等差数列测试题百度文库

合集下载

等差数列练习含答案

等差数列练习含答案

第一章 §2 第1课时 等差数列一、选择题1.等差数列1,-1,-3,-5,…,-89,它的项数为( ) A .92 B .47 C .46 D .45[答案] C[解析] ∵a 1=1,d =-1-1=-2, ∴a n =1+(n -1)·(-2)=-2n +3, 由-89=-2n +3,得n =46.2.已知数列3,9,15,…,3(2n -1),…,那么81是它的第( ) A .12项 B .13项 C .14项 D .15项[答案] C[解析] 由3(2n -1)=81,解得n =14.3.在等差数列{a n }中,a 2=-5,a 6=a 4+6,则a 1等于( ) A .-9 B .-8 C .-7 D .-4[答案] B[解析] 由题意,得⎩⎪⎨⎪⎧a 1+d =-5a 1+5d =a 1+3d +6,解得a 1=-8.4.如果数列{a n }是等差数列,则( ) A .a 1+a 8<a 4+a 5 B .a 1+a 8=a 4+a 5 C .a 1+a 8>a 4+a 5 D .a 1a 8=a 4a 5[答案] B[解析] 设公差为d ,则a 1+a 8-a 4-a 5=a 1+a 1+7d -a 1-3d -a 1-4d =0,∴a 1+a 8=a 4+a 5.二、填空题5.一个等差数列的第5项a 5=10,且a 1+a 2+a 3=3,则a 1=________,d =________. [答案] -2,3[解析] 由题意得⎩⎪⎨⎪⎧a 5=a 1+4d =10a 1+a 1+d +a 1+2d =3,即⎩⎪⎨⎪⎧ a 1+4d =10a 1+d =1∴⎩⎪⎨⎪⎧a 1=-2d =3. 6.(2013·广东卷)在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________. [答案] 20[解析] 设公差为d ,则a 3+a 8=2a 1+9d =10, 3a 5+a 7=4a 1+18d =2(2a 1+9d )=20. 三、解答题7.在等差数列{a n }中,已知a 5=10,a 15=25,求a 25.[解析] 方法一:设数列{a n }的首项为a 1,公差为d ,则根据题意可得⎩⎪⎨⎪⎧a 1+4d =10,a 1+14d =25.解这个方程组,得a 1=4,d =32.∴这个数列的通项公式为a n =4+32×(n -1),即a n =32n +52.∴a 25=32×25+52=40.方法二:由题意可知:a 15=a 5+10d ,即25=10+10d , ∴10d =15.又∵a 25=a 15+10d ,∴a 25=25+15=40. 8.已知数列{a n }满足a 1=2,a n +1=2a na n +2,(1)数列{1a n }是否为等差数列?说明理由.(2)求a n .[解析] (1)数列{1a n }是等差数列,理由如下:∵a 1=2,a n +1=2a n a n +2,∴1a n +1=a n +22a n =12+1a n ,∴1a n +1-1a n =12,即{1a n }是首项为1a 1=12,公差为d =12的等差数列.(2)由上述可知1a n =1a 1+(n -1)d =n2,∴a n =2n.(n ∈N +)。

等差数列练习题附答案

等差数列练习题附答案

等差数列练习题附答案一、选择题1、已知等差数列{an}中,S10=120,那么a1+a10=()A.12B.24C.36D.482、已知等差数列{an},an=2n-19,那么这个数列的前n项和Sn()A.有最小值且是整数B.有最小值且是分数C.有最大值且是整数 D.有最大值且是分数3、已知等差数列{an}的公差d=1/80,a2+a4+⋯+a100=80,那么S100=()A.135B.160C.120D.1954、已知等差数列{an}中,a2+a5+a9+a12=60,那么S13=()A.390B.195C.180D.1205、从前180个正偶数的和中减去前180个正奇数的和,其差为()A.90B.180C.3606、等差数列{an}的前m项的和为30,前2m项的和为100,则它的前3m项的和为()A.130B.170C.210D.2607、在等差数列{an}中,a2=-6,a8=6,若数列{an}的前n 项和为Sn,则()A.S4<S5B.S4=S5C.S6<S5D.S6=S58、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为()A.13B.12C.11D.109、已知某数列前n项之和n,且前n个偶数项的和为n(4n+3),则前n个奇数项的和为()A.-3n(n+1)B.n(4n-3)C.-3nD.2n/310、若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边比为()A.6B.8C.10D.12二、填空题1、等差数列{an}中,若a6=a3+a8,则S9=.2、等差数列{an}中,若Sn=3n+2n,则公差d=.3、在小于100的正整数中,被3除余2的数的和是.4、已知等差数列{an}的公差是正整数,且a3⋅a7=-12,a4+a6=-4,则前10项的和S10=.5、一个等差数列共有10项,其中奇数项的和为项是.6、两个等差数列{an}和{bn}的前n项和分别为Sn和Tn,则XXX=.一、选择题1、已知等差数列{an}中,S10=120,则a1+a10=()A.12B.24C.36D.482、已知等差数列{an},an=2n-19,则这个数列的前n项和Sn()A.有最小值且是整数B.有最小值且是分数C.有最大值且是整数 D.有最大值且是分数3、已知等差数列{an}的公差d=1/80,a2+a4+⋯+a100=80,那么S100=()A.135B.160C.120D.1954、已知等差数列{an}中,a2+a5+a9+a12=60,则S13=()A.390B.195C.180D.1205、从前180个正偶数的和中减去前180个正奇数的和,其差为()A.90B.180C.3606、等差数列{an}的前m项的和为30,前2m项的和为100,则它的前3m项的和为()A.130B.170C.210D.2607、在等差数列{an}中,a2=-6,a8=6,若数列{an}的前n 项和为Sn,则()A.S4<S5B.S4=S5C.S6<S5D.S6=S58、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为()A.13B.12C.11D.109、已知某数列前n项之和n,且前n个偶数项的和为n(4n+3),则前n个奇数项的和为()A.-3n(n+1)B.n(4n-3)C.-3nD.2n/310、若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边比为()A.6B.8C.10D.12二、填空题1、等差数列{an}中,若a6=a3+a8,则S9=.2、等差数列{an}中,若Sn=3n+2n,则公差d=.3、在小于100的正整数中,被3除余2的数的和是.4、已知等差数列{an}的公差是正整数,且a3⋅a7=-12,a4+a6=-4,则前10项的和S10=.5、一个等差数列共有10项,其中奇数项的和为项是.6、两个等差数列{an}和{bn}的前n项和分别为Sn和Tn,则XXX=.1.在等差数列{an}中,已知a4=0.8,a11=2.2,求a51+a52的值。

