最新人教版中考数学模拟试卷及答案(10套)

合集下载

人教版初三下册《数学》模拟考试卷及答案【可打印】

人教版初三下册《数学》模拟考试卷及答案【可打印】

人教版九年级下册《数学》模拟考试卷一、选择题(每题3分,共30分)1.下列哪个数是实数?A. 2iB. 3C. √5D. 1/02.下列哪个函数的图像是一条直线?A. y=x²B. y=2x3C. y=x³D. y=|x|3.下列哪个数是负数?A. 5B. 0C. 5D. √94.下列哪个不等式成立?A. 2x+3<0B. 3x2>0C. 4x+1<0D. 5x3>05.下列哪个是正比例函数?A. y=2x+1B. y=3x²C. y=4xD. y=5x36.下列哪个是反比例函数?A. y=2x+1B. y=3x²C. y=4xD. y=5x37.下列哪个是二次函数?A. y=2x+1B. y=3x²C. y=4xD. y=5x38.下列哪个是指数函数?A. y=2x+1B. y=3x²C. y=4xD. y=5x39.下列哪个是对数函数?A. y=2x+1B. y=3x²C. y=4xD. y=5x310.下列哪个是三角函数?A. y=2x+1B. y=3x²C. y=4xD. y=5x3二、填空题(每题4分,共40分)11.下列数列中,第10项是几?1, 3, 5, 7,12.下列数列中,第n项是几?2, 4, 6, 8,13.下列数列中,第n项是几?1, 2, 4, 8,14.下列数列中,第n项是几?1, 3, 6, 10,15.下列数列中,第n项是几?1, 4, 9, 16,16.下列数列中,第n项是几?1, 8, 27, 64,17.下列数列中,第n项是几?1, 2, 4, 8,18.下列数列中,第n项是几?1, 3, 6, 10,19.下列数列中,第n项是几?1, 4, 9, 16,20.下列数列中,第n项是几?1, 8, 27, 64,三、解答题(每题10分,共50分)21.解方程:2x3=522.解方程组:\begin{align}2x+3y=7 \\3x2y=4\end{align}23.解不等式:3x2<024.解不等式组:\begin{align}2x+3y>7 \\3x2y<4\end{align}25.解方程:x²3x+2=026.解方程组:\begin{align}x²+y²=25 \\xy=5\end{align}27.解不等式:x²3x+2<028.解不等式组:\begin{align}x²+y²>25 \\xy<5\end{align}29.解方程:x³2x²+3x6=030.解方程组:\begin{align}x³+y³=27 \\x+y=3\end{align}四、证明题(每题10分,共20分)31.证明:若a²+b²=c²,则a、b、c为勾股数。

中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)
A. B. C. D.
【答案】C
【解析】
【分析】设CF交AB于P.过C作CN⊥AB于N.设正方形JKLM边长为m.根据正方形ABGF与正方形JKLM的面积之比为5.得AF=AB= m.证明△AFL≌△FGM(AAS).可得AL=FM.设AL=FM=x.在Rt△AFL中.x2+(x+m)2=( m)2.可解得x=m.有AL=FM=m.FL=2m.从而可得AP= .FP= m.BP= .即知P为AB中点.CP=AP=BP= .由△CPN∽△FPA.得CN=m.PN= m.即得AN= m.而tan∠BAC= .又△AEC∽△BCH.根据相似三角形的性质列出方程.解方程即可求解.
【答案】B
【解析】
【分析】根据四边形的内角和等于360°计算可得∠BAC=50°.再根据圆周角定理得到∠BOC=2∠BAC.进而可以得到答案.
【详解】解:∵OD⊥AB.OE⊥AC.
∴∠ADO=90°.∠AEO=90°.
∵∠DOE=130°.
∴∠BAC=360°-90°-90°-130°=50°.
∴∠BOC=2∠BAC=100°.
A. B.
C. D.
【答案】A
【解析】
【分析】分别对每段时间的路程与时间的变化情况进行分析.画出路程与时间图像.再与选项对比判断即可.
【详解】解:对各段时间与路程的关系进行分析如下:
从家到凉亭.用时10分种.路程600米.s从0增加到600米.t从0到10分.对应图像为
在凉亭休息10分钟.t从10分到20分.s保持600米不变.对应图像为
故选:B.
【点睛】本题考查扇形统计图.解答本题的关键是明确题意.求出本次参加兴趣小组的总人数.
4.化简 的结果是( )
A. B. C. D.

