(精校版)2018年北京理数高考试题文档版(含答案)

合集下载

【数学】2018年高考真题——北京卷(理)(精校版)

【数学】2018年高考真题——北京卷(理)(精校版)

2018年普通高等学校招生全国统一考试(北京卷)理科数学一、选择题1.已知集合A={x||x|<2},B={-2,0,1,2},则A∩B等于()A.{0,1} B.{-1,0,1}C.{-2,0,1,2} D.{-1,0,1,2}答案 A解析∵A={x||x|<2}={x|-2<x<2},∴A∩B={0,1}.故选A.2.在复平面内,复数的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限答案 D解析==+,其共轭复数为-,对应的点位于第四象限.故选D.3.执行如图所示的程序框图,输出的s值为()A. B.C. D.答案 B解析第一步:s=1-=,k=2,k<3;第二步:s=+=,k=3,输出s.故选B.4.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展作出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A.f B.f C.f D.f答案 D解析由题意知,这十三个单音的频率构成首项为f、公比为的等比数列,则第八个单音的频率为()7f=f.5.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1 B.2 C.3 D.4答案 C解析由三视图得到空间几何体,如图所示,则P A⊥平面ABCD,平面ABCD为直角梯形,P A=AB=AD=2,BC=1,所以P A⊥AD,P A⊥AB,P A⊥BC.又BC⊥AB,AB∩P A=A,AB,P A⊂平面P AB,所以BC⊥平面P AB.又PB⊂平面P AB,所以BC⊥PB.在△PCD中,PD=2,PC=3,CD=,所以△PCD为锐角三角形.所以侧面中的直角三角形为△P AB,△P AD,△PBC,共3个.故选C.6.设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 C解析由|a-3b|=|3a+b|,得(a-3b)2=(3a+b)2,即a2+9b2-6a·b=9a2+b2+6a·b.又a,b均为单位向量,所以a2=b2=1,所以a·b=0,能推出a⊥b.由a⊥b得|a-3b|=,|3a+b|=,能推出|a-3b|=|3a+b|.所以“|a-3b|=|3a+b|”是“a⊥b”的充要条件.故选C.7.在平面直角坐标系中,记d为点P(cos θ,sin θ)到直线x-my-2=0的距离.当θ,m变化时,d的最大值为()A.1 B.2 C.3 D.4答案 C解析由题意知,点P(cos θ,sin θ)是单位圆x2+y2=1上的动点,所以点P到直线x-my-2=0的距离可转化为单位圆上的点到直线的距离.又直线x-my-2=0恒过点(2,0),所以当m变化时,圆心(0,0)到直线x-my-2=0的距离的最大值为2,所以点P到直线x-my-2=0的距离的最大值为3,即d的最大值为3.故选C.8.设集合A={(x,y)|x-y≥1,ax+y>4,x-ay≤2},则()A.对任意实数a,(2,1)∈AB.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉AD.当且仅当a≤时,(2,1)∉A答案 D解析若点(2,1)∈A,则不等式x-y≥1显然成立,且同时要满足即解得a>.即点(2,1)∈A⇒a>,其等价命题为a≤⇒点(2,1)∉A.故选D.二、填空题9.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为________.答案a n=6n-3(n∈N*)解析方法一设公差为d.∵a2+a5=36,∴(a1+d)+(a1+4d)=36,∴2a1+5d=36.∵a1=3,∴d=6,∴通项公式a n=a1+(n-1)d=6n-3(n∈N*).方法二设公差为d,∵a2+a5=a1+a6=36,a1=3,∴a 6=33,∴d==6.∵a1=3,∴通项公式a n=6n-3(n∈N*).10.在极坐标系中,直线ρcos θ+ρsin θ=a(a>0)与圆ρ=2cos θ相切,则a=________.答案+1解析直线的直角坐标方程为x+y=a,圆的直角坐标方程为x2+y2=2x,即(x-1)2+y2=1,圆心C(1,0),半径r=1.∵直线与圆相切,∴d==1,∴|a-1|=.又a>0,∴a=+1.11.设函数f(x)=cos(ω>0).若f(x)≤f对任意的实数x都成立,则ω的最小值为________.答案解析∵f(x)≤f对任意的实数x都成立,∴当x=时,f(x)取得最大值,即f=cos=1,∴ω-=2kπ,k∈Z,∴ω=8k+,k∈Z.∵ω>0,∴当k=0时,ω取得最小值.12.