1.2-二次函数y=ax2的图象和性质同步练习
北师大版九年级数学下册二次函数y=ax2和y=ax2+c的图象与性质同步练习题

2.2 二次函数的图象与性质第2课时 二次函数y =ax 2和y =ax 2+c 的图象与性质1.抛物线y=-3x 2+5的开口向________,对称轴是_______,顶点坐标是________,顶点是最_____点,所以函数有最________值是_____.2.抛物线y=4x 2-1与y 轴的交点坐标是_________,与x 轴的交点坐标是_____.3.把抛物线y=x 2向上平移3个单位后,得到的抛物线的函数关系式为_______.4.抛物线y=4x 2-3是将抛物线y=4x 2,向_____平移______个单位得到的.5.抛物线y=ax 2-1的图像经过(4,-5),则a=_________.6.抛物线y=-3(2x 2-1)的开口方向是_____,对称轴是_____.7.在同一坐标系中,二次函数y=-21x 2,y=x 2,y=-3x 2的开口由大到小的顺序是______. 8.在同一坐标系中,抛物线y =4x 2,y =41x 2,y =-41 x 2的共同特点是( )A.关于y 轴对称,抛物线开口向上;B.关于y 轴对称,y 随x 的增大而增大 B.关于y 轴对称,y 随x 的增大而减小;D.关于y 轴对称,抛物线顶点在原点. 9.如图,函数y =ax 2与y =-ax+b 的图像可能是( ).10.求符合下列条件的抛物线y=ax 2-1的函数关系式: (1)通过点(-3,2);(2)与y=12x 2的开口大小相同,方向相反; (3)当x 的值由0增加到2时,函数值减少4.11..已知抛物线y=mx 2+n 向下平移2个单位后得到的函数图像是y=3x 2-1,求m,n 的值.北师大版九年级数学上册期中测试题一、选择题(本大题共10小题,每小题3分,共30分) 1.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.12C.13D.142. 关于方程x 2-2=0的理解错误的是A.这个方程是一元二次方程B.方C.这个方程可以化成一元二次方程的一般形式D.这个方程可以用公式法求解 3.下列说法正确的个数是①菱形的对角线相等 ②对角线互相垂直的四边形是菱形;③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形⑤矩形的对角线相等且互相垂直平分 A.1 B.2 C.3 D.4 4.方程x 2-3x+6=0的根的情况是A.有两个不相等的实数根B.有两个相等的实数根乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..C.无实数根D.不能确定5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上"”的频率一定是0.620.其中合理的是A.①②B.②③C.①③D.①②③ 6.将一张正方形纸片按如图所示步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________………………………密………………………………….封……………………….线…………………………………………………………………………..率是A.23B.12C.13D.498.如图,在菱形ABCD 中,AB =13,对角线AC =10,若过点A 作AE ⊥BC 垂足为E ,则AE 的长为 A.8 B.6013 C.12013 D.240139.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为 A.5 B.4 C.342D.3410.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =725,在以上4个结论中,正确的有乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..A.1个B.2个C.3个D.4个二、填空题(本题共6小题,每小题4分,共24分) 11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是________.12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,则菱形ABCD 的周长为________.13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P ,再随机摸出一张卡片,其数字记为q ,则关于的方程x 2+px+q =0有实数根的概率是________.14.某种油菜籽在相同条件下的发芽试验结果如下: 由此可以估计油菜籽发芽的概率约为________.(精确到乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..0.1)15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27,若设个位数字为x ,则列出的方程为________.16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________.