最新人教版中考综合模拟考试《数学试题》含答案解析

最新人教版中考综合模拟考试《数学试题》含答案解析

人教版中考数学仿真模拟测试题一.选择题1. ﹣2的绝对值是( )A. 2B. 12C. 12-D. 2-2. 使分式22x 有意义的x 的取值范围是( ) A. 2x ≠-B. 2x ≠C. 2x >-D. 2x <- 3. 下列事件是必然事件的是( ) A. 通常加热100℃时,水沸腾B. 篮球队员在罚球线上投篮一次,未投中C. 任意画一个三角形,其内角和为360°D. 经过信号灯时,遇到红灯 4. 下列图形中,是中心对称图形的是( )A. B.C. D. 5. 如图,是一个几何体的主视图,则该几何体可能是( )A. B.C. D. 6. 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中方程术是重要的数学成就.书中有一个方程问题今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗,问醇、行酒各得几何?意思是:今有美酒一斗的价格是50钱;普通酒一斗的价格是10钱.现在买两种酒2斗共付30钱,问买美酒、普通酒各多少?设买美酒x 斗,则x 的解为( )A. 34B. 23C. 12D. 147. 一个口袋中装有四个完全相同小球,把它们分别标号为1、2、3、4,随机摸出两个球,则摸出两个小球标号的和不小于5的概率是( )A. 34B. 23C. 12D. 138. 若二次函数y =mx 2+2mx+m 2+1(m <0)的图象经过点A(﹣2,y 1)、B(0,y 2)、C(1,y 3),则关于y 1、y 2、y 3的大小关系正确的是( )A. y 1=y 2<y 3B. y 3<y 1=y 2C. y 1<y 2<y 3D. y 2<y 1<y 39. 如图,在矩形ABCD 中,AB =4,AD =8,点E 、点F 分别在边AD ,BC 上,且EF ⊥AD ,点B 关于EF 的对称点为G 点,连接EG ,若EG 与以CD 为直径的⊙O 恰好相切于点M ,则AE 的长度为( )A. 3B. 10C. 6+6D. 6﹣610. 如图所示,三阶幻方是由1,2,3,4,5,6,7,8,9九个数字组成的一个三行三列的数表,要求其对角线、横行、纵向的和都相等,即为15,称这个幻方的幻和为15,四阶幻方是由1,2,3,…,14,15,16十六个数组成一个四行四列的数表,其对角线、横向、纵向的和都为同一个数,此数称为四阶幻方的幻和,那么此四阶幻方的幻和等于( )A. 33B. 34C. 35D. 36二.填空题11. 计算:327= .12. 九年级某班40位同学的年龄如表所示:年龄(岁)13 14 15 16 人数 3 16 19 2则该班40名同学年龄众数是_____.13. 化简2a a -﹣242a a-的结果是_____. 14. 如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE.若AE=AB ,则∠EBC 的度数为__________.15. 抛物线y=a(x﹣h)2+k经过(﹣1,0)、(5,0)两点,则关于x的一元二次方程a(x+h+2)2+k=0的解是_____.16. 如图,四边形ABCD中,BD与AC相交于E点,AE=CE,BC=AC=DC,则tan∠ABD•tan∠ADB=_____.三.解答题17. 计算:3a2•2a4+(3a3)2﹣14a6.18. 如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.19. 武汉某中学开展了周末网课学习活动,为了解学生网课学习效果进行了抽样测试,该校教导处把测试结果分为A(优秀)、B(良好)、C(不合格)三种类型.如图是对该校初一(1)班和初一(2)班全体同学进行测试后绘制的两幅不完整的统计图,请根据图中信息解答下列问题.(1)此次被调查的学生总人数是人;扇形统计图中代表类型C的扇形的圆心角为;(2)补全折线统计图;(3)如果该校初一年级学生共有1200人,试根据此次调查结果估计该校初一年级中C类学生约为多少人?20. 如图所示,△ABC 与点O 在10×10的网格中的位置如图所示(1)画出△ABC 绕点O 逆时针旋转90°后的图形;(2)画出△ABC 绕点O 逆时针旋转180°后的图形;(3)若⊙M 能盖住△ABC ,则⊙M 的半径最小值为 .21. 如图,已知AB 是圆O 的直径,弦CD ⊥AB ,垂足为H ,与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N .(1)求证:CA=CN ;(2)连接DF ,若cos ∠DFA=45,AN=210 ,求圆O 的直径的长度.22. 某商店销售A 型和B 型两种电脑,其中A 型电脑每台的利润为400元,B 型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.(1)求y 关于x 的函数关系式;(2)该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大,最大利润是多少? (3)实际进货时,厂家对A 型电脑出厂价下调a(0<a <200)元,且限定商店最多购进A 型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案. 23. 如图,Rt ABC ∆中,90ACB ∠=︒,CE AB ⊥于E ,BC mAC nDC ==,D 为BC 边上一点.(1)当2m =时,直接写出CE BE = ,AE BE= . (2)如图1,当2m =,3n =时,连DE 并延长交CA 延长线于F ,求证:32EF DE =. (3)如图2,连AD 交CE 于G ,当AD BD =且32CG AE =时,求m n的值. 24. 已知抛物线y =x 2+bx+c 与x 轴交于点A(4,﹣5).(1)如图,过点A 分别向x 轴、y 轴作垂线,垂足分别为B 、C ,得到矩形ABOC ,且抛物线经过点C . ①求抛物线的解析式.②将抛物线沿直线x =m (2>m >0)翻折,分别交线段OB 、AC 于D ,E 两点.若直线DE 刚好平分矩形ABOC的面积,求m 的值.(2)将抛物线旋转180°,使点A 的对应点为A 1(m ﹣2,n ﹣4),其中m≤2.若旋转后的抛物线仍然经过点A ,求旋转后的抛物线顶点所能达到最低点时的坐标.答案与解析一.选择题1. ﹣2的绝对值是( )A. 2B. 12C. 12-D. 2- 【答案】A【解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A .2. 使分式22x 有意义的x 的取值范围是( )A. 2x ≠-B. 2x ≠C. 2x >-D. 2x <- 【答案】A【解析】【分析】根据分式有意义的条件进行求解即可.【详解】由题意得,x+2≠0,解得:x ≠-2,故选A.【点睛】本题考查了分式有意义的条件,熟练掌握“分母不为0时,分式有意义”是解题的关键. 3. 下列事件是必然事件的是( )A. 通常加热100℃时,水沸腾B. 篮球队员在罚球线上投篮一次,未投中C. 任意画一个三角形,其内角和为360°D. 经过信号灯时,遇到红灯【答案】A【解析】A 选项:通常加热到100℃时,水沸腾是必然事件,故本选项正确;B 选项:篮球队员在罚球线上投篮一次,未投中是随机事件,故本选项错误;C 选项:度量三角形内角和,结果是360°是不可能事件,故本选项错误;D 选项:经过信号灯时,遇到红灯是随机事件,故本选项错误.故选A .【点睛】本题考查了必然事件、不可能事件、随机事件的概念.用到的知识点为:必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4. 下列图形中,是中心对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据中心对称图形的定义和图形的特点即可求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.