2018年人教版数学八年级下册17.2 勾股定理的逆定理

合集下载

人教版八年级数学下册课件:17.2 勾股定理的逆定理(共18张PPT)

人教版八年级数学下册课件:17.2  勾股定理的逆定理(共18张PPT)

课堂小 结
1.什么是勾股定理的逆定理?如何表述? 2.什么是命题?什么是原命题?什么是逆命题?
名校讲 坛
例1 (教材P32例1)判断由线段a,b,c组成的三角形是不 是直角三角形. (1)a=15,b=8,c=17; (2)a=13,b=14,c=15.
名校讲 坛
【解答】 (1)因为152+82=225+64=289,172=289, 所以152+82=172,这个三角形是直角三角形. (2)因为132+142=169+196=365,152=225, 所以132+142≠152,这个三角形不是直角三角形. 【点拨】 根据勾股定理逆定理,判断一个三角形是不是直角三角形, 只要看两条较小线段的平方和是否等于最大边长的平方.大边对的是 大角,即大边对的角是直角.
17.2 勾股定理的逆定理
学习目 标
1.理解勾股定理逆定理的具体内容及原命题、逆命题、勾股数的 概念. 2.能根据所给三角形三边的条件判断三角形是否是直角三角形. 3.经历一般规律的探索过程,发展学生的抽象思维能力;经历从 实验到验证的过程,发展学生的数学归纳能力.
预习反 馈
阅读教材P31~33,体会例1、例2的解答过程,并完成下列预习内容: 1.古埃及人画直角的方法是:在一根绳子上打上等距离的13个结,然 后以3个结、4个结、5个结的长度为边长,然后用木桩钉成一个三角形, 其中一个角是直角. 2.互逆命题:在一对命题中,第一个命题的题设恰好为第二个命题的 结论,而第一个命题的结论恰好是第二个命题的题设,像这样的两个 命题叫做互逆命题.我们把其中一个叫做原命题,那么另一个就叫做 它的逆命题.
名校讲 坛
【解答】 对. 因为a2+b2=(2m)2+(m2-1)2=4m2+m4-2m2+1=m4+2m2+1= (m2+1)2, 而c2=(m2+1)2,所以a2+b2=c2,即a,b,c是勾股数. m=2时,勾股数为4,3,5;m=3时,勾股数为6,8,10;m=4 时,勾股数为8,15,17.

17.2勾股定理的逆定理(优质课)优秀教学设计

17.2勾股定理的逆定理(优质课)优秀教学设计

《17.2勾股定理的逆定理》教学设计Y qzx Bmm【内容和教材分析】内容教材第31-33页,17.2勾股定理的逆定理.教材分析“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面只是的继续和深化.勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一.【教学目标】知识与技能1.理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理.2.理解原命题、逆命题、逆定理的概念关系.3.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形.过程与方法1.通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成过程.2.通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用.3.通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题.情感、态度与价值观1.通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系.2.在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神.【教学重难点及突破】重点1.勾股定理的逆定理及运用.2.灵活运用勾股定理的逆定理解决实际问题.难点1.勾股定理的逆定理的证明.2.说出一个命题的逆命题及辨别其真假性.【教学突破】1.勾股定理的逆定理的题设实际上是给出了三条边的条件,其形式和勾股定理的结论形式一致.证明在此条件下的三角形是一个直角三角形,需要构造直角三角形才能完成,构造直角三角形是解决问题的关键.可以从特例推向一般,设置两个动手操作问题.2.勾股定理的逆定理给出的是判定一个三角形是直角三角形的方法,和前面学过的一些判定方法不同,它通过计算来做判断.3.几何中有许多互逆的命题、互逆的定理,它们从正反两个方面揭示了图形的特征性质,所以互逆命题和互逆定理是几何中的重要概念.对互逆命题、互逆定理的概念,理解它们通常困难不大.但对那些不是以“如果……那么……”形式给出的命题,叙述它们的逆命题有时就会有困难,可以尝试首先把命题变为“如果……那么……”.4.勾股定理的逆定理可以解决生活中的许多问题.在解决实际问题时,常先画出图形,根据已知条件计算出各边长,再利用勾股定理的逆定理判断三角形是否是直角三角形,再回答问题.【教学设计】一、复习导入师:上一节课我们学习了勾股定理,请同学们回忆一下:勾股定理的内容是什么?生:如果直角三角形的两条直角边为a、b,斜边为c,那么三边满足的关系为a2+b2=c2.师:勾股定理反映了直角三角形三边间的数量关系,即直角边为a,b斜边为c,则三边满足a2+b2=c2(带领学生集体复习勾股定理).思考:勾股定理的题设、结论分别是什么? 生:题设为直角三角形的两条直角边长分别为a、b,斜边为c,结论为a2+b2=c2师:如果把勾股定理的题设、结论交换一下位置,即如果三角形的三边长a,b,c 满足a2+b2=c2,那么这个三角形是否是直角三角形?本节课我们一起来研究这个问题.板书课题:17.2勾股定理的逆定理设计意图:通过对前面所学知识的归纳总结,联想到用三边的关系是否可以判断一个三角形为直角三角形,自然地引出勾股定理的逆定理.二、教学新知1.发现勾股定理的逆定理.观察发现:师生共同学习古埃及人画直角的方法:把一根长绳打上等距离的13 个结,然后以3 个结间距,4 个结间距、5 个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角。