三、解答题(本题共7小题,共66分) 17.(8分)解方程:(1)2x 2-4x+1=0 (2)(x+8)(x+1)=-12乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..18.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转(1)请用画树状图法或列表法列出所有可能的结果; (2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获胜.问他们两人谁获胜的概率大?请分析说明19.(10分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件村衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,且让顺客尽可能多得实惠,则每件衬衫应降价多少元?乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________………………………密………………………………….封……………………….线…………………………………………………………………………..(2)商场平均每天可能盈利1700元吗?请说明理由.20.(10分)如图,矩形ABCD 中AB =3,BC =2,过对角线BD 的中点O 的直线分別交AB 、CD 边于点E 、F. (1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 是菱形时,求EF 的长.21.(10分)如图,若要建一个长方形鸡场,鸡场的一边靠墙,另三边用竹篱笆園成,篱笆总长33米,墙对面有一个2米宽的门,国成长方形的鸡场除门之外四周不能有空隙.求:(1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米?(2)能围成面积为200平方米的鸡场吗?乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..22.(10分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量(千克)与销售单价x(元/千克)之间存在如图所示的变化规律. (1)求每月销售量y 与销售单价x 之间的函数关系式; (2)若某月该茶叶专卖店销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x.23.(10分)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F. (1)求证:△BDF 是等腰三角形;(2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FC 交BD 于点O①判断四边形BFDC 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..。
人教版九年级上册数学二次函数y=ax2的图象和性质同步训练(含答案)

人教版九年级上册数学22.1.2 二次函数y=a x 2的图象和性质同步训练一、单选题1.在同一坐标系中,作y =2x 2,y =-2x 2,y =12x 2的图象,他们共同的特点是( )A .都关于y 轴对称,抛物线开口向上B .都关于y 轴对称,抛物线开口向下C .都关于原点对称,抛物线的顶点都是原点D .都关于y 轴对称,抛物线的顶点都是原点2.已知抛物线2y ax =与24y x =的形状相同,则a 的值是( ) A .4B .4-C .4±D .13.下列函数中,当x <0时,y 值随x 值的增大而增大的是( ) A .25y x =B .212y x =-C .2y xD .213y x =4.若二次函数y =ax 2的图像过点P (﹣2,4),则该图象必经过点( ) A .(2,4)B .(﹣2,﹣4)C .(2,﹣4)D .(4,﹣2)5.下列抛物线中,开口向下的有( ) ①y2;①y =57x 2;①y =10x 2;①y =﹣211x 2. A .1个B .2个C .3个D .4个6.抛物线上y =(m -4)x 2有两点A (-3,y 1)、B (2,y 2),且y 1>y 2,则m 的取值范围是( ) A .m >4B .m <4C .m ≥4D .m ≠47.已知二次函数2(1)y a x =-,当0x >时,y 随x 增大而增大,则实数a 的取值范围是( ) A .0a >B .1a >C .1a ≠D .1a <8.若二次函数()20y ax a =≠的图象过点()2,3--,则必在该图象上的点还有( )A .()3,2--B .()2,3C .()2,3-D .()2,3-二、填空题9.已知函数213y x =-,不画图象,回答下列各题: (1)其图象的开口方向:________ (2)其图象的对称轴:________ (3)其图象的顶点坐标:________(4)当x >0时,y 随x 的增大而__________________________; (5)当x __时,函数y 的最_____值是________10.已知()11,A y -,()22,B y -,31,3C y ⎛⎫ ⎪⎝⎭三点都在二次函数213y x =-的图象上,比较1y 、2y 、3y 的大小:______.