【点睛】本题考查了中心对称图形的概念:如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.掌握概念是解题关键.5. 如图,是一个几何体的主视图,则该几何体可能是()A. B. C. D.【答案】B【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.依题意,该几何体的主视图为三角形,易判断该几何体是一个圆锥.【详解】解:A的主视图上部是三角形,下部是矩形,故不符合题意;B的主视图是三角形,符合题意;C的主视图是两个矩形,故不符合题意;D的主视图是矩形,故不符合题意;故选:B.【点睛】本题考查了三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.6. 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中方程术是重要的数学成就.书中有一个方程问题今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗,问醇、行酒各得几何?意思是:今有美酒一斗的价格是50钱;普通酒一斗的价格是10钱.现在买两种酒2斗共付30钱,问买美酒、普通酒各多少?设买美酒x斗,则x的解为()A. 34B.23C.12D.14【答案】D【解析】【分析】设买美酒x斗,则买普通酒(2﹣x)斗,由买两种酒2斗共付30钱,列出方程可求解.【详解】解:由题意可得:50x+10(2﹣x)=30,解得:x=1 4故选:D.【点睛】本题考查了一元一次方程的应用,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.7. 一个口袋中装有四个完全相同的小球,把它们分别标号为1、2、3、4,随机摸出两个球,则摸出两个小球标号的和不小于5的概率是()A. 34B.23C.12D.13【答案】B【解析】【分析】用列表法列举出所有等可能出现的情况,从中找出“摸出两个小球标号的和不小于5”的结果数,进而求出概率.【详解】解:解:用列表法表示所有可能出现的结果如下:共有12种不同的结果数,其中两次的和不小于5的有8种,∴摸出两个颜色不同的小球的概率为812=23,故选:B.【点睛】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即mPn .8. 若二次函数y=mx2+2mx+m2+1(m<0)的图象经过点A(﹣2,y1)、B(0,y2)、C(1,y3),则关于y1、y2、y3的大小关系正确的是()A. y1=y2<y3B. y3<y1=y2C. y1<y2<y3D. y2<y1<y3【答案】B【解析】【分析】根据题目中二次函数的解析式,可以得到该函数的对称轴和函数图象的开口方向,从而可以得到y1、y2、y3的大小关系.【详解】解:∵二次函数y=mx2+2mx+m2+1=m(x+1)2+m2﹣m+1,m<0,∴该函数的对称轴为直线x=﹣1,开口向下,∵二次函数y=mx2+2mx+m2+1(m<0=的图象经过点A(﹣2,y1)、B(0,y2)、C(1,y3),(﹣1)﹣(﹣2)=1,0﹣(﹣1)=1,1﹣(﹣1)=2,∴y3<y1=y2,故选:B.【点睛】本题考查了二次函数的图象和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),当a>0时,开口向上,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大;当a<0时,开口向下,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小.9. 如图,在矩形ABCD中,AB=4,AD=8,点E、点F分别在边AD,BC上,且EF⊥AD,点B关于EF 的对称点为G点,连接EG,若EG与以CD为直径的⊙O恰好相切于点M,则AE的长度为()A. 310 C. 6 D. 66【答案】D【解析】【分析】设AE=x,则ED=8﹣x,易得四边形ABFE为矩形,则BF=x,利用对称性质得FG=BF=x,则CG=8﹣2x,再根据切线长定理得到EM=ED=8﹣x,GM=GC=8﹣2x,所以EG=16﹣3x,在Rt△EFG中利用勾股定理得到42+x2=(16﹣3x)2,然后解方程可得到AE的长.【详解】解:设AE=x,则ED=8﹣x,∵EF⊥AD,∴四边形ABFE为矩形,∴BF=x,∵点B关于EF的对称点为G点,∴FG=BF=x,∴CG=8﹣2x,∵∠ADC=∠BCD=90°,∴AD和BC为⊙O的切线,∵EG与以CD为直径的⊙O恰好相切于点M,∴EM=ED=8﹣x,GM=GC=8﹣2x,∴EG=8﹣x+8﹣2x=16﹣3x,在Rt△EFG中,42+x2=(16﹣3x)2,整理得x2﹣12x+30=0,解得x1=66,x2=6(舍去),即AE的长为66.故选:D.【点睛】本题考查了切线长定理、矩形的性质与判定、勾股定理、以及轴对称的知识.经过圆外一点的切线,这一点和切点之间的线段的长叫做这点到圆的切线长,从圆外一点引圆的两条切线,它们的切线长相等.10. 如图所示,三阶幻方是由1,2,3,4,5,6,7,8,9九个数字组成的一个三行三列的数表,要求其对角线、横行、纵向的和都相等,即为15,称这个幻方的幻和为15,四阶幻方是由1,2,3,…,14,15,16十六个数组成一个四行四列的数表,其对角线、横向、纵向的和都为同一个数,此数称为四阶幻方的幻和,那么此四阶幻方的幻和等于()A. 33B. 34C. 35D. 36【答案】B【解析】【分析】将1,2,3,…15,16十六个数填入表格中,使其对角线、横向、纵向的和都为同一个数即可求解.【详解】解:四阶幻方是由1,2,3,…15,16十六个数组成一个四行四列的数表如下:故此四阶幻方的幻和等于34,故选:B.【点睛】本题考查了规律型-数字的变化类,用到的知识点是有理数的加法,解答本题的关键是仔细观察所给式子,要求同学们能有一般得出特殊规律.二.填空题11. 327=.【答案】3【解析】试题分析:根据立方根的定义,求数a的立方根,也就是求一个数x,使得x3=a,则x就是a的一个立方根:∵33=27,3273=.12. 九年级某班40位同学的年龄如表所示:年龄(岁) 13 14 15 16则该班40名同学年龄的众数是_____.【答案】15【解析】【分析】根据众数是一组数据中出现次数最多的数据,据此判断即可.【详解】解:∵这组数据中15出现的次数最多,∴该班同学年龄的众数是15.故答案为:15.【点睛】本题考查了众数的定义,众数是一组数据中出现次数最多的数,众数可能没有,可能有1个,也可能有多个.13. 化简2a a -﹣242a a-的结果是_____. 【答案】2a a + 【解析】【分析】先通分,再根据同分母分式加减法法则计算.【详解】解:2a a -﹣242a a- =2(2)a a a -﹣242a a- =(2)(2)(2)a a a a +-- =2a a+, 故答案为:2a a +. 【点睛】本题考查了分式的加减运算,同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先把它们通分,变为同分母分式,再加减.分式运算的结果要化为最简分式或者整式.14. 如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE.若AE=AB ,则∠EBC 的度数为__________.【答案】30°.【解析】【详解】∵四边形ABCD是平行四边形∴AB∥DC,∠ABC=∠D∴∠DAB+∠D=180°,∵∠D=100°,∴∠DAB=80°, ∠ABC=100°又∵∠DAB的平分线交DC于点E∴∠EAD=∠EAB=40°∵AE=AB∴∠ABE=12(180°-40°)=70°∴∠EBC=∠ABC-∠ABE=100°-70°=30°.考点:1.角平分线的性质;2.平行四边形的性质.15. 抛物线y=a(x﹣h)2+k经过(﹣1,0)、(5,0)两点,则关于x的一元二次方程a(x+h+2)2+k=0的解是_____.