人教版数学八年级下册17.2《勾股定理的逆定理》说课稿1

人教版数学八年级下册17.2《勾股定理的逆定理》说课稿1

人教版数学八年级下册17.2《勾股定理的逆定理》说课稿1一. 教材分析《勾股定理的逆定理》是人教版数学八年级下册第17.2节的内容。

这部分教材主要让学生了解并掌握勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。

教材通过实例引入,引导学生探究并发现勾股定理的逆定理,进而总结出一般性结论。

这部分内容是初中数学的重要知识点,也是中考的热点,对于学生来说,理解和掌握勾股定理的逆定理对于解决实际问题具有重要意义。

二. 学情分析学生在学习本节课之前,已经学习了勾股定理和直角三角形的性质,对于这些知识点有一定的了解。

但是,学生可能对于如何运用勾股定理的逆定理来判断一个三角形是否为直角三角形还不够清晰。

因此,在教学过程中,我需要引导学生通过探究和发现来理解并掌握勾股定理的逆定理,并能够运用到实际问题中。

三. 说教学目标1.知识与技能目标:让学生理解和掌握勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。

2.过程与方法目标:通过探究和发现,培养学生的观察能力、思考能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 说教学重难点1.教学重点:理解和掌握勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。

2.教学难点:如何引导学生通过探究和发现来理解并掌握勾股定理的逆定理。

五. 说教学方法与手段在本节课的教学过程中,我将采用引导发现法、实例教学法和小组合作学习法等教学方法。

通过引导学生观察、思考和交流,激发学生的学习兴趣,培养学生的观察能力、思考能力和解决问题的能力。

同时,我将运用多媒体课件和教具等教学手段,帮助学生更好地理解和掌握知识点。

六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何判断一个三角形是否为直角三角形。

2.探究:引导学生观察和分析实例,发现勾股定理的逆定理,并总结出一般性结论。

3.讲解:对勾股定理的逆定理进行详细讲解,解释其含义和运用方法。

人教版数学八年级下册17.2《勾股定理的逆定理》教学设计

人教版数学八年级下册17.2《勾股定理的逆定理》教学设计
-让学生分组讨论,尝试发现并总结勾股定理的逆定理。
-教师提供指导性的问题,引导学生通过画图、计算、推理等手段探索定理的正确性。
-分享探究成果,各组展示不同的解题思路和方法,促进学生之间的相互学习和启发。
3.知识讲解,深化理解
-教师对勾股定理的逆定理进行系统的讲解,强调定理的条件和结论。
-通过多媒体演示或实物模型展示,帮助学生形象化理解定理的内涵。
3.创新思维题:
-设立1-2道开放性问题,鼓励学生从不同角度思考,探索多种解题方法。
-鼓励学生尝试自己编写与勾股定理的逆定理相关的题目,并与同学分享,激发学生的学习兴趣和创造力。
4.小组合作任务:
-分配一个小组研究课题,例如“讨论研究,并在下节课上进行汇报展示。
4.设计具有层次性的练习题,使学生在不同难度层次的题目中逐步提高自己的解题能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,激发学生学习数学的积极性。
2.培养学生勇于探索、善于发现的精神,使学生体验数学探究的乐趣。
3.培养学生严谨、踏实的科学态度,养成认真思考、独立解决问题的习惯。
4.通过勾股定理的逆定理的学习,使学生感受数学在现实生活中的广泛应用,体会数学的价值。
2.学生在证明过程中可能出现的逻辑错误,需要教师及时指导纠正。
3.学生对于勾股定理与逆定理之间的联系和区别的把握。
教学设想:
1.创设情境,引入新课
-通过呈现一些生活中的实际例子,如建筑物的直角结构、直角三角形的艺术品等,引导学生观察并思考这些直角三角形的特征,自然引入勾股定理的逆定理。
2.自主探究,合作交流
2.强调勾股定理与逆定理之间的联系,提醒学生注意在解决问题时灵活运用。
3.鼓励学生主动探索数学问题,培养他们勇于挑战、不断进取的精神。