等差数列练习题(有答案)百度文库

等差数列练习题(有答案)百度文库
6.B
【分析】
根据已知条件判断 时对应的 的范围,由此求得 的最大值.
【详解】
依题意 ,所以 ,
所以 的前n项和 的最大值为 .
7.B
【分析】
利用等差数列的性质进行化简,由此求得 的值.
【详解】
由等差数列的性质,可得 ,则
故选:B
8.A
【分析】
根据数列 是等差数列,且 ,求出首项和公差的关系,代入式子求解.
A.3斤B.6斤C.9斤D.12斤
10.已知等差数列 的前 项和 满足: ,若 ,则 的最大值为()
A. B. C. D.
11.已知数列 中, , ,对 都有 ,则 等于()
A. B. C. D.
12.等差数列 的前 项和为 ,已知 , ,则 的值是()
A.48B.60C.72D.24
13.已知等差数列 中, ,则数列 的公差为()
A.若 是等差数列,则 是等方差数列
B. 是等方差数列
C. 是等方差数列.
D.若 既是等方差数列,又是等差数列,则该数列为常数列
23.在等差数列 中,公差 ,前 项和为 ,则()
A. B. , ,则
C.若 ,则 中的最大值是 D.若 ,则 24.题目文件丢失!
25.题目文件丢失!
26.题目文件丢失!
22.BD
【分析】
根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可.
【详解】
对于A,若 是等差数列,如 ,则 不是常数,故 不是等方差数列,故A错误;
对于B,数列 中, 是常数, 是等方差数列,故B正确;
对于C,数列 中, 不是常数, 不是等方差数列,故C错误;
对于D, 是等差数列, ,则设 , 是等方差数列, 是常数,故 ,故 ,所以 , 是常数,故D正确.

等差数列测试题(带答案)

等差数列测试题(带答案)

等差数列测试题(带答案)1.已知等差数列{an}的首项a1=1,公差d=2,则a4等于()A.5B.6C.7D.9答案:C2.在数列{an}中,若a1=1,an+1=an+2(n≥1),则该数列的通项公式an=()A.2n+1B.2n-1C.2nD.2(n-1)答案:B3.△ABC三个内角A、B、C成等差数列,则B=__________.解析:∵A、B、C成等差数列,∴2B=A+C.又A+B+C=180°,∴3B=180°,∴B=60°.答案:60°4.在等差数列{an}中,(1)已知a5=-1,a8=2,求a1与d;(2)已知a1+a6=12,a4=7,求a9.解:(1)由题意,知a1+-=-1,a1+-=2.解得a1=-5,d=1.(2)由题意,知a1+a1+-=12,a1+-=7.解得a1=1,d=2.∴a9=a1+(9-1)d=1+8×2=17.一、选择题1.在等差数列{an}中,a1=21,a7=18,则公差d=()A.12B.13C.-12D.-13解析:选C.∵a7=a1+(7-1)d=21+6d=18,∴d=-12.2.在等差数列{an}中,a2=5,a6=17,则a14=()A.45B.41C.39D.37解析:选B.a6=a2+(6-2)d=5+4d=17,解得d=3.所以a14=a2+(14-2)d=5+12×3=41.3.已知数列{an}对任意的n∈N*,点Pn(n,an)都在直线y=2x+1上,则{an}为()A.公差为2的等差数列B.公差为1的等差数列C.公差为-2的等差数列D.非等差数列解析:选A.an=2n+1,∴an+1-an=2,应选A.4.已知m和2n的等差中项是4,2m和n的等差中项是5,则m和n 的等差中项是()A.2B.3C.6D.9解析:选B.由题意得m+2n=82m+n=10,∴m+n=6,∴m、n的等差中项为3.5.下面数列中,是等差数列的有()①4,5,6,7,8,…②3,0,-3,0,-6,…③0,0,0,0,…④110,210,310,410,…A.1个B.2个C.3个D.4个解析:选C.利用等差数列的定义验证可知①、③、④是等差数列.6.数列{an}是首项为2,公差为3的等差数列,数列{bn}是首项为-2,公差为4的等差数列.若an=bn,则n的值为()A.4B.5C.6D.7解析:选B.an=2+(n-1)×3=3n-1,bn=-2+(n-1)×4=4n-6,令an=bn得3n-1=4n-6,∴n=5.二、填空题7.已知等差数列{an},an=4n-3,则首项a1为__________,公差d 为__________.解析:由an=4n-3,知a1=4×1-3=1,d=a2-a1=(4×2-3)-1=4,所以等差数列{an}的首项a1=1,公差d=4.答案:148.在等差数列{an}中,a3=7,a5=a2+6,则a6=__________.解析:设等差数列的公差为d,首项为a1,则a3=a1+2d=7;a5-a2=3d=6.∴d=2,a1=3.∴a6=a1+5d=13.答案:139.已知数列{an}满足a2n+1=a2n+4,且a1=1,an>0,则an=________.解析:根据已知条件a2n+1=a2n+4,即a2n+1-a2n=4,∴数列{a2n}是公差为4的等差数列,∴a2n=a21+(n-1)•4=4n-3.∵an>0,∴an=4n-3.答案:4n-3三、解答题10.在等差数列{an}中,已知a5=10,a12=31,求它的通项公式.解:由an=a1+(n-1)d得10=a1+4d31=a1+11d,解得a1=-2d=3.∴等差数列的通项公式为an=3n-5.11.已知等差数列{an}中,a1<a2<a3<…<an且a3,a6为方程x2-10x+16=0的两个实根.(1)求此数列{an}的通项公式;(2)268是不是此数列中的项?若是,是第多少项?若不是,说明理由.解:(1)由已知条件得a3=2,a6=8.又∵{an}为等差数列,设首项为a1,公差为d,∴a1+2d=2a1+5d=8,解得a1=-2d=2.∴an=-2+(n-1)×2=2n-4(n∈N*).∴数列{an}的通项公式为an=2n-4.(2)令268=2n-4(n∈N*),解得n=136.∴268是此数列的第136项.12.已知(1,1),(3,5)是等差数列{an}图象上的两点.(1)求这个数列的通项公式;(2)画出这个数列的图象;(3)判断这个数列的单调性.解:(1)由于(1,1),(3,5)是等差数列{an}图象上的两点,所以a1=1,a3=5,由于a3=a1+2d=1+2d=5,解得d=2,于是an=2n-1.(2)图象是直线y=2x-1上一些等间隔的点(如图).(3)因为一次函数y=2x-1是增函数,所以数列{an}是递增数列.。