【答案】x1=﹣1,x2=﹣7【解析】【分析】先利用关于y轴对称得到抛物线y=a(x+h)2+k与x轴的交点的坐标为(1,0),(﹣5,0),由于把抛物线抛物线y=a(x+h)2+k向左平移两个单位得到y=a(x+h+2)2+k,所以抛物线y=a(x+h+2)2+k与x轴的交点的坐标为(﹣1,0),(﹣7,0),然后根据抛物线与x轴的交点问题求解.【详解】解:∵抛物线y=a(x﹣h)2+k与x轴的交点的坐标为(﹣1,0)、(5,0),∴抛物线y=a(x+h)2+k与x轴的交点的坐标为(1,0),(﹣5,0),∵把抛物线抛物线y=a(x+h)2+k向左平移两个单位得到y=a(x+h+2)2+k,∴抛物线y=a(x+h+2)2+k与x轴的交点的坐标为(﹣1,0),(﹣7,0),∴关于x的一元二次方程a(x+h+2)2+k=0的解为x1=﹣1,x2=﹣7.故答案为:x1=﹣1,x2=﹣7.【点睛】本题考查抛物线与x轴的交点、二次函数的轴对称变化、二次函数的平移、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.16. 如图,四边形ABCD中,BD与AC相交于E点,AE=CE,BC=AC=DC,则tan∠ABD•tan∠ADB=_____.【答案】1 3【解析】【分析】由BC=AC=DC知A、B、D在以C为圆心的圆上,延长AC交⊙C于点F,连接DF、BF,由圆周角定理知∠ADF=∠ABF=90°,∠ABD=∠AFD、∠ADB=∠AFB,证△ABE∽△DFE、△ADE∽△BFE得AB DF=AEDE、ADBF=DEEF,从而由tan∠ABD•tan∠ADB=tan∠AFD•tan∠AFB=AD ABDF BF⋅=AD ABBF DF⋅=AE DEDEEF⋅=AEEF可得答案.【详解】解:∵BC=AC=DC,∴点A、B、D在以C为圆心的圆上,如图所示,延长AC交⊙C于点F,连接DF、BF、则∠ADF=∠ABF=90°,∠ABD=∠AFD、∠ADB=∠AFB,∵∠AEB=∠DEF、∠AED=∠BEF,∴△ABE∽△DFE,△ADE∽△BFE,∴AB AEDF DE=、AD DEBF EF=,则tan∠ABD•tan∠ADB=tan∠AFD•tan∠AFB=AD AB DF BF⋅=AD AB BF DF⋅=AEDEDEEF⋅=AE EF,设AE=CE=x,则AC=CF=2x,∴AF=4x,∴EF=AF﹣AE=3x,则tan∠ABD•tan∠ADB=AEEF=13,故答案为:13.【点睛】本题主要考查圆周角定理、相似三角形的判定与性质及三角函数的定义,根据圆周角定理证得两对三角形相似是解题的关键.三.解答题17. 计算:3a2•2a4+(3a3)2﹣14a6.【答案】a6【解析】【分析】直接利用单项式乘以单项式运算法则计算得出答案.【详解】解:原式=6a6+9a6﹣14a6=a6.【点睛】本题考查了单项式的乘法、积的乘方、以及合并同类项,熟练掌握运算法则是解题的关键.18. 如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.【答案】∠AED=∠ACB,见解析【解析】【分析】首先判断∠AED与∠ACB是一对同位角,然后根据已知条件推出DE//BC,得出两角相等.【详解】解:∠AED=∠ACB.理由:∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知),∴∠2=∠4,∴EF//AB(内错角相等,两直线平行),∴∠3=∠ADE(两直线平行,内错角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代换),∴DE//BC(同位角相等,两直线平行),∴∠AED=∠ACB(两直线平行,同位角相等).【点睛】本题主要考查了平行线的性质与判定的综合应用,熟练掌握平行线的性质与判定方法是解答本题的关键.解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.19. 武汉某中学开展了周末网课学习活动,为了解学生网课学习效果进行了抽样测试,该校教导处把测试结果分为A(优秀)、B(良好)、C(不合格)三种类型.如图是对该校初一(1)班和初一(2)班全体同学进行测试后绘制的两幅不完整的统计图,请根据图中信息解答下列问题.(1)此次被调查的学生总人数是人;扇形统计图中代表类型C的扇形的圆心角为;(2)补全折线统计图;(3)如果该校初一年级学生共有1200人,试根据此次调查结果估计该校初一年级中C类学生约为多少人?【答案】(1)100,36°;(2)见解析;(3)120人【解析】【分析】(1)根据B类的人数和所占的百分比求出总人数,根据A类的人数求出A类人数所占的百分比,从而得出C类的人数所占的百分比,再乘以360°即可得出类型C的扇形的圆心角度数;(2)用总人数乘以C类所占的百分比求出C类的人数,从而从而求出C类中(1)班的人数,补全统计图;(3)用该校初一年级学生总数乘以C类学生所占的百分比即可得出答案.【详解】解:(1)由扇形统计图知B类型人数所占比例为58%,从折线图知B类型总人数是26+32=58人,所以此次被调查的学生总人数=58÷58%=100人;A类的人数有:18+14=32人,故A类所占的百分比是:32÷100=32%,所以C类所占的百分比是:1﹣58%﹣32%=10%,扇形统计图中代表类型C的扇形的圆心角为:360°×10%=36°,故答案为:100,36°;(2)初一(1)班C类的人数有:10%×100﹣2=8人,补图如下:(3)根据题意得:1200×10%=120(名),答:此次调查结果估计该校初一年级中C类学生约为120人.【点睛】本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.也考查了扇形统计图和用样本估计总体.20. 如图所示,△ABC与点O在10×10的网格中的位置如图所示(1)画出△ABC绕点O逆时针旋转90°后的图形;(2)画出△ABC绕点O逆时针旋转180°后的图形;(3)若⊙M能盖住△ABC,则⊙M的半径最小值为.【答案】(1)见解析;(2)见解析;(3)32 2【解析】【分析】(1)利用网格特点和旋转的性质画出点A、B、C的对应点A′、B′、C′,于是可得到△A′B′C′;(2)利用网格特点和中心对称的性质画出点A、B、C的对应点A″、B″、C″,于是可得到△A″B″C″;(3)以AC为直径的圆为能盖住△ABC的最小圆,然后利用勾股定理计算出AC即可.【详解】解:(1)如图,△A′B′C′为所作;(2)如图,△A″B″C″为所求;(3)如图,当点M为AC的中点时,此时⊙M是能盖住△ABC的最小的圆,∵AB=2233=32,∴⊙M的半径为32.故答案为322.【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了勾股定理和圆的知识.21. 如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,与AC平行的圆O的一条切线交CD的延长线于点M,交AB的延长线于点E,切点为F,连接AF交CD于点N.(1)求证:CA=CN;(2)连接DF,若cos∠DFA=45,AN=210,求圆O的直径的长度.【答案】(1)证明见解析;(2)503.【解析】【分析】(1)连接OF,根据切线的性质结合四边形内角和为360°,即可得出∠M+∠FOH=180°,由三角形外角结合平行线的性质即可得出∠M=∠C=2∠OAF,再通过互余利用角的计算即可得出∠CAN=90°﹣∠OAF=∠ANC,由此即可证出CA=CN;(2)连接OC,由圆周角定理结合cos∠DFA=45,AN=10,即可求出CH、AH的长度,设圆的半径为r,则OH=r﹣6,根据勾股定理即可得出关于r的一元一次方程,解之即可得出r,再乘以2即可求出圆O直径的长度.【详解】解:(1)连接OF,则∠OAF=∠OFA,如图所示.∵ME与⊙O相切,∴OF⊥ME.∵CD⊥AB,∴∠M+∠FOH=180°.∵∠BOF=∠OAF+∠OFA=2∠OAF,∠FOH+∠BOF=180°,∴∠M=2∠OAF.∵ME∥AC,∴∠M=∠C=2∠OAF.∵CD⊥AB,∴∠ANC+∠OAF=∠BAC+∠C=90°,∴∠ANC=90°﹣∠OAF,∠BAC=90°﹣∠C=90°﹣2∠OAF,∴∠CAN=∠OAF+∠BAC=90°﹣∠OAF=∠ANC,∴CA=CN.