人教版八年级数学下《17.2 勾股定理的逆定理 原(逆)命题、原(逆)定理》优质课教学设计_9

人教版八年级数学下《17.2 勾股定理的逆定理 原(逆)命题、原(逆)定理》优质课教学设计_9

.17.2勾股定理的逆定理1.会理解并判断勾股数,掌握勾股定理的逆定理,并能灵活应用逆定理判定一个三角形是否为直角三角形.1.通过对勾股定理的逆定理的探索,经历知识发生、发展和形成的过程.2.通过用三角形的三边的数量关系来判断三角形的形状,体验数形结合方法的应用.1.通过用三边之间的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐辩证统一的关系.2.在对勾股定理的逆定理的探索中,培养了学生的交流、合作的意识和严谨的学习态度,同时感悟勾股定理和逆定理的应用价值.【重点】勾股定理的逆定理的应用.【难点】勾股定理的逆定理的证明.【教师准备】教学中出示的教学插图和例题.【学生准备】三角板、绳子.学生利用准备好的绳子,以小组为单位动手操作,观察,做出合理的推断.[设计意图]介绍前人经验,启发思考,使学生意识到数学来源于生活,同时明确了本节课研究的问题,既实行了数学史的教育,又锻炼了学生动手实践、观察探究的水平.导入二:你能说出勾股定理吗?并指出定理的题设和结论.学生独立回忆勾股定理,师生共同分析得出其题设和结论,教师引导指出勾股定理是从形的特殊性得出三边之间的数量关系.追问:你能把勾股定理的题设与结论交换得到一个新的命题吗?师生共同得出新的命题,教师指出其为勾股定理的逆命题.追问:“如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.”能否把它作为判定直角三角形的依据呢?本节课我们一起来研究这个问题.[设计意图]通过对前面所学知识的归纳总结,自然合理地引出勾股定理的逆定理.1.勾股定理的逆定理思路一①如果改变一下三条边的结数,是否还能摆放出同样形状的三角形吗?②画图看一看,三角形的三边长分别为2.5 cm,6 cm,6.5 cm,观察三角形的形状.再换成4 cm,7.5 cm,8.5 cm试试看.③三角形的三边具有怎样的关系,才得到上面同样的结论?教师根据学生的思考结果,对第③个问题总结归纳,提出猜想:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.[设计意图]由特殊到一般,归纳猜想出“如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形就为直角三角形”的结论,培养学生动手操作水平和寻求解决数学问题的一般方法.思路二下面的三组数分别是一个三角形的三边长a,b,c.5,12,13;7,24,25;8,15,17.①这三组数都满足a2+b2=c2吗?②分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?学生以小组为单位,按给出的三组数作出三角形,得出结论:①这三组数都满足a2+b2=c2;②以每组数为边长作出的三角形都是直角三角形.师生进一步通过实际操作,猜想结论:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.[设计意图]本活动通过让学生按已知数据作出三角形,并测量三角形三个内角的度数来进一步获得一个三角形是直角三角形的相关边的条件,猜想得出结论.学生独立思考回答问题,命题1的题设是直角三角形的两直角边长分别为a,b,斜边长为c,结论是a2+b2=c2;命题2的题设是三角形的三边长a,b,c满足a2+b2=c2,结论是这个三角形是直角三角形.教师引导学生分析得出这两个命题的题设和结论正好是相反的.归纳出互逆命题概念:两个命题的题设和结论正好相反,像这样的两个命题叫做互逆命题,如果其中一个叫原命题,那么另一个就叫做它的逆命题.提问:请同学们举出一些互逆命题,并思考:原命题准确,它的逆命题是否也准确呢?举例说明.学生分组讨论合作交流,然后举手发言,教师适时记下一些互逆命题,其中既包含有原命题、逆命题都成立的互逆命题,也包括原命题成立逆命题不成立的互逆命题.如:①对顶角相等和相等的角是对顶角;②两直线平行,内错角相等和内错角相等,两直线平行;③全等三角形的对应角相等和对应角相等的三角形是全等三角形.追问:在大家举出的互逆命题中原命题和逆命题都成立吗?学生举手发言回答,另一学生纠错.同时教师引导学生明确:①任何一个命题都有逆命题.②原命题准确,逆命题不一定准确;原命题不准确,逆命题可能准确.③原命题与逆命题的关系就是命题中题设与结论“互换”的关系.[设计意图]让学生在合作交流的基础上明确互逆命题的概念,在互动的过程中掌握互逆命题的真假性是各自独立的.这个三角形是直角三角形”吗?教师引导学生分析命题的题设及结论,让学生独立画出图形,写出已知和求证.已知:如图所示,△ABC中,AB=c,AC=b,BC=a,且a2+b2=c2.求证:∠C=90°.追问:要证明△ABC是直角三角形,只要证明∠C=90°,由已知能直接证吗?教师引导,如果能证明△ABC与一个以a,b为直角边长的Rt△A'B'C'全等.那么就证明了△ABC是直角三角形,为此,能够先构造Rt△A'B'C',使A'C'=b,B'C'=a,∠C'=90°,再让学生小组讨论得出证明思路,证明了猜想的准确性.教师适时板书出规范的证明过程.证明:如图所示,作直角三角形A'B'C',使∠C'=90°,B'C'=a,A'C'=b,由勾股定理得A'B'===c,∴A'B'=AB,B'C'=BC,A'C'=AC,∴△ABC≌△A'B'C',∴∠C=∠C'=90°,∴△ABC是直角三角形.教师在此基础上进一步指出,如果一个定理的逆命题经过证明是准确的,那么它也是一个定理,我们把上面所形成的这个定理叫做勾股定理的逆定理,称这两个定理为互逆定理.