(用“>”连接)11.二次函数22y x =的图象经过点()11,A y -、()22,B y ,则1y ______2y .(填“>”“<”或“=”)12.若二次函数y =(m +1)x |m |的图象的开口向下,则m 的值为_____.13.若点(2,y 1)和点(4,y 2)在函数y =x 2的图象上,则y 1__y 2(填“>”、“<”或“=”).14.函数22y x =的图象的开口_______,对称轴是_______,顶点是________ . 15.在同一个平面直角坐标系xOy 中,二次函数211y a x =,222y a x =,233y a x 的图象如图所示,则123,,a a a 的大小关系为___________(用“>”连接).16.如图,正方形OABC 的顶点B 在抛物线2y x 的第一象限的图象上,若点B 的横坐标与纵坐标之和等于6,则对角线AC 的长为______.三、解答题17.说出下列抛物线的开口方向、对称轴和顶点:(1)23y x =; (2)23y x =-; (3)213y x =; (4)213y x =-.18.已知,如图:直线AB 过x 轴上的点(2,0)A ,且与抛物线2y ax =相交于B ,C 两点,点B 的坐标为(1,1).(1)求直线AB 和抛物线的函数解析式; (2)如果抛物线上有一点D ,使得AODBCOS S=,求点D 的坐标.19.已知函数()2323m m y m x +-=+是关于x 的二次函数.(1)求m 的值.(2)当m 为何值时,该函数图像的开口向下? (3)当m 为何值时,该函数有最小值,最小值是多少?参考答案:1.D 2.C 3.B 4.A 5.B 6.A 7.B 8.C9. 向下 y 轴 (0,0) 减小 =0 大 0 10.312y y y >> 11.< 12.-2 13.<14. 向上 y 轴 (0,0) 15.321a a a >>. 16.17.(1)(3)抛物线的开口向上,对称轴是y 轴,顶点坐标为(0,0);(2)(4)抛物线的开口向下,对称轴是y 轴,顶点坐标为(0,0) 18.(1)2y x =-+,2yx ;(2)D19.(1)m 1=−4,m 2=1;(2)当m =−4时,该函数图象的开口向下;(3)当m =1时,函数为24y x =,该函数有最小值,最小值为0.。
人教版九年级数学上册二次函数y=ax2的图象和性质同步练习题

22.1.2 二次函数y=ax2的图象和性质1.在同一直角坐标系中作出函数y=x2,y=2x2和y=3x2的图象,然后根据图象填空:抛物线y=x2的顶点坐标是( ),对称轴是________,开口向________;抛物线y=2x2的顶点坐标是( ),对称轴是________,开口向________;抛物线y=3x2的顶点坐标是( ),对称轴是________,开口向________.可以发现,抛物线y=x2,y=2x2,y=3x2的开口大小由二次项系数决定,二次项系数的绝对值越大,抛物线的开口越________.2.在同一直角坐标系中作出函数y=-x2,y=-2x2和y=-3x2的图象,然后根据图象填空:抛物线y=-x2的顶点坐标是( ),对称轴是________,开口向________;抛物线y=-2x2的顶点坐标是( ),对称轴是________,开口向________;抛物线y=-3x2的顶点坐标是( ),对称轴是________,开口向________.可以发现,抛物线y=-x2,y=-2x2,y=-3x2的开口大小由二次项系数决定,二次项系数的绝对值越大,抛物线的开口越________.3.(1)抛物线y=ax2的开口方向和开口大小由________决定,当a________0时,抛物线的开口向上;当a________0时,抛物线的开口向下;(2)抛物线y=ax2的顶点坐标是( ),当a________0时,它是抛物线的最低点,即当x=________时,函数取得最小值为________;当a________0时,它是抛物线的最高点,即当x=________时,函数取得最大值为________;(3)抛物线y=ax2的对称轴是________.4.在同一直角坐标系中作出函数y=-x2,y=-x2+2,y=-x2-3的图象,然后根据图象填空:抛物线y=-x2的顶点坐标是( ),对称轴是________,开口向________;抛物线y=-x2+2的顶点坐标是( ),对称轴是________,开口向________;抛物线y=-x2-3的顶点坐标是( ),对称轴是________,开口向________.可以发现,抛物线y=-x2+2,y=-x2-3与抛物线y=-x2的形状、开口大小相同,只是抛物线的顶点位置发生了变化.把抛物线y=-x2沿y轴向________平移________个单位即可得到抛物线y=-x2+2;把抛物线y=-x2沿y轴向________平移________个单位即可得到抛物线y=-x2-3.5.填空(如果需要可作草图):(1)抛物线y=x2的顶点坐标是( ),对称轴是________,开口向________;(2)抛物线y=x2+2的顶点坐标是( ),对称轴是________,开口向________;(3)抛物线y=x2-3的顶点坐标是( ),对称轴是________,开口向________.