若x,y满足x+1≤y≤2x,则2y-x的最小值是________.答案 3解析由条件得即作出可行域,如图中阴影部分所示.设z=2y-x,即y=x+z,作直线l 0:y=x并向上平移,显然当l0过点A(1,2)时,z取得最小值,z min=2×2-1=3.13.能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是________.答案f(x)=sin x(答案不唯一)解析设f(x)=sin x,则f(x)在上是增函数,在上是减函数.由正弦函数图象的对称性知,当x∈(0,2]时,f(x)>f(0)=sin 0=0,故f(x)=sin x满足条件f(x)>f(0)对任意的x∈(0,2]都成立,但f(x)在[0,2]上不一直都是增函数.14.已知椭圆M:+=1(a>b>0),双曲线N:-=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为________;双曲线N的离心率为________.答案-1 2解析方法一双曲线N的渐近线方程为y=±x,则=tan 60°=,∴双曲线N的离心率e 1满足=1+=4,∴e1=2.由得x2=.如图,设D点的横坐标为x,由正六边形的性质得|ED|=2x=c,∴4x2=c2.∴=a2-b2,得3a4-6a2b2-b4=0,∴3--=0,解得=2-3.∴椭圆M的离心率e 2满足=1-=4-2.∴e 2=-1.方法二双曲线N的渐近线方程为y=±x,则=tan 60°=.又c 1==2m,∴双曲线N的离心率为=2.如图,连接EC,由题意知,F,C为椭圆M的两焦点,设正六边形的边长为1,则|FC|=2c2=2,即c2=1.又E为椭圆M上一点,则|EF|+|EC|=2a,即1+=2a,∴a=.∴椭圆M的离心率为==-1.三、解答题15.在△ABC中,a=7,b=8,cos B=-.(1)求∠A;(2)求AC边上的高.解(1)在△ABC中,因为cos B=-,所以sin B==.由正弦定理得sin A==.由题设知<∠B<π,所以0<∠A<,所以∠A=.(2)在△ABC中,因为sin C=sin(A+B)=sin A cos B+cos A sin B=,所以AC边上的高为a sin C=7×=.16.如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB 1的中点,AB=BC=,AC=AA1=2.(1)求证:AC⊥平面BEF;(2)求二面角B-CD-C1的余弦值;(3)证明:直线FG与平面BCD相交.(1)证明在三棱柱ABC-A1B1C1中,因为CC1⊥平面ABC,所以四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,所以AC⊥EF.又AB=BC,所以AC⊥BE,又BE,EF⊂平面BEF,BE∩EF=E,所以AC⊥平面BEF.(2)解由(1)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,所以EF⊥平面ABC.因为BE⊂平面ABC,所以EF⊥BE.如图,以E为原点,EA所在直线为x轴,EB所在直线为y轴,EF所在直线为z轴,建立空间直角坐标系E-xyz.由题意得B(0,2,0),C(-1,0,0),D(1,0,1),E(0,0,0),F(0,0,2),G(0,2,1).所以=(-1,-2,0),=(1,-2,1).设平面BCD的法向量为n=(x0,y0,z0),则即令y0=-1,则x0=2,z0=-4.于是n=(2,-1,-4).又因为平面CC 1D的法向量为=(0,2,0),所以cos〈n,〉==-.由题意知二面角B-CD-C1为钝角,所以其余弦值为-.(3)证明由(2)知平面BCD的法向量为n=(2,-1,-4),=(0,2,-1).因为n·=2×0+(-1)×2+(-4)×(-1)=2≠0,所以直线FG与平面BCD相交.17.电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“ξk=1”表示第k 类电影得到人们喜欢,“ξk=0”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差D(ξ1),D(ξ2),D(ξ3),D(ξ4),D(ξ5),D(ξ6)的大小关系.解(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2 000,第四类电影中获得好评的部数是200×0.25=50.故所求概率为=0.025.(2)设事件A为“从第四类电影中随机选出的电影获得好评”,事件B为“从第五类电影中随机选出的电影获得好评”.故所求概率为P(A+B)=P(A)+P(B)=P(A)·(1-P(B))+(1-P(A))P(B).由题意知P(A)估计为0.25,P(B)估计为0.2.故所求概率估计为0.25×0.8+0.75×0.2=0.35.