[设计意图]引导学生用图形和数学符号语言表示文字命题,构造直角三角形,让学生体会这种证明思路的合理性,协助学生突破难点.2.例题讲解(教材例1)判断由线段a,b,c组成的三角形是不是直角三角形:(1)a=15,b=8,c=17;(2)a=13,b=14,c=15.学生独立完成,教师适时指导,并规范地书写解题过程.在此活动中,教师协助学生分析得到:要判断一个三角形是不是直角三角形,可根据勾股定理及其逆定理,关键是对两条较小边长的平方和与最大边长的平方实行比较,只有相等时才是直角三角形.解:(1)因为a2+b2=152+82=289,c2=172=289,所以152+82=172,根据勾股定理的逆定理,这个三角形是直角三角形.(2)因为a2+b2=132+142=365,c2=152=225,所以132+142≠152,(1)3,4,;(2)6,8,;(3)7,24,;(4)5,12,;(5)9,12, .[设计意图]通过练习,学会使用勾股定理逆定理判断一个三角形是否为直角三角形.[知识拓展]勾股定理的逆定理是直角三角形的判定方法之一,利用它判定是否为直角三角形的一般步骤:①确定最大边长c;②计算a2+b2和c2的值,若a2+b2=c2,则此三角形是直角三角形;若a2+b2<c2,则此三角形是钝角三角形;若a2+b2>c2,则此三角形是锐角三角形.(教材例2)某港口P位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16 n mile,“海天”号每小时航行12 n mile.它们离开港口一个半小时后分别位于点Q,R处,且相距30 n mile.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?引导学生认真审题,弄清已知是什么,解决的问题是什么.学生通过思考举手回答,教师在黑板上列出:已知两艘轮船的航速,它们的航行时间以及相距的路程,“远航”号的航向——东北方向;解决的问题是“海天”号的航向.引导学生尝试画图,教师在黑板上或多媒体中画出示意图.引导学生分析:图中的E,N分别表示东、北两个方向.要求出“海天”号的航行方向,只要求出∠RPQ的度数,而∠1=45°,利用角的和差得出∠2的度数.解:根据题意,由已知得PQ=16×1.5=24,PR=12×1.5=18,QR=30.因为242+182=302,即PQ2+PR2=QR2,所以∠QPR=90°,由“远航”号沿东北方向航行可知∠1=45°,所以∠2=∠QPR-∠1=45°,即“海天”号沿西北方向航行.[设计意图]学生在规范化的解答过程及练习中,提升对勾股定理逆定理的理解以及实际应用的水平.师生共同回顾本节课所学主要内容:(1)已知一个三角形的三边长,利用勾股定理的逆定理来判定这个三角形是不是直角三角形.(2)一个命题一定有逆命题,一个定理不一定有逆定理.(3)三个数满足勾股数的两个条件:①三个数必须满足较小的两个数的平方和等于最大的一个数的平方;②三个数必须都是正整数.(4)解题时,注意勾股定理与其逆定理的区别.勾股定理是在直角三角形中使用的,而勾股定理的逆定理是判断一个三角形是不是直角三角形的.1.(2019·毕节中考)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是 ()A.,,B.1,,C.6,7,8D.2,3,4解析:A中,()2+()2≠()2,不能构成直角三角形,故错误;B中,12+()2=()2,能构成直角三角形,故准确;C中,62+72≠82,不能构成直角三角形,故错误;D中,22+32≠42,不能构成直角三角形,故错误.故选B.2.若△ABC的三边长a,b,c满足(a-b)(a2+b2-c2)=0,则△ABC是 ()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形解析:根据题意可得a=b或a2+b2-c2=0,所以△ABC可能为等腰三角形,也可能为直角三角形.故选C.3.下列说法中准确的有 ()(1)在一个三角形中,如果一边上的中线等于这条边的一半,那么这条边所对的角是直角;(2)命题“在一个三角形中,有一个角是30°,那么它所对的边是另一边的一半”的逆命题是真命题;(3)勾股定理的逆定理是:如果两条直角边长的平方和等于斜边长的平方,那么这个三角形是直角三角形;(4)△ABC的三边之比是1∶1∶,则△ABC是直角三角形.A.1个B.2个C.3个D.4个解析:(1)准确,(2)错误,(3)错误,(4)准确,故有两个说法是准确的.故选B.4.如图(1)所示的是一块地,已知AD=4 m,CD=3 m,AD⊥DC,AB=13 m,BC=12 m,求这块地的面积.解:如图(2)所示,连接AC.∵AD⊥DC,∴在Rt△ACD中,AD2+CD2=AC2,∴AC===5(m).∵AC2+BC2=52+122=132=AB2,∴△ABC为直角三角形,∴这块地的面积为S=S△ABC-S△ACD=AC·CB-AD·DC=×5×12-×3×4=24(m2).17.2勾股定理的逆定理1.勾股定理的逆定理(1)归纳猜想(2)原命题、逆命题(3)勾股定理的逆定理的证明2.例题讲解例1例2一、教材作业【必做题】教材练习第33页第1,2,3题;教材第34页习题17.2第1,2,3,4题.【选做题】教材第34页习题17.2第7题.本节课以“提出问题——解决问题”为主线,以学生的自主探索学习为中心,从解决问题的完成情况看,知识目标完全达到,水平目标基本实现,情感目标基本实现.在本节课教学中,充分发挥学生在教学中的主体作用,教师不能一味地“讲知识”,而是应用启发式的原则,给学生指明学习目标和方向,让学生去自主探究,注重了知识上的即时巩固,也侧重了学生各方面的素质的培养.在重难点的突破上,还应加一些递进的习题,降低题的难度,使优生学好,中等生也能跟上.同时,缺少了板书示范,不利于学生养成良好的书写习惯.。

