),于是.【点评】本题考查数列的判断以及数列求和,裂项法的应用,考查计算能力.18.(12分)在△ABC中,三个内角A,B,C的对边分别为a,b,c,cosA=,asinA+bsinB﹣csinC=asinB.(1)求B的值;(2)设b=10,求△ABC的面积S.【分析】(1)由已知及正弦定理可得,利用余弦定理可求cosC,利用同角三角函数基本关系式可求sinC,sinA的值,进而利用三角形内角和定理,诱导公式,两角和的余弦函数公式可求cosB,解得B的范围即可得解B的值.(2)利用正弦定理可求c,进而利用三角形面积公式即可计算得解.【解答】解:(1)由已知可得,∴.∵A,C∈(0,π),∴,,∴cosB=﹣cos(A+C)=﹣(﹣)=,∵B∈(0,π),∴B=.(2)∵=10,∴c=10=6,∴.【点评】本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式,三角形内角和定理,诱导公式,两角和的余弦函数公式,三角形面积公式在解三角形中的应用,考查了转化思想,熟练掌握相关公式的应用是解题的关键,属于中档题.19.(12分)如图,在多面体ABCDM中,△BCD是等边三角形,△CMD是等腰直角三角形,∠CMB=90°,平面CMD⊥平面BCD,AB⊥平面BCD,点O为CD的中点,连接OM.(1)求证:OM∥平面ABD;(2)若AB=BC=4,求三棱锥A﹣BDM的体积.【分析】(1)推导出OM⊥CD,从而OM⊥平面BCD,进而OM∥AB,由此能证明OM∥平面ABD.(2)由V A﹣BDM=V M﹣ABD=V O﹣ABD=V A﹣BDO,能求出三棱锥A﹣BDM的体积.【解答】证明:(1)∵△CMD是等腰直角三角形,∠CMD=90°,点O为CD的中点,∴OM⊥CD.∵平面CMD⊥平面BCD,平面CMD∩平面BCD=CD,OM⊂平面BCD,∴OM⊥平面BCD,∵AB⊥平面BCD,∴OM∥AB,∵AB⊂平面ABD,OM⊄平面ABD,∴OM∥平面ABD.解:(2)由(1)知OM∥平面ABD,∵点M到平面ABD的距离等于点O到平面ABD的距离.∵AB=BC=4,△BCD是等边三角形,∴BD=4,OD=2,连接OB,则OB⊥CD,,,∴三棱锥A﹣BDM的体积为.【点评】本题考查线面平行的证明,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意等体积法的合理运用.20.(12分)已知椭圆C:+=1(a>b>0)的离心率为,以M(1,0)为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+﹣1=0相切.(1)求椭圆C的标准方程;(2)已知点N(3,2),和平面内一点P(m,n)(m≠3),过点M任作直线l与椭圆C相交于A,B两点,设直线AN,NP,BN的斜率分别为k1,k2,k3,k1+k3=3k2,试求m,n满足的关系式.【分析】(1)由点到直线的距离公式d==1,求得b=1,由e===,即可求得a的值,求得椭圆C的标准方程;(2)当直线斜率不存在时,求出A,B的坐标,得到直线AN,BN的斜率,进一步得到NP的斜率,可得m,n满足的关系式.当直线的斜率存在时,设点A(x1,y1),B(x2,y2),设直线l:y=k(x﹣1),代入椭圆方程,利用根与系数的关系求得直线AN,BN的斜率和,进一步得到NP的斜率,可得m,n满足的关系式.【解答】解:(1)由椭圆C:+=1(a>b>0),焦点在x轴上,则M(1,0)到直线x﹣y+﹣1=0的距离d==1,∴b=d=1,离心率e===,解得:a=,∴椭圆C的标准方程;(2)①当直线斜率不存在时,由,解得x=1,,不妨设,,∵k1+k3=2,∴,∴m,n的关系式为3n=2m.②当直线的斜率存在时,设点A(x1,y1),B(x2,y2),直线l:y=k(x﹣1),联立椭圆整理得:(3k2+1)x2﹣6k2x+3k2﹣3=0,由韦达定理可知:x1+x2=,x1•x2=,∴,=,=.∴,∴m,n的关系式为3n=2m.