可以发现,抛物线y=x2+2,y=x2-3与抛物线y=x2的形状、开口大小相同,只是抛物线的顶点位置发生了变化.把抛物线y=x2沿y轴向________平移________个单位即可得到抛物线y=x2+2;把抛物线y=x2沿y轴向________平移________个单位即可得到抛物线y=x2-3.答案:1. (0,0) ,y轴,上;(0,0) ,y轴,上;(0,0) ,y轴,上;小.2. (0,0) ,y轴,下;(0,0) ,y轴,下;(0,0) ,y轴,下;小.3. (1) a,>,<;(2) (0,0) ,>,0,0;<,0,0;(3) y轴.4. (0,0) ,y轴,下;(0,2) ,y轴,下;(0,-3),y轴,下;上,2;下,3.5. (1) (0,0) ,y轴,上;(2) (0,2) ,y轴,上;(3) (0,-3) ,y轴,上;上,2;下,3.思考·探索·交流1.把抛物线y=x2沿y轴向上平移3个单位能得到抛物线y=3x2吗?把抛物线y=-x2沿y轴向下平移3个单位能得到抛物线y=-3x2吗?答案:1.不能,不能.高频考点强化训练:三视图的有关判断及计算时间:30分钟 分数:50分 得分:________ 一、选择题(每小题4分,共24分)1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )2.(2016·贵阳中考)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是【易错6】( )3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图( )4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………………密………………………………….封……………………….线…………………………………………………………………………..5.一个长方体的主视图、俯视图如图所示(单位:cm),则其左视图的面积为( )A .36cm 2B .40cm 2C .90cm 2D .36cm 2或40cm 2第5题图 第6题图6.(2016·承德模拟)由一些大小相同的小正方体组成的几何体的俯视图和左视图如图所示,那么组成这个几何体的小正方体个数可能有( )A .8个B .6个C .4个D .12个二、填空题(每小题4分,共16分)7.下列几何体中:①正方体;②长方体;③圆柱;④球.其中,三个视图形状相同的几何体有________个,分别是________(填几何体的序号).8.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,则长方体的体积等于________.9.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………………密………………………………….封……………………….线…………………………………………………………………………..第8题图 第9题图 第10题图10.(2016·秦皇岛卢龙县模拟)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x 的值为________,y 的值为________.三、解答题(10分)11.如图所示的是某个几何体的三视图. (1)说出这个几何体的名称;(2)根据图中的有关数据,求这个几何体的表面积.中考必考点强化训练专题:简单三视图的识别◆类型一 简单几何体的三视图1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..第1 题图 第2题图 第3题图 2.(2016·抚顺中考)如图所示几何体的主视图是( )3.(2016·南陵县模拟)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )4.(2016·肥城市一模)如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( )A .1个B .2个C .3个D .4个5.(2016·宁波中考)如图所示的几何体的主视图为( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..6.(2016·鄂州中考)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( )7.(2016·菏泽中考)如图所示,该几何体的俯视图是( )◆类型二 简单组合体的三视图8.(2016·黔西南州中考)如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )9.(2016·营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )10.(2016·日照中考)如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是( )11.(2016·烟台中考)如图,圆柱体中挖去一个小圆柱,那么乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________……………………密………………………………….封……………………….线…………………………………………………………………………..这个几何体的主视图和俯视图分别为( )。