人教版八年级下册数学:17.2.2-勾股定理的逆定理课件

人教版八年级下册数学:17.2.2-勾股定理的逆定理课件

过了2秒后行驶了50米,此时测得小汽车与车速检测仪
间的距离为40米. 问:2秒后小汽车在车速检测仪的哪
个方向?这辆小汽车超速了吗?
小汽车在车 速检测仪的2秒后
你觉的此题解对了吗?
50米
小汽车
北偏西60° 方向 25米/秒=90千米/时 40米 >70千米/时∴小汽车超速了
30米 北 30°
60°
车速检测仪
∠B=90°
B
答:C在B地的正北方向.
13cm
A 12cm
2、有一电子跳蚤从坐标原点O出发向正东方向跳1cm,
又向南跳2cm,再向西跳3cm,然后又跳回原点,问电
子跳蚤跳回原点的运动方向是怎样的?所跳距离是多
少厘米?
y
电子跳蚤跳回原点 的运动方向是
东北方向;
所跳距离是 2 2 厘
米.
O1 x
22 2 2 2
(1)类似这样的关系6,8,10;9,12,15是否 也是勾股数?如何验证?
(2)通过对以上勾股数的研究,你有什么样的 猜想?
结论:若a,b,c是一组勾股数,那么ak,bk,ck (k为正整数)也是一组勾股数.