【点评】本题考查椭圆标准方程的求法,考查直线与椭圆的位置关系,考查韦达定理,点到直线的距离公式,直线的斜率公式的综合应用,综合性较强,运算量大,极易出错,属于中档题.21.(12分)已知y=4x3+3tx2﹣6t2x+t﹣1,x∈R,t∈R.(1)当x为常数,且t在区间[]变化时,求y的最小值φ(x);(2)证明:对任意的t∈(0,+∞),总存在x∈(0,1),使得y=0.【分析】(1)当x为常数时,设f(t)=4x3+3tx2﹣6t2x+t﹣1=﹣6xt2+(3x2+1)t+4x3﹣1,是关于y的二次函数.利用二次函数图象与性质求解(2)设g(x)=4x3+3tx2﹣6t2x+t﹣1,按照零点存在性定理去判断.可利用导数计算函数的极值,有关端点值,作出证明.【解答】解:(1)当x为常数时,f(t)=4x3+3tx2﹣6t2x+t﹣1=﹣6xt2+(3x2+1)t+4x3﹣1,f'(t)=﹣12xt+(3x2+1),f'(t)=﹣12xt+3x2﹣1=3(x﹣2t)2﹣12t2+1,当,f'(t)≥0,f(t)在上递增,其最小值φ(x)=f(0)=4x3﹣1.(2)令g(x)=4x3+3tx2﹣6t2x+t﹣1,g'(x)=12x2+6tx﹣6t2=6(2x﹣t)(x+t),由t∈(0,+∞),当x在区间(0,+∞)内变化时,g(x)与g'(x)变化情况如下表:xg'(x)﹣0 +g(x)单调递减极小值单调递增①当,即t≥2时,g(x)在区间(0,1)内单调递减,g(0)=t﹣1>0,g(1)=﹣6t2+4t+3=﹣2t(3t﹣2)+3≤﹣4(6﹣2)+3<0,所以对任意t∈[2,+∞),g(x)在区间(0,1)内均存在零点,即存在x∈(0,1),使得g(x)=0;②当,即0<t<2时,g(x)在内单调递减,在内单调递增,所以时,函数g(x)取最小值,又g(0)=t﹣1,若t∈(0,1],则,,所以g(x)在内存在零点;若t∈(1,2),则g(0)=t﹣1>0,,所以g(x)在内存在零点,所以,对任意t∈(0,2),g(x)在区间(0,1)内均存在零点,即存在x∈(0,1),使得g(x)=0.结合①②,对任意的t∈(0,+∞),总存在x∈(0,1),使得y=0.【点评】本题考查函数单调性与导数关系的应用,函数最值的应用:通过极值探讨零点.综合性强.[选修4-4:坐标系与参数方程]22.(10分)已知曲线C的参数方程为(α为参数),以直角坐标系原点为极点,x轴正半轴为极轴建立极坐标系.(1)求曲线C的极坐标方程;(2)若直线的极坐标方程为sinθ﹣cosθ=,求直线被曲线C截得的弦长.【分析】(1)求出曲线C的普通方程为(x﹣3)2+(y﹣1)2=5,即可将代入并化简,求曲线C的极坐标方程;(2)直角坐标方程为y﹣x=1,求圆心C到直线的距离,即可求出直线被曲线C截得的弦长.【解答】解:(1)∵曲线C的参数方程为(α为参数),∴曲线C的普通方程为(x﹣3)2+(y﹣1)2=5,曲线C表示以(3,1)为圆心,为半径的圆,将代入并化简:ρ2﹣6ρcosθ﹣2ρsinθ+5=0.(2)直角坐标方程为y﹣x=1,∴圆心C到直线的距离为,∴弦长为.【点评】本题考查圆的参数方程、普通方程、极坐标方程,考查直线与圆的位置关系,属于中档题.[选修4-5:不等式选讲]23.已知关于x的不等式|x﹣2|﹣|x﹣3|≤m对x∈R恒成立.(1)求实数m的最小值;(2)若a,b,c为正实数,k为实数m的最小值,且++=k,求证:a+2b+3c≥9.【分析】(1))|x﹣2|﹣|x﹣3|≤|(x﹣2)﹣(x﹣3)|=1,由此能求出m最小值.(2)由(1)知,由此利用均值不等式能证明a+2b+3c≥9.【解答】解:(1)∵|x﹣2|﹣|x﹣3|≤|(x﹣2)﹣(x﹣3)|=1,不等式|x﹣2|﹣|x﹣3|≤m对x∈R恒成立,∴m≥1,∴m最小值为1.(2)由(1)知k=1,即,=.当且仅当a=2b=3c时等号成立,∴a+2b+3c≥9.【点评】本题考查实数的最小值的求法,考查不等式的证明,发题时要认真审题,注意均值不等式的性质的合理运用.。

相关文档
最新文档