等差数列练习题及答案

等差数列练习题及答案

等差数列练习一、选择题1、等差数列{}n a 中,10120S =,那么110a a +=( )A. 12B. 24C. 36D. 482、已知等差数列{}n a ,219n a n =-,那么这个数列的前n 项和n s ( )A.有最小值且是整数B. 有最小值且是分数C. 有最大值且是整数D. 有最大值且是分数3、已知等差数列{}n a 的公差12d =,8010042=+++a a a ,那么=100S A .80 B .120 C .135D .160. 4、已知等差数列{}n a 中,6012952=+++a a a a ,那么=13SA .390B .195C .180D .1205、从前180个正偶数的和中减去前180个正奇数的和,其差为( )A. 0B. 90C. 180D. 3606、等差数列{}n a 的前m 项的和为30,前2m 项的和为100,则它的前3m 项的和为( )A. 130B. 170C. 210D. 2607、在等差数列{}n a 中,62-=a ,68=a ,若数列{}n a 的前n 项和为n S ,则( )A.54S S <B.54S S =C. 56S S <D. 56S S =8、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为( )A. 13B. 12C. 11D. 109、已知某数列前n 项之和3n 为,且前n 个偶数项的和为)34(2+n n ,则前n 个奇数项的和为( )A .)1(32+-n nB .)34(2-n nC .23n -D .321n 10若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边比为( )A .6B .8C .10D .12二.填空题1、等差数列{}n a 中,若638a a a =+,则9s = .2、等差数列{}n a 中,若232n S n n =+,则公差d = .3、在小于100的正整数中,被3除余2的数的和是4、已知等差数列{}n a 的公差是正整数,且a 4,126473-=+-=⋅a a a ,则前10项的和S 10=5、一个等差数列共有10项,其中奇数项的和为252,偶数项的和为15,则这个数列的第6项是*6、两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,若337++=n n T S n n ,则88a b = . 三.解答题1、 在等差数列{}n a 中,40.8a =,11 2.2a =,求515280a a a +++ .2、设等差数列{}n a 的前n 项和为n S ,已知312a =,12S >0,13S <0,①求公差d 的取值范围;②1212,,,S S S 中哪一个值最大?并说明理由.3、己知}{n a 为等差数列,122,3a a ==,若在每相邻两项之间插入三个数,使它和原数列的数构成一个新的等差数列,求:(1)原数列的第12项是新数列的第几项? (2)新数列的第29项是原数列的第几项?4、设等差数列}{n a 的前n项的和为S n ,且S 4 =-62, S 6 =-75,求:(1)}{n a 的通项公式a n 及前n项的和S n ;(2)|a 1 |+|a 2 |+|a 3 |+……+|a 14 |.5、某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用12万元,以后每年都增加4万元,每年捕鱼收益50万元,(Ⅰ)问第几年开始获利?(Ⅱ)若干年后,有两种处理方案:(1)年平均获利最大时,以26万元出售该渔船;(2)总纯收入获利最大时,以8万元出售该渔船.问哪种方案合算.。

等差数列专题(有答案)百度文库

等差数列专题(有答案)百度文库
则 为以2为首项,以2为公差的等差数列 , .
A中,当 时, ,A选项正确;
B中, 为等差数列,显然有 ,B选项正确;
C中,记 ,