Q
30
R S 东 12×1.5=1485° 16×1.5=24 P
港口
解:根据题意画图,如图所示:
N
PQ=16×1.5=24
Q
PR=12×1.5=18
30
S
QR=30 ∵242+182=302,
R
16×1.5=24
12×1.5=18 45°45°
即 PQ2+PR2=QR2 ∴∠QPR=900
P
E
3
3、小明向东走80m后,又向某一方向走60m后,再沿

新人教版初中数学八年级下册17.2.1 勾股定理的逆定理

新人教版初中数学八年级下册17.2.1  勾股定理的逆定理

8.(2018·南通)下列长度的三条线段能组成直角三角形的是( A )
A.3,4,5
B.2,3,4
C.4,6,7
D.5,11,12
9.(2019·益阳)已知 M,N 是线段 AB 上的两点,AM=MN=2, NB=1,以点 A 为圆心,AN 长为半径画弧;再以点 B 为圆 心,BM 长为半径画弧,两弧交于点 C,连接 AC,BC,则△ABC 一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形
答案显示
1.如果两个命题的题设和结论刚好相反,那么这样的两个命题 叫做__互__逆___命__题___,如果把其中一个命题叫做原命题,那么 另一个叫做它的__逆__命__题____.
2.一般地,如果一个定理的逆命题经过证明是正确的,那么它 也是一个定理,称这两个定理互为_逆__定___理__.
3.下列命题的逆命题正确的是( A ) A.两条直线平行,内错角相等 B.若两个实数相等,则它们的绝对值相等 C.全等三角形的对应角相等 D.若两个实数相等,则它们的平方也相等
17.(2019·河北)已知:整式 A=(n2-1)2+(2n)2,整式 B>0. 尝试 化简整式 A. 解:A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1 =(n2+1)2.
发现 A=B2,求整式 B. 解:∵A=B2,B>0,∴B=n2+1.
联想 由上可知,B2=(n2-1)2+(2n)2,当 n>1 时,n2-1,2n,
(30°,60°,45°)的和的形式; (2)用旋转法将△CPB 绕点 C 顺时针旋转 90°到△CP′A 的位置.
解:如图,将△CPB 绕点 C 顺时针旋转 90°得△CP′A,则 P′C =PC=2,P′A=PB=1,∠BPC=∠AP′C,连接 PP′. 因为∠PCP′=90°,所以 PP′2=22+22=8. 又因为 P′A=1,PA=3, 所以 PP′2+P′A2=8+1=9,PA2=9. 所以 PP′2+P′A2=PA2. 所以∠AP′P=90°. 易知∠CP′P=45°, 所以∠BPC=∠AP′C=∠AP′P+∠CP′P=90°+45°=135°.