(3)D(ξ1)>D(ξ4)>D(ξ2)=D(ξ5)>D(ξ3)>D(ξ6).18.设函数f(x)=[ax2-(4a+1)x+4a+3]e x.(1)若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a;(2)若f(x)在x=2处取得极小值,求a的取值范围.解(1)因为f(x)=[ax2-(4a+1)x+4a+3]e x,所以f′(x)=[ax2-(2a+1)x+2]e x.所以f′(1)=(1-a)e.由题设知f′(1)=0,即(1-a)e=0,解得a=1.此时f(1)=3e≠0.所以a的值为1.(2)由(1)得f′(x)=[ax2-(2a+1)x+2]e x=(ax-1)(x-2)e x.若a>,则当x∈时,f′(x)<0;当x∈(2,+∞)时,f′(x)>0.所以f(x)在x=2处取得极小值.若a≤,则当x∈(0,2)时,x-2<0,ax-1≤x-1<0,所以f′(x)>0.所以2不是f(x)的极小值点.综上可知,a的取值范围是.19.已知抛物线C:y2=2px经过点P(1,2),过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线P A交y轴于M,直线PB交y轴于N.(1)求直线l的斜率的取值范围;(2)设O为原点,=λ,=μ,求证:+为定值.(1)解因为抛物线y2=2px过点(1,2),所以2p=4,即p=2.故抛物线C的方程为y2=4x.由题意知,直线l的斜率存在且不为0.设直线l的方程为y=kx+1(k≠0),由得k2x2+(2k-4)x+1=0.依题意知Δ=(2k-4)2-4×k2×1>0,解得k<0或0<k<1.又P A,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3.所以直线l的斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(2)证明设A(x1,y1),B(x2,y2),由(1)知x 1+x2=-,x1x2=.直线P A的方程为y-2=(x-1),令x=0,得点M的纵坐标为yM=+2=+2.同理得点N的纵坐标为yN=+2.由=λ,=μ,得λ=1-yM,μ=1-yN.所以+=+=+=·=·=2.所以+为定值.20.设n为正整数,集合A={α|α=(t1,t2,…,t n),t k∈{0,1},k=1,2,…,n}.对于集合A 中的任意元素α=(x 1,x2,…,x n)和β=(y1,y2,…,y n),记M(α,β)=[(x1+y1-|x1-y1|)+(x2+y2-|x2-y2|)+…+(x n+y n-|x n-y n|)].(1)当n=3时,若α=(1,1,0),β=(0,1,1),求M(α,α)和M(α,β)的值;(2)当n=4时,设B是A的子集,且满足:对于B中的任意元素α,β,当α,β相同时,M(α,β)是奇数;当α,β不同时,M(α,β)是偶数,求集合B中元素个数的最大值;(3)给定不小于2的n,设B是A的子集,且满足:对于B中的任意两个不同的元素α,β,M(α,β)=0.写出一个集合B,使其元素个数最多,并说明理由.解(1)因为α=(1,1,0),β=(0,1,1),所以M(α,α)=[(1+1-|1-1|)+(1+1-|1-1|)+(0+0-|0-0|)]=2,M(α,β)=[(1+0-|1-0|)+(1+1-|1-1|)+(0+1-|0-1|)]=1.(2)设α=(x1,x2,x3,x4)∈B,则M(α,α)=x1+x2+x3+x4.由题意知x1,x2,x3,x4∈{0,1},且M(α,α)为奇数,所以x1,x2,x3,x4中1的个数为1或3,所以B⊆{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有M(α,β)=1.所以每组中的两个元素不可能同时是集合B中的元素.所以集合B中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,所以集合B中元素个数的最大值为4.(3)对于rk=(z k1,z k2,…,z kn)∈B(k=1,2,3,…,n),z kk=1,其它位置全是0;rn+1=(0,0,…,0),可以验证M(ri,rj)=0(i,j=1,2,…,n+1)且i≠j.下面证明:当B中元素个数大于等于n+2时,总存在α,β∈B,M(α,β)≠0,设rk=(z k1,z k2,…,z kn)∈B(k=1,2,3,…,n+1,…,m)(m≥n+2);则S k=z k1+z k2+…+z kn(k=1,2,3,…,n),可以得到S1+S2+…+S m≥0+n+2.C k=z1k+z2k+…+z mk(k=1,2,3,…,n),可以得到C1+C2+…+C n≥n+2,所以存在C t≥2,t∈{1,2,3,…,n};即存在α,β∈B(α≠β),使得α,β在同一个位置同为1,即M(α,β)≥1≠0,矛盾.所以B中元素个数最多为n+1.。