,故 为递减数列,
,C选项正确;
D中, , , .
,D选项错误.
故选:D.
【点睛】
关键点点睛:利用 与 的关系求通项,一般利用 来求解,在变形过程中要注意 是否适用,当利用作差法求解不方便时,应利用 将递推关系转化为有关 的递推数列来求解.
A.132项B.133项C.134项D.135项
12.设等差数列 的公差d≠0,前n项和为 ,若 ,则 ()
A.9B.5C.1D.
13.已知数列 满足 且 ,则 时,使得不等式 恒成立的实数a的最大值是()
A.19B.20C.21D.22
14.在等差数列 的中,若 ,则 等于()
A.25B.11C.10D.9
12.B
【分析】
由已知条件,结合等差数列通项公式得 ,即可求 .
【详解】
,即有 ,得 ,
∴ , ,且 ,
∴ .
故选:B
13.B
【分析】
由等差数列的性质可得数列 为等差数列,再由等差数列的通项公式可得 ,进而可得 ,再结合基本不等式即可得解.
【详解】
因为 ,所以 ,
所以数列 为等差数列,设其公差为 ,
【分析】
先由 得出 ,再由累加法计算出 ,进而求出 .
【详解】
解: ,

化简得: ,
两边同时除以 并整理得:

即 , , ,…, ,
将上述 个式子相加得:
… … ,
即 ,

又 也满足上式,

.
故选:D.

等差数列测试题含答案

等差数列测试题含答案

等差数列测试题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.等差数列1+x ,2x +2,5x +1,…的第四项等于( ) A .10B .6C .8D .122.在等差数列{}n a 中,若2810a a +=.,则()24652a a a +-=( ) A .100B .90C .95D .203.已知数列{}n a 是等差数列,数列{}n b 分别满足下列各式,其中数列{}n b 必为等差数列的是( ) A .||n n b a =B .2n n b a =C .1n nb a =D .2nn a b =-4.在等差数列{}n a 中,11a =,513a =,则数列{}n a 的前5项和为( ) A .13B .16C .32D .355.在等差数列{}n a 中,若39717,9a a a +==,则5a =( ) A .6B .7C .8D .96.在等差数列{}n a 中,124a a +=,7828a a +=,则数列的通项公式n a 为( ) A .2nB .21nC .21n -D .22n +7.已知数列{}n a 是等差数列,71320a a +=,则91011a a a ++= ( ) A .36B .30C .24D .18.已知数列{}n a 是首项为2,公差为4的等差数列,若2022n a =,则n = ( ) A .504B .505C .506D .5079.已知数列{}n a 满足13n n a a +=-,127a =,*n ∈N ,则5a 的值为( ) A .12B .15C .39D .4210.已知等差数列{}n a 满足3456790a a a a a ++++=,则28a a +等于( ) A .18B .30C .36D .4511.在等差数列{}n a 中,143,24a a ==,则7a = A .32B .45C .64D .9612.设数列{}n a 是公差为d 的等差数列,若244,6a a ==,则d = ( )A .4B .3C .2D .113.在等差数列{}n a 中,若3712a a +=,则5a =( ) A .4B .6C .8D .1014.在等差数列{}n a 中,若3691215120a a a a a ++++=,则12183a a -的值为( ) A .24B .36C .48D .6015.在等差数列{}n a 中,51340a a +=,则8910a a a ++=( ) A .72B .60C .48D .3616.已知数列{}n a 是等差数列,且66a =,108a =,则公差d =( ) A .12B .23C .1D .2二、填空题17.在数列{}n a 中,12a =,13n n a a +-=则数列{}n a 的通项公式为________________. 18.已知数列{}n a 中,12a =,25a =,212n n n a a a +++=,则100a =________ 19.在等差数列{}n a 中,47a =,2818a a +=,则公差d =__________.20.己知等差数列{}n a 满足:10a =,54a =,则公差d =______;24a a +=_______. 21.已知数列{}n a 对任意的,m n N +∈有mn m n a a a ++=,若12a =,则2019a =_______.参考答案1.C 【解析】 【分析】根据等差中项的性质求出x ,进而求出公差,得出答案. 【详解】解:由题意可得,(1+x )+(5x +1)=2(2x +2) 解得x =1∴这个数列为2,4,6,8,… 故选C. 【点睛】本题考查了等差数列及等差中项的性质. 2.B 【解析】 【分析】利用等差数列的性质,即下标和相等对应项的和相等,得到28465210a a a a a +=+==. 【详解】数列{}n a 为等差数列,28465210a a a a a +=+==,∴()24652a a a +-=2101090-=.【点睛】考查等差数列的性质、等差中项,考查基本量法求数列问题. 3.D 【解析】 【分析】对每一个选项逐一分析判断得解. 【详解】设数列{}n a 的公差为d ,选项A,B,C,都不满足1n n b b --=同一常数,所以三个选项都是错误的;对于选项D ,1112222n n n n n n a a a a d b b -----=-+==-, 所以数列{}n b 必为等差数列. 故选:D 【点睛】本题主要考查等差数列的判定和性质,意在考查学生对这些知识的理解掌握水平,属于基础题. 4.D 【解析】 【分析】直接利用等差数列的前n 项和公式求解. 【详解】数列{}n a 的前5项和为1555)(113)3522a a +=+=(. 故选:D 【点睛】本题主要考查等差数列的前n 项和的计算,意在考查学生对该知识的理解掌握水平,属于基础题. 5.C 【解析】 【分析】通过等差数列的性质可得答案. 【详解】因为3917a a +=,79a =,所以51798a =-=. 【点睛】本题主要考查等差数列的性质,难度不大. 6.C 【解析】 【分析】直接利用等差数列公式解方程组得到答案.【详解】121424a a a d +=⇒+= 7812821328a a a d +=⇒+= 1211,2n n a d a ==⇒-=故答案选C 【点睛】本题考查了等差数列的通项公式,属于基础题型. 7.B 【解析】 【分析】通过等差中项的性质即可得到答案. 【详解】由于71310220a a a +==,故9101110330a a a a ++==,故选B. 【点睛】本题主要考查等差数列的性质,难度较小. 8.C 【解析】 【分析】本题首先可根据首项为2以及公差为4求出数列{}n a 的通项公式,然后根据2022n a =以及数列{}n a 的通项公式即可求出答案。