人教版8下数学练习题及答案17.2 勾股定理的逆定理

人教版8下数学练习题及答案17.2 勾股定理的逆定理

17.2 勾股定理的逆定理评卷人得分一、选择题1. 在△ABC中,∠A,∠B,∠C的对边分别为a,b,c且(a+b)(a-b)=c2,则()A. ∠A为直角B. ∠C为直角C. ∠B为直角D. △ABC不是直角三角形2. 满足下列条件的三角形中,不是直角三角形的是()A. 三内角之比为1∶2∶3B. 三边长的平方之比为1∶2∶3C. 三边长之比为3∶4∶5D. 三内角之比为3∶4∶53. 下列几组数:①9,12,15,②8,15,17,③7,24,25,④n2-1,2n,n2+1(n是大于1的整数),其中是勾股数的有()A. 1组B. 2组C. 3组D. 4组4. 以下定理,其中有逆定理的是()A. 对顶角相等B. 互为邻补角的角平分线互相垂直C. 如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补D. 直角三角形的两条直角边的平方和等于斜边的平方5. 下列各组数中,是勾股数的是()A. 14,36,39B. 8,24,25C. 8,15,17D. 10,20,266. 如图,每个小正方形的边长均为1,A,B,C是小正方形的顶点,则∠ABC的度数为 ()A. 90°B. 60°C. 45°D. 30°7. 一个三角形三边长a,b,c满足|a-12|++(c-20)2=0,则这个三角形最长边上的高为()A. 9.8B. 4.8C. 9.6D. 10评卷人得分二、填空题8. 如图所示,点A为小红家的位置,点B为小明家的位置,点C为学校的位置,三地之间的距离如图,已知学校在小明家的正西方向,则小红家在小明家的方向.9. 若一个三角形的三边长分别为m+1,m+2,m+3,那么当m=时,这个三角形是直角三角形.10. 把命题“如果a>b,那么ac>bc(c≠0)”的逆命题改写为“如果……,那么……”的形式:11. 已知a,b,c是△ABC的三边,且满足|a-3|++(c-5)2=0,则此三角形的形状是.评卷人得分三、解答题12. 在B港有甲、乙两艘渔船,若甲船沿北偏东60°的方向以每小时8海里的速度前进,乙船沿南偏东某个角度的方向以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?13. 如图所示,已知△ABC的三边分别是a,b,c,且a+b=4,ab=1,c=,试判断△ABC的形状.14. 如图所示的一块地,已知AD=4m,CD=3m,AD⊥DC,AB=13m,BC=12m,求这块地的面积.15. 如图,欲从一块三角形下脚料ADB中截出一个形如△ACD的工件,其中AD=5dm,AB=14dm,AC=10dm,CD=5dm,求剩余部分△ABC的面积.16. 已知:如图,在四边形ABCD中,AD∥BC,AB=4,BC=6,CD=5,AD=3.求四边形ABCD的面积.评卷人得分四、证明题中,CD是AB边上的高,且CD2=AD·BD.求证:△ABC是直角三角形.18. 如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,求证:BA⊥AD.参考答案1. 【答案】A【解析】因为(a+b)(a-b)=a2-b2=c2,所以b2+c2=a2.所以△ABC为直角三角形, ∠A为直角,故选A.2. 【答案】D【解析】A项中,由三角形内角和为180°可得,三个内角分别为30°,60°,90°,故此三角形是直角三角形.B项中,令三边长分别为a,b,c,则a2∶b2∶c2=1∶2∶3,∴a2+b2=c2,故满足此条件的三角形是直角三角形.C项中,a∶b∶c=3∶4∶5,设a=3k,则b=4k,c=5k,∴a2+b2=(3k)2+(4k)2=25k2=c2,∴是直角三角形. D项中的最大角为75°,故不是直角三角形.3. 【答案】D【解析】①中因为92+122=152,所以是勾股数;②中因为82+152=172,所以是勾股数;③中因为72+242=252,所以是勾股数;④中因为(n2-1)2+(2n)2=(n2+1)2,所以是勾股数.故选D.4. 【答案】D【解析】A定理的逆命题是“相等的两个角是对顶角”,不正确;B定理的逆命题是“角平分线互相垂直的两个角是邻补角”,∵两条平行线被第三条直线所截得的同旁内角的平分线也互相垂直,∴该逆命题不成立;C定理的逆命题是“如果两个角相等或互补,那么一个角的两边与另一个角的两边分别平行”,∵当两个角相等或互补时,一个角的两边与另一个角的两边可能分别垂直,∴该逆命题不成立;D定理的逆命题为勾股定理的逆定理.综上可知A,B,C三个定理均无逆定理,故选D.5. 【答案】C【解析】确定勾股数只需验证两小数的平方和与大数平方是否相等.∵142+362=1 492,392=1 521≠1 492,∴A项不是勾股数;∵82+242=640,252=625≠640,∴B项不是勾股数;∵82+152=289,172=289,∴C是勾股数;∵102+202=500,262=676≠500,∴D项不是勾股数.故选C.6. 【答案】C【解析】连接AC,观察图形易知AB=, BC=, AC=,所以△ACB为等腰三角形,又因为BC2+ AC2=AB2, △ACB为等腰直角三角形,所以∠ABC=45°.7. 【答案】C【解析】∵|a-12|≥0,≥0,(c-20)2≥0,∴由题意得,a-12=0, b-16=0,c-20=0,则有a=12,b=16,c=20.∵a2+b2=122+162=400=202=c2,∴该三角形为直角三角形,c为斜边.设斜边上的高为h.由面积公式得ab=ch,所以h===9.6.8. 【答案】正北【解析】因为82+152=172,所以△ABC为直角三角形,即AB与BC垂直.9. 