【精校版】2018年高考北京卷文数试题(word版含答案)

【精校版】2018年高考北京卷文数试题(word版含答案)

绝密★启封并使用完毕前2018年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A={(|||<2)},B={−2,0,1,2},则A B=(A){0,1} (B){−1,0,1}(C){−2,0,1,2}(D){−1,0,1,2}(2)在复平面内,复数11i-的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A )12 (B )56 (C )76(D )712(4)设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(5)“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率f ,则第八个单音频率为(A (B(C )(D )(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(7)在平面坐标系中,,,,AB CD EF GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以O 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是(A )AB(B )CD (C )EF(D )GH(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则(A )对任意实数a ,(2,1)A ∈ (B )对任意实数a ,(2,1)A ∉ (C )当且仅当a <0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

北京市2018年高考理科试题及答案汇总(Word版)

北京市2018年高考理科试题及答案汇总(Word版)

北京市2018年高考理科试题及答案汇总语文------------------- 2~14 理科综合-------------------15~37 理科数学-------------------38~47 英语--------------------48~61北京市2018年高考语文试题及答案(试卷满分150分,考试时长150分钟)一、本大题共7小题,共23分。

阅读下面的材料,完成1—7题。

材料一当年,科学技术的巨大进步推动了人工智能的迅猛发展,人工智能成了全球产业界、学术界的高频词。

有研究者将人工智能定义为:对一种通过计算机实现人脑思维结果,能从环境中获取感知并执行行动的智能体的描述和构建。

人工智能并不是新鲜事物。

20世纪中叶,“机器思维”就已出现在这个世界上。

1936年,英国数学家阿兰·麦席森·图灵从模拟人类思考和证明的过程入手,提出利用机器执行逻辑代码来模拟人类的各种计算和逻辑思维过程的设想。

1950年,他发表了《计算机器与智能》一文,提出了判断机器是否具有智能的标准,即“图灵测试”。

“图灵测试”是指一台机器如果能在5分钟内回答由人类测试者提出的一系列问题,且超过30%的回答让测试者误认为是人类所答,那么就可以认为这台机器具有智能。

20世纪80年代,美国哲学家约翰·希尔勒教授用“中文房间”的思维实验,表达了对“智能”的不同思考。

一个不懂中文只会说英语的人被关在一个封闭的房间里,他只有铅笔、纸张和一大本指导手册,不时会有画着陌生符号的纸张被递进来。

被测试者只能通过阅读指导手册找寻对应指令来分析这些符号。

之后,他向屋外的人交出一份同样写满符号的答卷。

被测试者全程都不知道,其实这些纸上用来记录问题和答案的符号是中文。

他完全不懂中文,但他的回答是完全正确的。

上述过程中,被测试者代表计算机,他所经历的也正是计算机的工作内容,即遵循规则,操控符号。

“中文房间”实验说明看起来完全智能的计算机程序其实根本不理解自身处理的各种信息。

(精校版)2018年北京文数高考试题文档版(含答案)