等差数列练习题(有答案)百度文库

等差数列练习题(有答案)百度文库
6.B
【分析】
把已知的两式相加得到 ,再求 得解.
【详解】
由题得 ,
所以 .
所以 .
故选:B
7.C
【分析】
首先根据 得到 ,设 ,再利用裂项求和即可得到答案.
【详解】
当 时, ,
当 时, .
检验 ,所以 .
设 ,前 项和为 ,
则 .
故选:C
8.A
【分析】
根据等差中项的性质,求出 ,再求 ;
【详解】
因为 为等差数列,所以 ,
【详解】
对于A:因为正数,公差不为0,且 ,所以公差 ,
所以 ,即 ,
根据等差数列的性质可得 ,又 ,
所以 , ,故A正确;
对于B:因为 ,则 ,
所以 ,又 ,
所以 ,
所以 , ,
所以使 的最大的n为15,故B正确;
对于C:因为 ,则 ,
,则 ,即 ,
所以则 中 最大,故C错误;
对于D:因为 ,则 ,又 ,
A.若 ,则 既是等差数列又是等比数列
B.若 ( , 为常数, ),则 是等差数列
C.若 ,则 是等比数列
D.若 是等差数列,则 , , 也成等差数列23.题目文件丢失!
24.题目文件丢失!
25.题目文件丢失!
26.首项为正数,公差不为0的等差数列 ,其前 项和为 ,则下列4个命题中正确的有()
A.若 ,则 , ;
A.3斤B.6斤C.9斤D.12斤
3.在巴比伦晚期的《泥板文书》中,有按级递减分物的等差数列问题,其中有一个问题大意是:10个兄弟分100两银子,长兄最多,依次减少相同数目,现知第8兄弟分得6两,则长兄可分得银子的数目为()
A. 两B. 两C. 两D. 两
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等差数列选择题1.已知等差数列{}n a 中,161,11a a ==,则数列{}n a 的公差为( ) A .53B .2C .8D .132.已知数列{}n a 的前n 项和为n S ,且满足212n n n a a a ++=-,534a a =-,则7S =( ) A .7 B .12 C .14 D .21 3.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8B .10C .12D .144.设等差数列{}n a 的前n 项和为n S ,且3944a a a +=+,则15S =( ) A .45B .50C .60D .805.已知n S 为等差数列{}n a 的前n 项和,3518a S +=,633a a =+,则n a =( ) A .1n -B .nC .21n -D .2n6.为了参加学校的长跑比赛,省锡中高二年级小李同学制定了一个为期15天的训练计划.已知后一天的跑步距离都是在前一天的基础上增加相同距离.若小李同学前三天共跑了3600米,最后三天共跑了10800米,则这15天小李同学总共跑的路程为( ) A .34000米 B .36000米 C .38000米 D .40000米7.数列{}n a 为等差数列,11a =,34a =,则通项公式是( ) A .32n -B .322n - C .3122n - D .3122n + 8.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n nn S a b n =---⨯+,*n N ∈,则存在数列{}n b 和{}n c 使得( )A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列C .·n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 9.已知各项不为0的等差数列{}n a 满足26780a a a -+=,数列{}n b 是等比数列,且77b a =,则3810b b b =( )A .1B .8C .4D .210.《周碑算经》有一题这样叙述:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影长之和为八丈五尺五寸,则后五个节气日影长之和为( )(注:一丈=十尺,一尺=十寸) A .一丈七尺五寸 B .一丈八尺五寸 C .二丈一尺五寸D .二丈二尺五寸11.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,戊所得为( ) A .54钱 B .43钱 C .23钱 D .53钱 12.已知{}n a 是公差为2的等差数列,前5项和525S =,若215m a =,则m =( ) A .4B .6C .7D .8 13.设等差数列{}n a 的公差d ≠0,前n 项和为n S ,若425S a =,则99S a =( ) A .9B .5C .1D .5914.已知数列{}n a 满足25111,,25a a a ==且*121210,n n n n a a a ++-+=∈N ,则*n N ∈时,使得不等式100n n a a +≥恒成立的实数a 的最大值是( ) A .19B .20C .21D .2215.在等差数列{}n a 中,已知前21项和2163S =,则25820a a a a ++++的值为( )A .7B .9C .21D .4216.在数列{}n a 中,11a =,且11nn na a na +=+,则其通项公式为n a =( ) A .211n n -+B .212n n -+C .221n n -+D .222n n -+17.已知等差数列{}n a 的前n 项和为n S ,且310179a a a ++=,则19S =( ) A .51B .57C .54D .7218.已知数列{x n }满足x 1=1,x 2=23,且11112n n n x x x -++=(n ≥2),则x n 等于( ) A .(23)n -1B .(23)n C .21n + D .12n + 19.已知数列{}n a 的前n 项和为n S ,且()11213n n n n S S a n +++=+-+,现有如下说法:①541a a =;②222121n n a a n ++=-;③401220S =. 则正确的个数为( ) A .0B .1C .2D .320.已知数列{}n a ,{}n b 都是等差数列,记n S ,n T 分别为{}n a ,{}n b 的前n 项和,且713n n S n T n -=,则55a b =( )A .3415B .2310C .317D .6227二、多选题21.已知S n 是等差数列{}n a (n ∈N *)的前n 项和,且S 5>S 6>S 4,以下有四个命题,其中正确的有( )A .数列{}n a 的公差d <0B .数列{}n a 中S n 的最大项为S 10C .S 10>0D .S 11>022.题目文件丢失!23.已知数列{}n a 满足0n a >,121n n n a na a n +=+-(N n *∈),数列{}n a 的前n 项和为n S ,则( )A .11a =B .121a a =C .201920202019S a =D .201920202019S a >24.已知数列{}n a 满足()*111n na n N a +=-∈,且12a =,则( ) A .31a =- B .201912a =C .332S =D . 2 01920192S =25.