【答案】2【解析】因为m+3>m+2>m+1,所以m+3为直角边,根据勾股定理得,(m+1)2+(m+2)2=(m+3)2,解得m=2或m=-2(舍去).所以m=2.10. 【答案】如果ac>bc(c≠0),那么a>b【解析】根据命题写出它的逆命题,即原命题的题设是逆命题的结论,原命题的结论是逆命题的题设.11. 【答案】直角三角形【解析】∵|a-3|≥0,≥0,(c-5)2≥0,结合题意得a-3=0,b-4=0,c-5=0.∴a=3,b=4,c=5,a2+b2=9+16=25=c2,∴△ABC 是直角三角形.12. 【答案】如图,甲船航行的距离为BM=8×2=16(海里),乙船航行的距离为BP=15×2=30(海里).∵162+302=1 156=342,∴BM2+BP2=MP2,∴△MBP为直角三角形,且∠MBP=90°,∴乙船是沿着南偏东30°的方向航行的.13. 【答案】∵a+b=4,ab=1,∴(a+b)2=42=16,即a2+b2+2ab=16,∴a2+b2=16-2ab=16-2×1=14,又∵c2=()2=14,∴a2+b2=c2,又∵a,b,c是△ABC的三边,根据勾股定理得△ABC为直角三角形.14. 【答案】连接AC(如图).∵AD⊥DC,∴在Rt△ACD中,由勾股定理得AC==5 m.又∵AC2+BC2=52+122=132=AB2,∴△ABC 为直角三角形,∴这块地的面积为S △ABC -S △ACD =AC ×BC -AD ×CD =× 5×12-×4× 3=24(m 2).15. 【答案】因为CD 2+AD 2=(5)2+52=100=AC 2,所以△ACD 是直角三角形,且∠D =90°. 在Rt △ABD 中,BD ==3 (dm),所以BC =BD -CD =(3-5) dm,所以△ABC 的面积为BC ·AD =×(3-5)×5=(dm 2).16. 【答案】如图,作DE ∥AB 交BC 于点E ,连接BD ,则可以证明△ABD ≌△EDB (ASA),∴DE =AB =4,BE =AD =3.∵BC =6,∴EC =BC -BE =3,∴EC =EB .∵DE 2+CE 2=42+32=25=CD 2,∴△DEC 为直角三角形,∴∠DEC =90°.又∵EC =EB =3,∴△DBC 为等腰三角形,∴DB =DC =5.在△BDA 中,∵AD 2+AB 2=32+42=25=BD 2,∴△BDA 是直角三角形.易得S △BDA =×3×4=6,S △DBC =×6×4=12,∴S △四边形ABCD =S △BDA +S △DBC =6+12=18.17. 【答案】在Rt △ACD 和Rt △BCD 中,∵AC 2=AD 2+CD 2,BC 2=CD 2+BD 2,∴AC 2+BC 2=AD 2+2CD 2+BD 2=AD 2+2AD ·BD +BD 2=(AD +BD )2=AB 2,∴△ABC 是直角三角形.18. 【答案】延长AD 到点E ,使DE =AD ,连接BE .∵点D 是BC 的中点,∴BD =CD .在△ADC 和△EDB 中,CD =BD ,∠ADC =∠EDB ,AD =ED ,∴△ADC ≌△EDB ,∴EB =AC =13,AE =2AD =2×6=12.又∵AB =5,∴AB 2+AE 2=52+122=169=132=BE 2,∴△ABE 是直角三角形,且∠BAE =90°,∴BA ⊥AD .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17.2 勾股定理的逆定理
1.请完成以下未完成的勾股数:
(1)8,15,______;(2)10,26,_____.
2.△ABC中,a2+b2=25,a2-b2=7,又c=5,则最大边上的高是______.
3.以下各组数为三边的三角形中,不是直角三角形的是().
A,.7,24,25
C.4,7.5,8.5 D.3.5,4.5,5.5
4.一个三角形的三边长分别为15,20,25,那么它的最长边上的高是().
D.9
A.12.5 B.12 C.
2
5.已知:如图,∠ABD=∠C=90°,AD=12,AC=BC,∠DAB=30°,求BC的长.
6.已知:如图,AB=4,BC=12,CD=13,DA=3,AB⊥AD,求证:BC⊥BD.
7.在四边形ABCD中,AB=3,BC=4,CD=12,AD=13,∠B=90°,求四边形ABCD的面积.
8.一艘轮船以20千米/时的速度离开港口向东北方向航行,另一艘轮船同时离开港口以15千米/时的速度向东南方向航行,它们离开港口2小时后相距多少千米?
9.如图3中的(1)是用硬纸板做成的形状大小完全相同的直角三角形,两直角边的长分别为a和b,斜边长为c;如图3中(2)是以c•为直角边的等腰直角三角形,请你开动脑筋,将它们拼成一个能证明出勾股定理的图形.
(1)画出拼成的这个图形的示意图,写出它是什么图形.
(2)用这个图形推出a2+b2=c2.(勾股定理)
(3)假设图中的(1)中的直角三角形有若干个,你能运用图中的(1)所给的直角三角形拼出另一种能推出a2+b2=c2的图形吗?请画出拼后的示意图.(无需证明)
答案:
1.17,24 2.略 3.D 4.B 5..提示:∵AB⊥AC,AB=4,DA=3,∴BD=5,•又BC=12,CD=13,∴CD2=BC2+BD2,∴∠DBC=90°,∴BC⊥BD 7.36,提示:连结AC得两个直角三角形 8.50千米
9.(2)S梯形=1
2
(a+b)(a+b)=
1
2
(a+b)2,S梯形=
1
2
ab×2+
1
2
c2=ab+
1
2
c2,
∴1
2
(a+b)2=ab+
1
2
c2,得a2+b2=c2.。

相关文档
最新文档