(精校版)2018年北京文数高考试题文档版(含答案)

绝密★启封并使用完毕前2018年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A={(x||x|<2)},B={−2,0,1,2},则A B=(A){0,1} (B){−1,0,1}(C){−2,0,1,2}(D){−1,0,1,2}(2)在复平面内,复数11i-的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)12(B)56(C )76(D )712(4)设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(5)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为 学科#网 (A )32f (B )322f (C )1252f(D )1272f(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(7)在平面直角坐标系中, ,,,AB CDEF GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以O x 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是(A ) AB(B ) CD(C ) EF(D ) GH(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则(A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉ (C )当且仅当a <0时,(2,1)A ∉(D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

(精校版)2018年北京文数高考试题(含答案)

(精校版)2018年北京文数高考试题(含答案)

绝密★启封前2018年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A={(|||<2)},B={−2,0,1,2},则A B=(A){0,1} (B){−1,0,1}(C){−2,0,1,2}(D){−1,0,1,2}(2)在复平面内,复数11i-的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A )12 (B )56 (C )76(D )712(4)设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(5)“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率f ,则第八个单音频率为 (A )32f (B )322f (C )1252f(D )1272f(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(7)在平面坐标系中,,,,AB CD EF GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以O 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是(A )AB(B )CD (C )EF(D )GH(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则(A )对任意实数a ,(2,1)A ∈ (B )对任意实数a ,(2,1)A ∉ (C )当且仅当a <0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2018年高考理数真题试题(全国Ⅱ卷)(Word版+答案+解析)

2018年高考理数真题试题(全国Ⅱ卷)(Word版+答案+解析)

2018年高考理数真题试卷(全国Ⅱ卷)一、选择题1.1+2i1−2i=( )A. −45−35i B. −45+35i C. −35−45i D. −35+45i2.已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z}.则A中元素的个数为()A. 9B. 8C. 5D. 43.函数f(x)=e x−e−xx2的图像大致为( )A. B.C. D.4.已知向量a→,b→满足|a→|=1, a→⋅b→=−1 ,则a→·(2a→-b→)=()A. 4B. 3C. 2D. 05.双曲线x2a2−y2b2=1(a>0,b>0)的离心率为√3,则其渐近线方程为()A. y=±√2xB. y=±√3xC. y=±√22x D. y=±√32x6.在ΔABC中,cos C2=√55,BC=1,AC=5则AB=()A. 4√2B. √30C. √29D. 2√57.为计算S=1−12+13−14+⋅⋅⋅+199−1100,设计了右侧的程序框图,则在空白框中应填入()A. i=i+1B. i=i+2C. i=i+3D. i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A. 112 B. 114 C. 115 D. 1189.在长方形ABCD-A 1B 1C 1D 1中,AB=BC=1,AA 1= √3 ,则异面直线AD 1与DB 1所成角的余弦值为( ) A. 15 B. √56C. √55D. √2210.若 f(x)=cosx −sinx 在 [−a,a] 是减函数,则a 的最大值是( ) A. π4 B. π2 C. 3π4 D. π11.已知 f(x) 是定义为 (−∞,+∞) 的奇函数,满足 f(1−x)=f(1+x) 。

【精校版】2018年高考北京卷文数试题(word版含答案)

【精校版】2018年高考北京卷文数试题(word版含答案)

绝密★启封并使用完毕前2018年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A={(|||<2)},B={−2,0,1,2},则A B=(A){0,1} (B){−1,0,1}(C){−2,0,1,2}(D){−1,0,1,2}(2)在复平面内,复数11i-的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A )12 (B )56 (C )76(D )712(4)设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(5)“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率f ,则第八个单音频率为(A (B(C )(D )(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(7)在平面坐标系中,,,,AB CD EF GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以O 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是(A )AB(B )CD (C )EF(D )GH(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则(A )对任意实数a ,(2,1)A ∈ (B )对任意实数a ,(2,1)A ∉ (C )当且仅当a <0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2018年北京高考数学及答案