九年级数学二次函数y=ax2k(a≠0)的图像与性质(基础篇)(专项练习)Word版含解析

专题2.8 二次函数y=ax2+k(a≠0)的图像与性质(基础篇)(专项练习)-2021-2022学年九年级数学下册基础知识专项讲练(北师大版)专题2.8 二次函y=ax2+k(a≠0)的图像与性质(基础篇) (专项练习) 一、单选题知识点一、二次函数()20y ax k a =+≠的开口方向、对称轴、顶点坐标、最值1.抛物线y =x 2﹣3的顶点坐标、对称轴是( ) A .(0,3),x =3B .(0,﹣3),x =0C .(3,0),x =3D .(3,0),x =02.下列各点中,在抛物线24y x =-上的是( ) A .()1,3B .()1,3--C .()1,5-D .()1,5--3.抛物线y =-3x 2+4的开口方向和顶点坐标分别是( ). A .向下,(0,-4) B .向下,(0,4) C .向上,(0,4)D .向上,(0,-4)4.关于二次函数224y x =+,下列说法错误..的是( ) A .它的图象开口方向向上 B .它的图象顶点坐标为(0,4) C .它的图象对称轴是y 轴D .当0x =时,y 有最大值45.若在同一直角坐标系中,作23y x =,22y x =-,221y x =-+的图像,则它们( ) A .都关于y 轴对称 B .开口方向相同C .都经过原点D .互相可以通过平移得到知识点二、二次函数()20y ax k a =+≠图象的增减性6.在平面直角坐标系xOy 中,抛物线y =﹣x 2+2x .点D (n ,y 1),E (3,y 2)在抛物线上,若y 1<y 2,则n 的取值范围是( ) A .n >3或n <﹣1B .n >3C .n <1D .n >3或n <17.已知函数y=x 2﹣2,当函数值y 随x 的增大而减小时,x 的取值范围是( ) A .x <2B .x >0C .x >﹣2D .x <08.下列函数中,当x >0时,y 随x 的增大而增大的是( ) A .y x 1=-+ B .2y x 1=-C .1y x=D .2y x 1=-+9.点11(0.5,)P y -,22(2.5,)Py ,33(5,)P y -均在二次函数22y x x =-+的图象上,则1y ,2y ,3y 的大小关系是( )A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y =>10.已知点()()()25,,521A m B m C m n --++,,,在同一个函数的图象上,这个函数可能是( ) A .2y x =+B .25y x =--C .25y x =+D .2y x=-知识点三、二次函数()20y ax k a =+≠的图象11.2y ax k =+的图象可能是( )A .B .C .D .12.已知函数21(1)2(1)x x y x x⎧+≥-⎪=⎨<-⎪⎩则下列图像正确的是( )A .B .C.D.13.在平面直角坐标系中,二次函数y=x2+2的大致图象可能是()A.B.C.D.14.二次函数y=-x2-1的图象大致是()A.B.C.D.15.二次函数22=--的图象大致是()y xA.B.C.D.知识点四、二次函数()20y ax k a =+≠的性质综合16.下列关于抛物线y =2x 2﹣3的说法,正确的是( ) A .抛物线的开口向下B .抛物线的对称轴是直线x =1C .抛物线与x 轴有两个交点D .抛物线y =2x 2﹣3向左平移两个单位长度可得抛物线y =2(x ﹣2)2﹣317.二次函数22y x =-的图象是一条抛物线,下列关于该抛物线的说法正确的是( ) A .抛物线开口向下B .当0x =时,函数的最大值是2-C .抛物线的对称轴是直线2x =D .抛物线与x 轴有两个交点18.关于二次函数y =﹣2x 2+1,以下说法正确的是( ) A .开口方向向上B .顶点坐标是(﹣2,1)C .当x <0时,y 随x 的增大而增大D .当x =0时,y 有最大值﹣1219.二次函数221y x =-的图象是一条抛物线,下列说法中正确的是( ) A .抛物线开口向下B .抛物线经过点1,1C .抛物线的对称轴是直线1x =D .抛物线与x 轴有两个交点20.关于二次函数221y x =-+,则下列说法正确的是( ) A .开口方向向上 B .当x <0时,y 随x 的增大而增大 C .顶点坐标是(-2,1)D .当x =0时,y 有最小值1知识点五、二次函数()20y ax k a =+≠图形与其他函数图象的判定21.直线y=ax+c 与抛物线y=ax 2+c 的图象画在同一个直角坐标系中,可能是下面的( )A .B .C .D .22.函数ay x=与20()y ax a a =--≠在同一直角坐标系中的大致图象可能是( )A .B .C .D .23.用min{a ,b }表示a ,b 两数中的最小数,若函数{}22min 1,1y x x =+-,则y 的图象为( )A .B .C .D .24.二次函数y =x 2+1的图象大致是( )A .B .C .D .25.二次函数y =x 2+1的图象大致是( )A .B .C .D .26.