已知数列{}n a 满足112a =-,111n na a +=-,则下列各数是{}n a 的项的有( )A .2-B .23 C .32D .326.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )A .若100S =,则50a >,60a <;B .若412S S =,则使0n S >的最大的n 为15;C .若150S >,160S <,则{}n S 中7S 最大;D .若89S S <,则78S S <.27.已知等差数列{}n a 的前n 项和为,n S 且15110,20,a a a 则( )A .80a <B .当且仅当n = 7时,n S 取得最大值C .49S S =D .满足0n S >的n 的最大值为1228.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数C .2020201820223a a a =+D .123a a a +++…20202022a a +=29.设d 为正项等差数列{}n a 的公差,若0d >,32a =,则( ) A .244a a ⋅<B .224154a a +≥C .15111a a +> D .1524a a a a ⋅>⋅30.设等差数列{}n a 的前n 项和为n S ,若39S =,47a =,则( )A .2n S n =B .223n S n n =-C .21n a n =-D .35n a n =-【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.B 【分析】设公差为d ,则615a a d =+,即可求出公差d 的值. 【详解】设公差为d ,则615a a d =+,即1115d =+,解得:2d =, 所以数列{}n a 的公差为2, 故选:B 2.C 【分析】判断出{}n a 是等差数列,然后结合等差数列的性质求得7S . 【详解】∵212n n n a a a ++=-,∴211n n n n a a a a +++-=-,∴数列{}n a 为等差数列. ∵534a a =-,∴354a a +=,∴173577()7()1422a a a a S ++===. 故选:C 3.C 【分析】利用等差数列的通项公式即可求解. 【详解】 {a n }为等差数列,S 3=12,即1232312a a a a ++==,解得24a =.由12a =,所以数列的公差21422d a a =-=-=, 所以()()112212n a a n d n n =+-=+-=, 所以62612a =⨯=. 故选:C 4.C 【分析】利用等差数列性质当m n p q +=+ 时m n p q a a a a +=+及前n 项和公式得解 【详解】{}n a 是等差数列,3944a a a +=+,4844a a a ∴+=+,84a =1158158()15215156022a a a S a +⨯⨯====故选:C 【点睛】本题考查等差数列性质及前n 项和公式,属于基础题 5.B 【分析】根据条件列出关于首项和公差的方程组,求解出首项和公差,则等差数列{}n a 的通项公式可求. 【详解】因为3518a S +=,633a a =+,所以11161218523a d a d a d +=⎧⎨+=++⎩, 所以111a d =⎧⎨=⎩,所以()111n a n n =+-⨯=,故选:B. 6.B 【分析】利用等差数列性质得到21200a =,143600a =,再利用等差数列求和公式得到答案. 【详解】根据题意:小李同学每天跑步距离为等差数列,设为n a ,则123233600a a a a ++==,故21200a =,13141514310800a a a a ++==,故143600a =,则()()11521411151********n S a a a a =+⨯=+⨯=. 故选:B. 7.C 【分析】根据题中条件,求出等差数列的公差,进而可得其通项公式. 【详解】因为数列{}n a 为等差数列,11a =,34a =, 则公差为31322a a d -==, 因此通项公式为()33111222n a n n =+-=-. 故选:C. 8.D 【分析】由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项. 【详解】 解:(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---⨯+=+-⋅-+,∴当1n =时,有110S a a ==≠;当2n ≥时,有11()2n n n n a S S a bn b --=-=-+⋅, 又当1n =时,01()2a a b b a =-+⋅=也适合上式,1()2n n a a bn b -∴=-+⋅,令n b a b bn =+-,12n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确;因为11()22n n n a a b bn --+=-⋅⋅,0b ≠,所以{}12n bn -⋅即不是等差数列,也不是等比数列,故AB 错. 故选:D. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力. 9.B 【分析】根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】因为各项不为0的等差数列{}n a 满足26780a a a -+=,所以27720a a -=,解得72a =或70a =(舍);又数列{}n b 是等比数列,且772b a ==,所以33810371178b b b b b b b ===.故选:B. 10.D 【分析】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,已知条件为985.5S =,14731.5a a a ++=,由等差数列性质即得5a ,4a ,由此可解得d ,再由等差数列性质求得后5项和. 【详解】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和, 则()19959985.52a a S a +===(尺),所以59.5a =(尺),由题知1474331.5a a a a ++==(尺),所以410.5a =(尺),所以公差541d a a =-=-, 则()8910111210555522.5a a a a a a a d ++++==+=(尺). 故选:D . 11.C 【分析】根据甲、乙、丙、丁、戊所得依次成等差数列,设甲、乙、丙、丁、戊所得钱分别为2a d -,a d -,a ,a d +,2a d +,然后再由五人钱之和为5,甲、乙的钱与与丙、丁、戊的钱相同求解. 【详解】设甲、乙、丙、丁、戊所得钱分别为2a d -,a d -,a ,a d +,2a d +,则根据题意有(2)()()(2)5(2)()()(2)a d a d a a d a d a d a d a a d a d -+-+++++=⎧⎨-+-=++++⎩,解得116a d =⎧⎪⎨=-⎪⎩,所以戊所得为223a d +=, 故选:C . 