2018年北京高考数学及答案

2018年北京高考数学及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2018年普通高等学校招生全国统一考试数 学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.1. 已知集合{}2|<=x x A ,{}2,1,0,2-=B ,则=⋂B A ( ).A {}1,0 .B {}1,0,1- .C {}2,1,0,2- .D {}2,1,0,1-2. 在复平面内,复数i-11的共轭复数对应的点位于( ) .A 第一象限 .B 第二象限 .C 第三象限 .D 第四象限3. 执行如图所示的程序框图,输出的s 值为( ).A 21 .B 65 .C 67 .D 1274.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为( ).A f 32 .B f 322 .C f 1252 .D f 12725. 某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( ).A 1 .B 2 .C 3 .D 46. 设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的( ).A 充分而不必要条件 .B 必要而不充分条件 .C 充分必要条件 .D 既不充分也不必要条件7. 在平面直角坐标系中,记d 为点()θθsin ,cos P 到直线02=--my x 的距离,当m ,θ变化时,d 的最大值为( ) .A 1.B 2 .C 3.D 48. 设集合(){}2,4,1|,≤->+≥-=ay x y ax y x y x A ,则( ).A 对任意实数a ,()A ∈1,2.B 对任意实数a ,()A ∉1,2.C 当且仅当0<a 时,()A ∉1,2.D 当且仅当23≤a 时,()A ∉1,2第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9. 设{}n a 是等差数列,且31=a ,3652=+a a ,则{}n a 的通项公式为__________.10.在极坐标系中,直线()0sin cos >=+a a θρθρ与圆θρcos 2=相切,则=a _________.11. 设函数()()06cos >⎪⎭⎫ ⎝⎛-=ωπωx x f ,若()⎪⎭⎫⎝⎛≤4πf x f 对任意的实数x 都成立,则ω的最小值为__________.12.若x ,y 满足x y x 21≤≤+,则x y -2的最小值是__________.13.能说明“若()()0f x f >对任意的]2,0(∈x 都成立,则()x f 在[]2,0上是增函数”为假命题的一个函数是__________.14. 已知椭圆()01:2222>>=+b a b y a x M ,双曲线1:2222=-ny m x N ,若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.三、解答题共6小题,共80分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A={x||x|<2},B={–2,0,1,2},则A I B=(A){0,1} (B){–1,0,1}(C){–2,0,1,2} (D){–1,0,1,2}(2)在复平面内,复数11i的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)12(B)56(C)76(D)712(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为 (A )32f (B )322f (C )1252f(D )1272f(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(6)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 (A )1 (B )2 (C )3(D )4(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则(A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉ (C )当且仅当a <0时,(2,1)A ∉(D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

(9)设{}n a 是等差数列,且a 1=3,a 2+a 5=36,则{}n a 的通项公式为__________.(10)在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆=2cos ρθ相切,则a =__________.(11)设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.(12)若x ,y 满足x +1≤y ≤2x ,则2y –x 的最小值是__________.(13)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.(14)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n-=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.三、解答题共6小题,共80分。