(2)连接OC,如图2所示.∵cos∠DFA=45,∠DFA=∠ACH,∴CHAC=45.设CH=4a,则AC=5a,AH=3a,∵CA=CN,∴NH=a,∴2222=(3)=10210AH NH a a a++=∴a=2,AH=3a=6,CH=4a=8.设圆的半径为r,则OH=r﹣6,在Rt△OCH中,OC=r,CH=8,OH=r﹣6,∴OC2=CH2+OH2,r2=82+(r﹣6)2,解得:r=253,∴圆O的直径的长度为2r=503.【点睛】本题考查切线的性质;勾股定理;圆周角定理;解直角三角形.22. 某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.【答案】(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.【解析】【分析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.【详解】(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥1003,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x 为正数,∴x=34时,y 取得最大值,最大值为46600,答:该商店购进A 型34台、B 型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100﹣x ),即y=(a ﹣100)x+50000, 3313≤x≤60, ①当0<a <100时,y 随x的增大而减小, ∴当x=34时,y 取最大值, 即商店购进34台A 型电脑和66台B 型电脑的销售利润最大.②a=100时,a ﹣100=0,y=50000, 即商店购进A 型电脑数量满足3313≤x≤60的整数时,均获得最大利润; ③当100<a <200时,a ﹣100>0,y 随x 的增大而增大,∴当x=60时,y 取得最大值.即商店购进60台A 型电脑和40台B 型电脑的销售利润最大.【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键. 23. 如图,Rt ABC ∆中,90ACB ∠=︒,CE AB ⊥于E ,BC mAC nDC ==,D BC 边上一点.(1)当2m =时,直接写出CE BE = ,AE BE = . (2)如图1,当2m =,3n =时,连DE 并延长交CA 延长线于F ,求证:32EF DE =. (3)如图2,连AD 交CE 于G ,当AD BD =且32CG AE =时,求m n 的值. 【答案】(1)12,14;(2)证明见解析;(3)34m n =. 【解析】分析】 (1)利用相似三角形的判定可得BCE CAE BAC ∆∆∆∽∽,列出比例式即可求出结论;(2)作//DH CF 交AB 于H ,设AE a =,则4BE a =,根据平行线分线段成比例定理列出比例式即可求出AH 和EH ,然后根据平行线分线段成比例定理列出比例式即可得出结论;(3)作DH AB ⊥于H ,根据相似三角形的判定可得AEG CEA ∆∆∽,列出比例式可得2AE EG EC =,设3CG a =,2AE a =,EG x =,即可求出x 的值,根据平行线分线段成比例定理求出::5:8BD BC DH CE ==,设5BD AD b ==,8BC b =,3CD b =,然后根据勾股定理求出AC ,即可得出结论.【详解】(1)如图1中,当2m =时,2BC AC =.CE AB ⊥,90ACB ∠=︒,BCE CAE BAC ∴∆∆∆∽∽, ∴12CE AC AE EB BC EC ===, 2EB EC ∴=,2EC AE =,∴14AE EB =. 故答案为:12,14. (2)如图11-中,作//DH CF 交AB 于H .2m =,3n =,∴tan∠B=12CE ACBE BC==,tan∠ACE= tan∠B=12AECE=∴BE=2CE ,12AE CE=4BE AE∴=,2BD CD=,设AE a=,则4BE a=,//DH AC,∴2BH BDAH CD==,53AH a∴=,5233EH a a a=-=,//DH AF,∴3223EF AE aDE EH a===,32EF DE∴=.(3)如图2中,作DH AB⊥于H.90ACB CEB∠=∠=︒,90ACE ECB∴∠+∠=︒,90B ECB∠+∠=︒,ACE B∴∠=∠,DA DB=,EAG B∠=∠,EAG ACE∴∠=∠,90AEG AEC∠=∠=︒,AEG CEA∴∆∆∽,2AE EG EC∴=,32CG AE=,设3CG a=,2AE a=,EG x=,则有24(3)a x x a=+,解得x a =或4a -(舍弃), 1tan tan tan 2EG EAG ACE B AE ∴∠=∠=∠==, 4EC a ∴=,8EB a =,10AB a =,DA DB =,DH AB ⊥,5AH HB a ∴==,52DH a ∴=, //DH CE ,::5:8BD BC DH CE ∴==,设5BD AD b ==,8BC b =,3CD b =,Rt ACD ∆中,224AC AD CD b =-=,:4:3AC CD ∴=,mAC nDC =,::4:3AC CD n m ∴==,∴34m n =. 【点睛】此题考查的是相似三角形的应用和锐角三角函数,此题难度较大,掌握相似三角形的判定及性质、平行线分线段成比例定理和利用锐角三角函数解直角三角形是解决此题的关键.24. 已知抛物线y =x 2+bx+c 与x 轴交于点A(4,﹣5).(1)如图,过点A 分别向x 轴、y 轴作垂线,垂足分别为B 、C ,得到矩形ABOC ,且抛物线经过点C . ①求抛物线的解析式.②将抛物线沿直线x =m (2>m >0)翻折,分别交线段OB 、AC 于D ,E 两点.若直线DE 刚好平分矩形ABOC的面积,求m 的值.(2)将抛物线旋转180°,使点A 的对应点为A 1(m ﹣2,n ﹣4),其中m≤2.若旋转后的抛物线仍然经过点A ,求旋转后的抛物线顶点所能达到最低点时的坐标.【答案】(1)①y =x 2﹣4x ﹣5,②34;(2)(2,﹣1)【解析】【分析】(1)①由矩形的性质确定点C 的坐标,将点C 、A 的坐标代入y =x 2+bx+c 即可求出抛物线的解析式; ②求出抛物线y =x 2﹣4x ﹣5的对称轴,求出翻折后的抛物线的对称轴,可写出翻折后的解析式,求出D ,E 两点坐标,因为直线DE 刚好平分矩形ABOC 的面积,则必过矩形对角线的交点Q(2,﹣52),则可列出关于m 的方程,即可求出m 的值;(2)由点A 、A 1的坐标可求出旋转中心的坐标,进一步推出原顶点的对称点,可写出旋转后的抛物线解析式,因为旋转后的抛物线仍然经过点A ,将点A 的坐标代入旋转后的解析式,可得关于m 、n 的等式,将m =2代入,可求出n 的值,即可写出旋转后的抛物线顶点所能达到最低点时的坐标.【详解】解:(1)①∵点A(4,﹣5),且四边形ABOC 为矩形,∴C(0,﹣5),∴抛物线的解析式为y =x 2+bx ﹣5,将点A(4,﹣5)代入y =x 2+bx ﹣5,得,b =﹣4,∴抛物线的解析式为y =x 2﹣4x ﹣5;②在抛物线y =x 2﹣4x ﹣5中,对称轴为直线x =﹣2b a=2, ∵抛物线y =x 2﹣4x ﹣5沿直线x =m(2>m >0)翻折,∴设翻折后的抛物线对称轴为直线x =n , ∴22n +=m , ∴n =2m ﹣2,∴翻折后的抛物线为y =[x ﹣(2m ﹣2)]2﹣9,在y =[x ﹣(2m ﹣2)]2﹣9中,当y =0时,x 1=2m+1,x 2=2m ﹣5;当y =﹣5时,x 1=2m ,x 2=2m ﹣4; ∵如下图,抛物线y =[x ﹣(2m ﹣2)]2﹣9分别交线段OB 、AC 于D ,E 两点,∴D(2m+1,0),E(2m ,﹣5),∵直线DE 刚好平分矩形ABOC 的面积,∴必过矩形对角线的交点Q(2,﹣52), 即2122m m ++=2,。