12.A 【分析】由525S =求出1a ,从而可求出数列的通项公式,进而可求出m 的值 【详解】 解:由题意得15452252a ⨯+⨯=,解得11a =,所以1(1)12(1)21n a a n d n n =+-=+-=-, 因为215m a =,所以22115m ⋅-=,解得4m =, 故选:A 13.B 【分析】由已知条件,结合等差数列通项公式得1a d =,即可求99S a . 【详解】4123425S a a a a a =+++=,即有13424a a a a ++=,得1a d =,∴1999()452a a S d ⨯+==,99a d =,且0d ≠, ∴995S a =. 故选:B 14.B 【分析】由等差数列的性质可得数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,再由等差数列的通项公式可得1n n a ,进而可得1n a n=,再结合基本不等式即可得解. 【详解】 因为*121210,n n n n a a a ++-+=∈N ,所以12211n n n a a a ++=+, 所以数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,设其公差为d , 由25111,25a a a ==可得25112,115a a a ==⋅, 所以111121145d a d a a ⎧+=⎪⎪⎨⎪+=⋅⎪⎩,解得1111a d ⎧=⎪⎨⎪=⎩,所以()1111n n d n a a =+-=,所以1n a n=,所以不等式100n n a a +≥即100n a n+≥对任意的*n N ∈恒成立,又10020n n +≥=,当且仅当10n =时,等号成立,所以20a ≤即实数a 的最大值是20. 故选:B. 【点睛】关键点点睛:解决本题的关键是构造新数列求数列通项及基本不等式的应用. 15.C 【分析】利用等差数列的前n 项和公式可得1216a a +=,即可得113a =,再利用等差数列的性质即可求解. 【详解】设等差数列{}n a 的公差为d ,则()1212121632a a S +==, 所以1216a a +=,即1126a =,所以113a =, 所以()()()2582022051781411a a a a a a a a a a a ++++=++++++111111111122277321a a a a a =+++==⨯=,故选:C 【点睛】关键点点睛:本题的关键点是求出1216a a +=,进而得出113a =,()()()2582022051781411117a a a a a a a a a a a a ++++=++++++=即可求解.16.D 【分析】先由11n n n a a na +=+得出111n n n a a +-=,再由累加法计算出2122n n n a -+=,进而求出n a .【详解】 解:11nn na a na +=+, ()11n n n a na a ++=∴,化简得:11n n n n a a a a n ++=+, 两边同时除以1n n a a +并整理得:111n nn a a +-=, 即21111a a -=,32112a a -=,43113a a -=,…,1111(2,)n n n n n z a a --=-≥∈, 将上述1n -个式子相加得:213243111111+a a a a a a --+-+ (1)11123n n a a -+-=+++…1n +-,即111(1)2n n n a a --=, 2111(1)(1)2=1(2,)222n n n n n n n n n z a a ---+∴=++=≥∈, 又111a =也满足上式, 212()2n n n n z a -+∴=∈, 22()2n a n z n n ∴=∈-+. 故选:D. 【点睛】 易错点点睛:利用累加法求数列通项时,如果出现1n -,要注意检验首项是否符合. 17.B 【分析】根据等差数列的性质求出103a =,再由求和公式得出答案. 【详解】317102a a a += 1039a ∴=,即103a =()1191019191921935722a a a S +⨯∴===⨯=故选:B 18.C 【分析】 由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,求出数列1n x ⎧⎫⎨⎬⎩⎭的通项公式,进而得出答案. 【详解】由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,且121131,2x x ==,故公差12d = 则()1111122n n n x +=+-⨯=,故21n x n =+故选:C 19.D 【分析】由()11213n n n n S S a n +++=+-+得到()11132n n n a a n ++=-+-,再分n 为奇数和偶数得到21262k k a a k +=-+-,22165k k a a k -=+-,然后再联立递推逐项判断.【详解】因为()11213n n n n S S a n +++=+-+,所以()11132n n n a a n ++=-+-,所以()212621k k a a k +=-+-,()221652k k a a k -=+-, 联立得:()212133k k a a +-+=, 所以()232134k k a a +++=, 故2321k k a a +-=,从而15941a a a a ===⋅⋅⋅=,22162k k a a k ++=-,222161k k a a k ++=++,则222121k k a a k ++=-,故()()()4012345383940...S a a a a a a a a =++++++++,()()()()234538394041...a a a a a a a a =++++++++,()()201411820622k k =+⨯=-==∑1220,故①②③正确. 故选:D 20.D 【分析】利用等差数列的性质以及前n 项和公式即可求解. 【详解】由713n n S n T n-=, ()()19551991955199927916229239272a a a a a a Sb b b b b b T ++⨯-======++⨯. 故选:D二、多选题21.AC 【分析】由564S S S >>,可得650,0a a ,且650a a +>,然后逐个分析判断即可得答案 【详解】解:因为564S S S >>,所以650,0a a ,且650a a +>,所以数列的公差0d <,且数列{}n a 中S n 的最大项为S 5,所以A 正确,B 错误,所以110105610()5()02a a S a a +==+>,11111611()1102a a S a +==<, 所以C 正确,D 错误, 故选:AC22.无23.BC 【分析】根据递推公式,得到11n n nn n a a a +-=-,令1n =,得到121a a =,可判断A 错,B 正确;根据求和公式,得到1n n nS a +=,求出201920202019S a =,可得C 正确,D 错. 