在同一直角坐标系中2y ax b =+与()y ax b a 0,b 0=+≠≠图象大致为( )A .B .C .D .27.点()()1122,,,x y x y 均在抛物线21y x =-上,下列说法正确的是( )A .若12y y =,则12x x =B .若12x x =-,则12y y =-C .若120x x <<,则12y y >D .若120x x <<,则12y y >二、填空题知识点一、二次函数()20y ax k a =+≠的开口方向、对称轴、顶点坐标、最值28.抛物线223y x =--的开口方向_______,对称轴是_____,顶点坐标是_______. 29.通过_______法画出221y x =+和221y x =-的图像:通过图像可知:221y x =+的开口方向________,对称轴_______,顶点坐标___________.221y x =-的开口方向________,对称轴_______,顶点坐标___________.30.写出顶点坐标为(0,-3),开口方向与抛物线2y x =-的方向相反,形状相同的抛物线解析式_________________________.31.抛物线2y ax k =+的图象相当于把抛物线2y ax =的图象______(k >0)或______(k <0)平移______个单位.32.一抛物线的形状,开口方向与23312y x x =-+相同,顶点在(-2,3),则此抛物线的解析式为_______.知识点二、二次函数()20y ax k a =+≠图象的增减性33.已知点P (﹣2,y 1)和点Q (﹣1,y 2)都在二次函数2y x c =-+的图象上,那么1y 与2y 的大小关系是_____.34.已知二次函数y =-x 2+4,当-2≤x≤3时,函数的最小值是-5,最大值是_________. 35.当m=______时抛物线22(1)9m m y m x +=++开口向下,对称轴是________,在对称轴左侧部分是________的(填“上升”或“下降”).36.已知二次函数y =2x 2+bx ,当x >1时,y 随x 增大而增大,则b 的取值范围为______. 37.设点(﹣1,y 1),(2,y2),(3,y3)是抛物线y=﹣x 2+a 上的三点,则y 1、y2、y3的从小到大排列为__________. 三、解答题38.在同一直角坐标系中画出二次函数2113=+y x 与二次函数2113=--y x 的图形.(1)从抛物线的开口方向、形状、对称轴、顶点等方面说出两个函数图象的相同点与不同点;(2)说出两个函数图象的性质的相同点与不同点. 39.如图,已知抛物线24y x =-+.(1)该抛物线顶点坐标为________;(2)在坐标系中画出此抛物线y 的大致图像(不要求列表);(3)该抛物线24y x =-+可由抛物线2y x =-向________平移________个单位得到;(4)当0y >时,求x 的取值范围. 40.已知二次函数2y x 4x =-+.()1求函数图象的对称轴和顶点坐标;()2求这个函数图象与x 轴的交点坐标.参考答案:1.B【分析】按照二次函数y =ax 2+k 顶点坐标(0,k ),对称轴y 轴即可求解. 【详解】解:∵y =x 2﹣3,∵抛物线的顶点坐标为(0,﹣3),对称轴为y 轴; 故选:B .【点睛】本题考查了二次函数的图像和性质,以及顶点坐标和对称轴,掌握二次函数的图像和性质是解题的关键. 2.B【分析】分别把x=±1代入抛物线解析式,计算对应的函数值,然后进行判断. 【详解】解:∵当x=-1时,y=x 2-4=-3; 当x=1时,y=x 2-4=-3;∵点(-1,-3)在抛物线上,点(1,3)、(1,-5)、(-1,-5)都不在抛物线上. 故选:B .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足二次函数的解析式. 3.B【分析】根据二次函数的性质分析,即可得到答案. 【详解】抛物线y =-3x 2+4 ∵30-<∵抛物线y =-3x 2+4开口向下当0x =时,y =-3x 2+4取最大值,即y =4 ∵顶点坐标为()0,4 故选:B .【点睛】本题考查了二次函数的知识;解题的关键是熟练掌握二次函数的性质,从而完成求解. 4.D【分析】由抛物线的解析式可求得其开口方向、对称轴、函数的最值即可判断. 【详解】∵224y x =+,∵抛物线开口向上,对称轴为直线x =0,顶点为(0,4),当x =0时,有最小值4, 故A 、B 、C 正确,D 错误; 故选:D .【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y =a (x−h )2+k 中,对称轴为x =h ,顶点坐标为(h ,k ). 5.A【分析】根据二次函数的图像和性质逐项分析即可.【详解】A.因为23y x =,22y x =-,221y x =-+这三个二次函数的图像对称轴为0x =,所以都关于y 轴对称,故选项A 正确,符合题意;B.抛物线23y x =,22y x =-的图象开口向上,抛物线221y x =-+的图象开口向下,故选项B 错误,不符合题意;C.抛物线22y x =-,221y x =-+的图象不经过原点,故选项C 错误,不符合题意;D.