最新人教版中考数学仿真模拟考试卷含答案

最新人教版中考数学仿真模拟考试卷含答案

最新人教版中考数学仿真模拟考试卷含答案一、单选题1.2的相反数是()A.2B.C.﹣2D.﹣2.下列运算正确的是()A.a6÷a2=a3B.3a2b﹣a2b=2C.(﹣2a3)2=4a6D.(a+b)2=a2+b23.设直线是函数(,,是实数,且)图象的对称轴,则正确的结论是().A.若,则B.若,则C.若,则D.若,则4.如图,把一块含有45°角的直角三角板的两个顶点分别放在直尺的一组对边上,如果∠2=25°,那么∠1的度数是()A.30°B.25°C.20°D.15°5.数据70、71、72、73的标准差是()A.B.2C.D.6.已知两个不同的一元二次方程的判别式互为相反数,下列判断正确的是()A.两个方程一定都有解B.两个方程一定没有解C.两个方程一定有公共解D.两个方程至少一个方程有解.7.将一个直角三角形三边扩大3倍,得到的三角形一定是( )A.直角三角形B.锐角三角形C.钝角三角形D.以上三种情况都有可能8.下图是由7个相同的小正方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.9.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当AB=2,∠B=60时,AC的长是()A.B.C.D.10.为了迎接杭州G20峰会,某校开展了设计“YJG20”图标的活动,下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.二、填空题11.已知直线:和直线:,其中k为不小于2的自然数.当、3、4,,2018时,设直线、与x轴围成的三角形的面积分别为,,,,,则__________.12.如图,AD是△ABC的中线,△ADC=60°,BC=6,把△ABC沿直线AD折叠,点C落在C′处,连接BC′,那么BC′的长为.13.在一个不透明的盒子中装有个除颜色外完全相同的球,这个球只有3个红球,若每次将球充分搅匀后,任意摸出一个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在左右,则的值大约为___.14.分解因式:2x2-12xy+18y2=__________.15.不等式组的解集是_________.16.数据70700用科学计数法可表示为___________________.用四舍五入法,50.2462≈__________(精确到0.01).三、解答题17.已知抛物线,L:y=ax2+bx﹣3与x轴交于A(﹣1,0)、B两点,与y轴交于点C,且抛物线L的对称轴为直线x=1.(1)抛物线的表达式;(2)若抛物线L′与抛物线L关于直线x=m对称,抛物线L′与x轴交于点A′,B′两点(点A′在点B′左侧),要使S△ABC =2S△A′BC,求所有满足条件的抛物线L′的表达式.18.张老师为了解学生课前预习的情况,对部分学生进行了跟踪调查,并将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)张老师一共调查了名同学?(2)C类女生有名,D类男生有名;(3)为了共同进步,张老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选两位同学恰好都是男同学的概率.19.无锡火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物往徐州,这列货车可挂A、B两种不同规格的货厢50节,已知用一节A型货厢的运费是0.5万元,用一节B 型货厢的运费是0.8万元.(1)设运输这批货物的总运费为y (万元),用A型货箱的节数为x (节),试写出y与x之间的函数关系式;(2)已知甲种货物35吨和乙种货物15吨,可装满一节A型货厢,甲种货物25吨和乙种货物35。

新人教版中考数学模拟试卷(附参考答案)

新人教版中考数学模拟试卷(附参考答案)

新人教版中考数学模拟试卷(满分:150分 ;考试时间:120分钟)班级___________姓名__________学号________一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在相应位置上)1.下列各式结果是负数的是( )A .-(-3)B .3--C .23-D .2(3)-2.下列计算正确的是( )A .532a a a =+B .632a a a =⋅C .(-2a 2)3=-6a 6D .a 3·a 3=a 63.PM 2.5是指大气中直径小于或等于0.0000025 m 的颗粒物,将0.0000025用科学记数法表示为( )A . 5105.2⨯B . 6105.2⨯C . -52.510⨯D . -62.510⨯ 4.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x ,根据题意所列方程正确的是( )A .236(1x)3625-=-B .36(12x)25-=C .236(1x)25-=D .236(1x )25-=5.下列水平放置的四个几何体中,主视图与其它三个不相同的是( )A B C D6.如图,在平面直角坐标系中,菱形OACB 的顶点O 在原点,点C 的坐标为(4,0),点B 的纵坐标是−1,则顶点A 坐标是( )A .(2,1)B .(1,−2)C .(1,2)D .(2,-1)7.矩形ABCD 中,AB =4,AD =3,以AB 为直径在矩形内作半圆。

DE 切⊙O 于点E (如图),则tan ∠CDF 的值为( ).A .43B .125C .135D .94 8.如图,分别过点P i (i ,0)(i =1、2、…、n )作x 轴的垂线,交212y x =的图象于点A i ,交直线12y x =-于点B i .则1122111n n A B A B A B +++ 的值为( ) A .21n n + B .2 C .2(1)n n + D .21n +(第7题)二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在相应位置上)9.函数y =x 的取值范围是 .10.因式分解:3a a -= .11.一组数据3,2,x ,2,6,3的唯一众数是2,则这组数据的中位数为 .12.不等式组2439x x +<⎧⎨-<⎩的解集是13.已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是 .14.星期天小川和他爸爸到公园散步,小川身高是160cm ,在阳光下他的影长为80cm ,爸爸身高180cm ,则此时爸爸的影长为 cm .15.已知Rt △ABC ,直角边AC 、BC 的长分别为3cm 和4cm ,以AC 边所在的直线为轴将△ABC旋转一周,则所围成的几何体的侧面积是 2cm .16.把二次函数2)2(+=x y 的图像沿y 轴向上平移1个单位长度,与y 轴的交点为C ,则C 点坐标是 .17.如图,在△ABC 中,∠C =90°,AB =10,3tan 4A =,经过点C 且与边AB 相切的动圆与CA 、CB 分别交于点D 、E ,则线段DE 长度的最小值是 .18. 如图,正方形ABCD 中,M 、N 分别为BC 、CD 的中点,连结AM 、AC 交BN 与E 、F ,则EF :FN 的值是 .三.解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)19.(本题满分8分) 计算或解方程:(第8题)(第6题)(第18题)第17题 第18题。