【详解】由121n n n a n a a n +=+-可知2111n n n n na n n n a a a a ++--==+,即11n n n n n a a a +-=-, 当1n =时,则121a a =,即得到121a a =,故选项B 正确;1a 无法计算,故A 错; 1221321111102110n n n n n n n n n n S a a a a a a a a a a a a +++⎛⎫⎛⎫⎛⎫-=+++=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以1n n S a n +=,则201920202019S a =,故选项C 正确,选项D 错误. 故选:BC. 【点睛】 方法点睛:由递推公式求通项公式的常用方法:(1)累加法,形如()1n n a a f n +=+的数列,求通项时,常用累加法求解; (2)累乘法,形如()1n na f n a +=的数列,求通项时,常用累乘法求解; (3)构造法,形如1n n a pa q +=+(0p ≠且1p ≠,0q ≠,n ∈+N )的数列,求通项时,常需要构造成等比数列求解;(4)已知n a 与n S 的关系求通项时,一般可根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解.24.ACD 【分析】先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】由题意211122a =-=,311112a =-=-,A 正确,3132122S =+-=,C 正确;41121a =-=-,∴数列{}n a 是周期数列,周期为3. 2019367331a a a ⨯===-,B 错;20193201967322S =⨯=,D 正确.故选:ACD . 【点睛】本题考查由数列的递推式求数列的项与和,解题关键是求出数列的前几项后归纳出数列的性质:周期性,然后利用周期函数的定义求解. 25.BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】因为数列{}n a 满足112a =-,111n n a a +=-,212131()2a ∴==--;32131a a ==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3; 故选:BD . 【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题. 26.ABD 【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】对于A :因为正数,公差不为0,且100S =,所以公差0d <, 所以1101010()02a a S +==,即1100a a +=, 根据等差数列的性质可得561100a a a a +=+=,又0d <,所以50a >,60a <,故A 正确; 对于B :因为412S S =,则1240S S -=,所以561112894()0a a a a a a ++⋅⋅⋅++=+=,又10a >, 所以890,0a a ><, 所以115815815()15215022a a a S a +⨯===>,116891616()16()022a a a a S ++===, 所以使0n S >的最大的n 为15,故B 正确; 对于C :因为115815815()15215022a a a S a +⨯===>,则80a >, 116891616()16()022a a a a S ++===,则890a a +=,即90a <,所以则{}n S 中8S 最大,故C 错误;对于D :因为89S S <,则9980S a S =->,又10a >, 所以8870a S S =->,即87S S >,故D 正确, 故选:ABD 【点睛】解题的关键是先判断d 的正负,再根据等差数列的性质,对求和公式进行变形,求得项的正负,再分析和判断,考查等差数列性质的灵活应用,属中档题. 27.ACD 【分析】由题可得16a d =-,0d <,21322n d dS n n =-,求出80a d =<可判断A ;利用二次函数的性质可判断B ;求出49,S S 可判断C ;令213022n d dS n n =->,解出即可判断D. 【详解】设等差数列{}n a 的公差为d ,则()5111122+4++100a a a d a d +==,解得16a d =-,10a >,0d ∴<,且()21113+222n n n d d S na d n n -==-, 对于A ,81+7670a a d d d d ==-+=<,故A 正确;对于B ,21322n d d S n n =-的对称轴为132n =,开口向下,故6n =或7时,n S 取得最大值,故B 错误; 对于C ,4131648261822d d S d d d =⨯-⨯=-=-,9138191822d d S d =⨯-⨯=-,故49S S =,故C 正确;对于D ,令213022n d d S n n =->,解得013n <<,故n 的最大值为12,故D 正确. 故选:ACD. 【点睛】方法点睛:由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值. 28.AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确; 对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,32121,a a a a a ⋅⋅⋅=+=,各式相加得()2022202120202021202020192012182a a a a a a a a a ++⋅⋅⋅+=+++⋅⋅⋅++, 所以202220202019201811a a a a a a =++⋅⋅⋅+++,故D 错误. 故选:AC. 【点睛】关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项. 29.ABC 【分析】由已知求得公差d 的范围:01d <<,把各选项中的项全部用d 表示,并根据01d <<判断各选项. 【详解】由题知,只需1220010a d d d =->⎧⇒<<⎨>⎩, ()()2242244a a d d d ⋅=-⋅+=-<,A 正确;()()2222415223644a a d d d d +=-++=-+>≥,B 正确; 21511111122221a a d d d +=+=>-+-,C 正确; ()()()()2152422222230a a a a d d d d d ⋅-⋅=-⋅+--⋅+=-<,所以1524a a a a ⋅<⋅,D 错误.【点睛】本题考查等差数列的性质,解题方法是由已知确定d 的范围,由通项公式写出各项(用d 表示)后,可判断. 30.AC 【分析】利用等差数列{}n a 的前n 项和公式、通项公式列出方程组,求出11a =,2d =,由此能求出n a 与n S . 【详解】等差数列{}n a 的前n 项和为n S .39S =,47a =,∴31413239237S a d a a d ⨯⎧=+=⎪⎨⎪=+=⎩, 解得11a =,2d =,1(1)221n a n n ∴+-⨯=-=.()21212nn n S n +-==故选:AC . 【点睛】本题考查等差数列的通项公式求和公式的应用,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.。

相关文档
最新文档