解答应写出文字说明,演算步骤或证明过程。

(15)(本小题13分)在△ABC 中,a =7,b =8,cos B =–17. (Ⅰ)求∠A ;(Ⅱ)求AC 边上的高.(16)(本小题14分)如图,在三棱柱ABC -111A B C 中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点,AB=BC =5,AC =1AA =2.(Ⅰ)求证:AC ⊥平面BEF ; (Ⅱ)求二面角B-CD -C 1的余弦值;(Ⅲ)证明:直线FG 与平面BCD 相交.(17)(本小题12分)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“1k ξ=”表示第k 类电影得到人们喜欢,“0k ξ=”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.(18)(本小题13分)设函数()f x =[2(41)43ax a x a -+++]e x .(Ⅰ)若曲线y= f (x )在点(1,(1)f )处的切线与x 轴平行,求a ; (Ⅱ)若()f x 在x =2处取得极小值,求a 的取值范围.学科*网(19)(本小题14分)已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM QO λ=u u u u r u u u r ,QN QO μ=u u u r u u u r ,求证:11λμ+为定值.(20)(本小题14分)设n 为正整数,集合A =12{|(,,,),{0,1},1,2,,}n n t t t t k n αα=∈=L L .对于集合A 中的任意元素12(,,,)n x x x α=L 和12(,,,)n y y y β=L ,记M (αβ,)=111122221[(||)(||)(||)]2n n n n x y x y x y x y x y x y +--++--+++--L .(Ⅰ)当n =3时,若(1,1,0)α=,(0,1,1)β=,求M (,αα)和M (,αβ)的值;(Ⅱ)当n =4时,设B 是A 的子集,且满足:对于B 中的任意元素,αβ,当,αβ相同时,M (αβ,)是奇数;当,αβ不同时,M (αβ,)是偶数.求集合B 中元素个数的最大值;学#科网 (Ⅲ)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,αβ, M (αβ,)=0.写出一个集合B ,使其元素个数最多,并说明理由.绝密★启用前2018年普通高等学校招生全国统一考试理科数学试题参考答案一、选择题 1.A2.D3.B4.D5.C6.C7.C8.D二、填空题 9.63n a n =-10.12+11.2312.313.y =sin x (不答案不唯一)14.312-;三、解答题 (15)(共13分)解:(Ⅰ)在△ABC 中,∵cos B =–17,∴B ∈(π2,π),∴sin B =2431cos B -=. 由正弦定理得sin sin a b A B =⇒7sin A =43,∴sin A =3. ∵B ∈(π2,π),∴A ∈(0,π2),∴∠A =π3.(Ⅱ)在△ABC 中,∵sin C =sin (A +B )=sin A cos B +sin B cos A =31143()72⨯-+⨯=33. 如图所示,在△ABC 中,∵sin C =h BC ,∴h =sin BC C ⋅=33337⨯=, ∴AC 边上的高为33.(16)(共14分)解:(Ⅰ)在三棱柱ABC -A 1B 1C 1中, ∵CC 1⊥平面ABC , ∴四边形A 1ACC 1为矩形. 又E ,F 分别为AC ,A 1C 1的中点, ∴AC ⊥EF .∵AB =BC . ∴AC ⊥BE , ∴AC ⊥平面BEF .(Ⅱ)由(I )知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1. 又CC 1⊥平面ABC ,∴EF ⊥平面ABC . ∵BE ⊂平面ABC ,∴EF ⊥BE . 如图建立空间直角坐称系E -xyz .由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1). ∴=(201)=(120)CD CB uu u r uu r,,,,,, 设平面BCD 的法向量为()a b c =,,n , ∴00CD CB ⎧⋅=⎪⎨⋅=⎪⎩uu u ruur n n ,∴2020a c a b +=⎧⎨+=⎩,令a =2,则b =-1,c =-4,∴平面BCD 的法向量(214)=--,,n , 又∵平面CDC 1的法向量为=(020)EB uu r,,, ∴21cos =21||||EB EB EB ⋅<⋅>=-uu ruu r uu r n n n . 由图可得二面角B -CD -C 1为钝角,所以二面角B -CD -C 1的余弦值为21. (Ⅲ)平面BCD 的法向量为(214)=--,,n ,∵G (0,2,1),F (0,0,2), ∴=(021)GF -uuu r ,,,∴2GF ⋅=-uu u r n ,∴n 与GF uu u r不垂直, ∴GF 与平面BCD 不平行且不在平面BCD 内,∴GF 与平面BCD 相交. (17)(共12分)解:(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000,第四类电影中获得好评的电影部数是200×0.25=50. 