2021年最新人教版中考数学模拟试卷及答案(10套)

2021年最新人教版中考数学模拟试卷及答案(10套)

B. (a2 )3 a8
C. a3 a2 a
D. a b2 a2 b2
3.如图,线段 AC 与 BD 相交于点 O,且 OA=OC,请添加一个条件,使△OAB≌△OCD,这个
条件可以是(

A.∠A=∠D
B.OB=OD
C.∠B=∠C
D.AB=DC
D A
O
B
C
第 3 题图
第 5 题图
第 10 题图
1-10 11-16 17 18 19 20 21 22 23 24
得分
卷Ⅰ(选择题)
一、选择题(每小题 3 分,共 30 分)
1.实数 3 , 2 ,20, ,0.121221222……中,有理数的个数是( ) 6
A.2
B.3
C.4
D.5
2.下列运算正确的是 ( )
A. a 2 a3 a5
在 x 轴上取一点 P,过点 P 作直线 OA 的垂线 l,以直线 l
为对称轴,线段 OB 经轴对称变换后的像是 O′B′,设 P(t, 0) 当 O′B′ 与 双 曲 线 有 交 点 时 , t 的 取 值 范 围
第 15 题图


16.边长为 1 的正方形 OABC 的顶点 A 在 x 正半轴上,点 C 在 y
十年共增加 1821700 万人。“8700400”用科学记数法可表示为

12.分解因式 2x2—4x+2 的最终结果是

13.一组数据 1,-2,x 的平均数是 0,那么这组数据的方差是

14.关于 x 的方程 2x m 4 的解是负数,则 m 的取值范围为_____________. x2
15.如图,将一块直角三角板 OAB 放在直角坐标系中,B(1,0), ∠OAB=30°,点 A 在第一象限,过点 A 的双曲线为 y=k, x

人教版中考数学模拟考试试题卷(含答案)

人教版中考数学模拟考试试题卷(含答案)

人教版中考数学模拟考试试题卷数学一、选择题(本大题共10小题,共30.0分)1.−110的倒数是()A. −10B. 10C. −110D. 1102.四个长宽分别为a,b的小长方形(白色的)按如图所示的方式放置,形成了一个长、宽分别为m、n的大长方形,则下列各式不能表示图中阴影部分的面积是()A. mn−4abB. mn−2ab−amC. an+2bn−4abD. a2−2ab−am+mn3.下列运算,正确的是()A. 2x+3y=5xyB. (x−3)2=x2−9C. (xy2)2=x2y4D. x6÷x3=x24.若√−ab=√a·√−b成立,则()A. a≥0,b≥0B. a≥0,b≤0C. ab≥0D. ab≤05.对于命题“若a2=b2”,则“a=b”下面四组关于a,b的值中,能说明这个命题是假命题的是()A. a=3,b=3B. a=−3,b=−3C. a=3,b=−3D. a=−3,b=−26.为了了解某校七年级学生的体能情况,随机调查了其中100名学生,测试学生在1分钟内跳绳的次数,并绘制成如图所示的频数分布直方图.请根据图形计算,跳绳次数(x)在120≤x<200范围内人数占抽查学生总人数的百分比为()1A. 43%B. 50%C. 57%D. 73% 7. AD 是△ABC 的中线,E 是AD 上一点,AE =14AD ,BE 的延长线交AC 于F ,则AF AC 的值为( ) A. 14B. 15C. 16D. 178. 已知{3x +2y =k x −y =4k +3,如果x 与y 互为相反数,那么( ) A. k =0 B. k =−34 C. k =−32 D. k =34 9. 如图,正三角形ABC 的边长为3,将△ABC 绕它的外心O 逆时针旋转60°得到△A′B′C′,则它们重叠部分的面积是( )A. 2√3B. 34√3C. 32√3D. √310. 已知抛物线y =ax 2−2ax −2开口向下,(−2,y 1)、(3,y 2)、(0,y 3)为抛物线上的三个点,则( ) A. y 3>y 2>y 1 B. y 1>y 2>y 3 C. y 2>y 1>y 3 D. y 1>y 3>y 2二、填空题(本大题共5小题,共20.0分)11. 如图,数轴上A ,B 两点表示的数是互为相反数,且点A 与点B 之间的距离为4个单位长度,则点A 表示的数是______.12. 在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,成绩比较稳定的是______运动员.313. 在△ABC 中,∠A =80°,当∠B =________________时,△ABC 是等腰三角形.14. 如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,P 为AB边上不与A ,B 重合的一动点,过点P 分别作PE ⊥AC 于点E ,PF ⊥BC 于点F ,则线段EF 的最小值是______.15. 已知关于x 、y 的方程组{x +2y =1−a x −y =2a −5,则代数式22x ⋅4y =______. 三、解答题(本大题共10小题,共100.0分)16. (8分)如图,现有5张写着不同数字的卡片,请按要求完成下列问题:17. (1)若从中取出2张卡片,使这2张卡片上数字的乘积最大,则乘积的最大值是______.18. (2)若从中取出2张卡片,使这2张卡片上数字相除的商最小,则商的最小值是______.19. (3)若从中取出4张卡片,请运用所学的计算方法,写出两个不同的运算式,使四个数字的计算结果为24.20. (10分)在“家电下乡”活动期间,凡购买指定家用电器的农村居民均可得到该商品售价13%的财政补贴.村民小李购买了一台A 型洗衣机,小王购买了一台B型洗衣机,两人一共得到财政补贴351元,又知B型洗衣机售价比A型洗衣机售价多500元.试求:21.(1)A型洗衣机和B型洗衣机的售价各是多少元?(2)小李和小王购买洗衣机除财政补贴外实际各付款多少元?22.(10分)已知A(m,0),B(0,n),满足:(n−4)2+√m+n=0.(1)求m和n的值;(2)如图,点D是A点左侧的x轴上一点,连接BD,以BD为直角边作等腰直角△BDE,连接AB、EA,EA交BD于点G.①若OA=AD,求点E的坐标;②求证:∠AED=∠ABD.23.(10分)2020年5月5日,为我国载人空间站工程研制的长征五号运载火箭在海南文昌首飞成功.运較火箭从地面O处发射,当火箭到达点A时,地面D处的雷达站测得AD=4000米,仰角为30°.3秒后,火箭直线上升到达点B处,此时地面C处的雷达站测得B处的仰角为45°.已知C,D两处相距460米,求火箭从A到B 处的平均速度(结果精确到1米/秒,参考数据:√3≈1.732,√2≈1.414).24.(10分)某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.25.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;26.(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)27.(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型5活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?28.(8分)如图,点A和点B在数轴上对应的数分别为a和b,且(a+2)2+|b−8|=0(1)线段AB的长为______.x+1的解,在线段AB上是 (2)点C在数轴上所对应的为x,且x是方程x−1=67CD?若存在,请求出点D在数轴上所对应的数,若不存否存在点D.使AD+BD=56在:请说明理由:______.29.(3)在(2)的条件下,线段AD和BC分别以6个单位长度/秒和5个单位长度/秒的速度同时向右运动,运动时间为t秒,点M为线段AD的中点,点N为线段BC的中点,若MN=5,求t的值.30.(10分)如图,等边△ABC的边长为15cm,现有两点M,N分别从点A,点B同时出发,沿三角形的边顺时针运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M,N同时停止运动(1)点M、N运动几秒后,M,N两点重合?(2)点M、N运动几秒后,△AMN为等边三角形?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M,N运动的时间.的图象交于A(2,3),31.(10分)如图,一次函数y=kx+b与反比例函数y =mxB(−3,n)两点.32.7(1)求一次函数与反比例函数的表达式;(2)根据所给条件,请直接写出不等式kx+b>m的解集;x(3)过点B作BC⊥x轴,垂足为C,求△ABC的面积.33.(12分)如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上.(1)将△ABC向右平移6个单位长度得到△A1B1C1,请画出△A1B1C1;(2)画出△A1B1C1关于点O的中心对称图形△A2B2C2;(3)若将△ABC绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.34.(12分)某水果店11月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.12月份,这两种水果的进价上调为:甲种水果10元/千克,乙种水果20元/千克.(1)若该店12月份购进这两种水果的数量与11月份都相同,将多支付货款300元,求该店11月份购进甲、乙两种水果分别是多少千克?(2)若12月份将这两种水果进货总量减少到120千克,设购进甲种水果a千克,需要支付的货款为w元,求w与a的函数关系式;(3)在(2)的条件下,若甲种水果不超过90千克,则12月份该店需要支付这两种水果的货款最少应是多少元?9答案1.A2.A3.C4.B5.C6.C7.D8.C9.C 10.A 11.−212.甲13.80°或50°或20°14.4.815.1416.(1)21 ;(2) −7 ;(3)−7,−3,1,2;−3,1,2,5. 17.解:(1)设A 型洗衣机的售价为x 元,B 型洗衣机的售价为y 元. 根据题意可列方程组:,解得:{x =1100y =1600 答:A 型洗衣机的售价为1100元,B 型洗衣机的售价为1600元.(2)小李实际付款为:1100×(1−13%)=957(元);小王实际付款为:1600×(1−13%)=1392(元).答:小李和小王购买洗衣机各实际付款957元和1392元. 18.(1)解:∵(n −4)2+√m +n =0,∴n −4=0,m +n =0,解得m =−4,n =4,∴m =−4,n =4;(2)①证明:∵m =−4,n =4,∴A(−4,0),B(0,4),∴OA =OB =4,∵OA =AD ,∴OD =8,如图,过点E 作EH ⊥x 轴于点H.则∠EDH +∠DEH =90°.∵∠EDB=90°,∴∠EDH+∠BDO=90°,∴∠BDO=∠DEH.在△EHD和△DOB中,{DEH=∠BDO∠DHE=∠BOD=90°DE=BD,∴△EHD≌△DOB(AAS).∴EH=OD=8,DH=OB=4,∴OH=OD+DH=8+4=12,∴E(−12,8);②证明:如图,∵△EHD≌△DOB,∴∠DEH=∠BDO,∵DH=OB=OA=4,EH=OD.而AH=DH+AD=OA+AD=OD.∴EH=AH.∴△EHA为等腰直角三角形,∴∠AEH=45°=∠BAO,又∵∠BAO=∠BDA+∠ABD,∠AEH=∠AED+∠DEH,∴∠AED=∠ABD.19.解:设火箭从A到B处的平均速度为x米/秒,根据题意可知:AB=3x,在Rt△ADO中,∠ADO=30°,AD=4000,∴AO=2000,∴DO=2000√3,∵CD=460,∴OC=OD−CD=2000√3−460,在Rt△BOC中,∠BCO=45°,∴BO=OC,11∵OB=OA+AB=2000+3x,∴2000+3x=2000√3−460,解得x≈335(米/秒).答:火箭从A到B处的平均速度为335米/秒.20.解:(1)∵长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.∴OH=AB=3,∴EO=EH−OH=4−3=1,∴E(0,1),D(2,0),∴该抛物线的函数表达式y=kx2+1,把点D(2,0)代入,得k=−14,∴该抛物线的函数表达式为:y=−14x2+1;(2)∵GM=2,∴OM=OG=1,∴当x=1时,y=34,∴N(1,34),∴MN=34,∴S矩形MNFG =MN⋅GM=34×2=32,∴每个B型活动板房的成本是:425+32×50=500(元).答:每个B型活动板房的成本是500元;(3)根据题意,得w=(n−500)[100+20(650−n)10] =−2(n−600)2+20000,∵每月最多能生产160个B型活动板房,。

2024年全新九年级数学上册模拟试卷及答案(人教版)

2024年全新九年级数学上册模拟试卷及答案(人教版)

专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x^3 6x^2 + 9x 1,则f'(x) = ( )A. 3x^2 12x + 9B. 3x^2 12x + 12C. 3x^2 9x + 6D. 3x^2 9x + 92. 若a, b为实数,且a ≠ b,则方程ax^2 + bx + 1 = 0的解为()A. x = 1 或 x = 1B. x = 1 或 x = 1/2C. x = 1 或 x = 1/2D. x = 1 或 x = 1/23. 设集合A = {x | x^2 3x + 2 = 0},集合B = {x | x^2 2x3 = 0},则A ∩ B = ()A. {1, 2}B. {1, 1}C. {2, 1}D. {1, 3}4. 若等差数列{an}的前n项和为Sn = n^2 + n,则a1 = ()A. 1B. 2C. 3D. 45. 在平面直角坐标系中,点P(2, 3)关于原点的对称点为()A. (2, 3)B. (2, 3)C. (2, 3)D. (2, 6)二、判断题(每题1分,共5分)1. 方程x^2 4x + 4 = 0的解为x1 = x2 = 2。

()2. 函数f(x) = x^3 3x^2 + 3x 1在区间(∞, +∞)上单调递增。

()3. 若a, b为实数,且a ≠ b,则方程ax^2 + bx + 1 = 0的解必定为实数。

()4. 等差数列的前n项和为Sn = n(a1 + an)/2。

()5. 在平面直角坐标系中,点P(2, 3)关于x轴的对称点为P'(2,3)。

()三、填空题(每题1分,共5分)1. 若函数f(x) = x^3 3x^2 + 3x 1,则f'(x) = _______。

2. 方程x^2 4x + 4 = 0的解为x1 = _______,x2 = _______。

3. 等差数列{an}的前n项和为Sn = n^2 + n,则a1 = _______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档