故所求概率为500.0252000=. (Ⅱ)设事件A 为“从第四类电影中随机选出的电影获得好评”, 事件B 为“从第五类电影中随机选出的电影获得好评”. 故所求概率为P (AB AB +)=P (AB )+P (AB ) =P (A )(1–P (B ))+(1–P (A ))P (B ). 由题意知:P (A )估计为0.25,P (B )估计为0.2. 故所求概率估计为0.25×0.8+0.75×0.2=0.35. (Ⅲ)1D ξ>4D ξ>2D ξ=5D ξ>3D ξ>6D ξ. (18)(共13分)解:(Ⅰ)因为()f x =[2(41)43ax a x a -+++]e x ,所以f ′(x )=[2ax –(4a +1)]e x +[ax 2–(4a +1)x +4a +3]e x (x ∈R ) =[ax 2–(2a +1)x +2]e x . f ′(1)=(1–a )e .由题设知f ′(1)=0,即(1–a )e=0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.(Ⅱ)由(Ⅰ)得f ′(x )=[ax 2–(2a +1)x +2]e x =(ax –1)(x –2)e x . 若a >12,则当x ∈(1a,2)时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )<0在x =2处取得极小值. 若a ≤12,则当x ∈(0,2)时,x –2<0,ax –1≤12x –1<0, 所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是(12,+∞). (19)(共14分)解:(Ⅰ)因为抛物线y 2=2px 经过点P (1,2),所以4=2p ,解得p =2,所以抛物线的方程为y 2=4x . 由题意可知直线l 的斜率存在且不为0, 设直线l 的方程为y =kx +1(k ≠0). 由241y x y kx ⎧=⎨=+⎩得22(24)10k x k x +-+=. 依题意22(24)410k k ∆=--⨯⨯>,解得k<0或0<k<1. 又P A ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3. 所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (Ⅱ)设A (x 1,y 1),B (x 2,y 2).由(I )知12224k x x k -+=-,1221x x k=. 直线P A 的方程为y –2=1122(1)1y y x x --=--.令x =0,得点M 的纵坐标为1111212211M y kx y x x -+-+=+=+--. 同理得点N 的纵坐标为22121N kx y x -+=+-. 由=QM QO λuuu r uuu r ,=QN QO μuuu r uuu r得=1M y λ-,1N y μ=-.所以2212121212122224112()111111=2111(1)(1)11M N k x x x x x x k k y y k x k x k x x k k λμ-+---++=+=+=⋅=⋅------. 所以11λμ+为定值.学科&网(20)(共14分)解:(Ⅰ)因为α=(1,1,0),β=(0,1,1),所以 M (α,α)=12[(1+1−|1−1|)+(1+1−|1−1|)+(0+0−|0−0|)]=2, M (α,β)=12[(1+0–|1−0|)+(1+1–|1–1|)+(0+1–|0–1|)]=1. (Ⅱ)设α=(x 1,x 2,x 3,x 4)∈B ,则M (α,α)= x 1+x 2+x 3+x 4. 由题意知x 1,x 2,x 3,x 4∈{0,1},且M (α,α)为奇数, 所以x 1,x 2,x 3,x 4中1的个数为1或3.所以B ⊆{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有M(α,β)=1.所以每组中的两个元素不可能同时是集合B的元素.所以集合B中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,所以集合B中元素个数的最大值为4.(Ⅲ)设S k=( x1,x2,…,x n)|( x1,x2,…,x n)∈A,x k =1,x1=x2=…=x k–1=0)(k=1,2,…,n),S n+1={( x1,x2,…,x n)| x1=x2=…=x n=0},则A=S1∪S1∪…∪S n+1.对于S k(k=1,2,…,n–1)中的不同元素α,β,经验证,M(α,β)≥1.所以S k(k=1,2 ,…,n–1)中的两个元素不可能同时是集合B的元素.所以B中元素的个数不超过n+1.取e k=( x1,x2,…,x n)∈S k且x k+1=…=x n=0(k=1,2,…,n–1).令B=(e1,e2,…,e n–1)∪S n∪S n+1,则集合B的元素个数为n+1,且满足条件.故B是一个满足条件且元素个数最多的集合.。

相关文档
最新文档