因为抛物线23y x =,22y x =-,221y x =-+的二次项系数不相等,故不能通过平移其它二次函数的图象,故D 选项错误,不符合题意; 故选A .【点睛】本题考查了二次函数的图像和性质,熟记二次函数的图像和性质是解题的关键. 6.A【分析】由抛物线的对称轴找到E 点的对称点,抛物线开口向下,y 1<y 2时结合图象求解; 【详解】解:∵抛物线y =﹣x 2+2x 的对称轴为x =1, E (3,y 2)关于对称轴对称的点(﹣1,y 2), ∵抛物线开口向下,∵y 1<y 2时,n >3或n <﹣1, 故选A .【点睛】本题考查二次函数图象的性质;找到E 点关于对称轴的对称点是解题的关键. 7.D【详解】解:∵y =x 2-2,∵抛物线开口向上,对称轴为y 轴,∵当x <0时,y 随x 的增大而减小,故选D .【点睛】本题主要考查二次函数的性质,掌握y =ax 2+c 的图象的开口方向、对称轴及增减性是解题的关键.8.B【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断【详解】解:A 、y x 1=-+,一次函数,k <0,故y 随着x 增大而减小,错误;B 、2y x 1=-(x >0),故当图像在对称轴右侧,y 随着x 的增大而增大,正确;C 、1y x=,k =1>0,分别在一、三象限里,每个象限内y 随x 的增大而减小,错误; D 、2y x 1=-+(x >0),故当图像在对称轴右侧,y 随着x 的增大而减小,错误. 故选:B .【点睛】本题考查一次函数,二次函数及反比例函数的增减性,掌握函数图像性质利用数形结合思想是解答本题的关键.9.D【分析】求出二次函数的对称轴,再根据二次函数的对称性和增减性判断即可.【详解】解:∵()22211y x x x =-+=--+,∵抛物线对称轴为直线1x =,∵10a =-<,∵1x <时,y 随x 的增大而增大,∵()222.5,P y 的对称点为()20.5,y -,且50.51-<-<,∵123y y y =>.故选:D .【点睛】本题考查的是二次函数图像上点的坐标特征、二次函数的性质等知识点的理解和掌握,熟练运用二次函数的性质进行推理是解决本题的关键.10.B【分析】由点A (-5,m ),B (5,m )的坐标特点,于是排除选项A 、B ;再根据A (-5,m ),C (-2,m +n 2+1)的特点和二次函数的性质,可知抛物线的开口向下,即a <0,可得结果.【详解】解:∵A (-5,m ),B (5,m ),∵点A 与点B 关于y 轴对称;由于y =x +2不关于y 轴对称,2y x=-的图象关于原点对称,因此选项A 、D 错误; ∵n 2>0,∵m +n 2+1>m ;由A (-5,m ),C (-2,m +n 2+1)可知,在对称轴的左侧,y 随x 的增大而增大, 对于二次函数只有a <0时,满足条件,∵B 选项正确,故选:B .【点睛】本题考查了反比例函数、一次函数、二次函数的图象和性质,可以采用排除法,直接法得出答案.11.D【分析】根据二次函数的对称轴进行判断即可.【详解】二次函数2y ax k =+的对称轴为0x =观察四个选项可知,只有选项D 的图象符合故选:D .【点睛】本题考查了二次函数的图象与性质(对称性),掌握二次函数的图象与性质是解题关键.12.C【分析】根据所给解析式判断出正确函数图象,注意自变量的取值范围.【详解】A 选项错误,两个函数图象都不符合自变量的取值范围;B 选项错误,反比例函数的图象不符合自变量的取值范围;C 选项正确;D 选项错误,当=1x -时,图象不应该是一条直线.故选:C .【点睛】本题考查二次函数和反比例函数的图象,解题的关键是掌握二次函数和反比例函数的图象.13.C【分析】根据函数解析式,二次项系数交点判别式小于0,所以排除A 、B 、D ,故选C .【详解】解:A选项,由函数解析式,2-=-<0,所以函数图像与x轴无交点,A=48b ac错误;B选项,由函数解析式,2-=-<0,所以函数图像与x轴无交点,B错误;=48b acC选项,由函数解析式,2=48-=-<0,所以函数图像与x轴无交点,C正确;b acD选项,由函数解析式,2-=-<0,所以函数图像与x轴无交点,D错误.=48b ac【点睛】本题考考察的是二次函数图像的基本性质,根据解析式,判断开口方向及交点个数,判断图像的形状.14.C【分析】根据二次函数的图像与性质即可求解.【详解】二次函数y=-x2-1的图象开口向下,且顶点坐标为(0,-1),故选项C符合题意.【点睛】此题主要考查二次函数的图像判断,解题的关键是熟知二次函数的图像与性质.15.D【分析】根据二次函数的图象的性质,开口方向,顶点坐标,对称轴即可判断.【详解】由题意可知:a=-1,所以开口向下,顶点坐标为(0,-2),故答案选D.【点睛】本题主要考查了二次函数的解析式来判断该函数的图象,解本题的要点在于熟知二次函数图象的基本性质.16.C【分析】根据二次函数的性质及二次函数图象“左加右减,上加下减”的平移规律逐一判断即可得答案.【详解】∵2>0,∵抛物线y=2x2﹣3的开口向上,故A选项错误,∵y=2x2﹣3是二次函数的顶点式,∵对称轴是y轴,故B选项错误,∵-3<0,抛物线开口向上,∵抛物线与x轴有两个交点,故C选项正确,抛物线y=2x2﹣3向左平移两个单位长度可得抛物线y=2(x+2)2﹣3,故D选项错误,故选:C.【点睛】此题考查二次函数的性质及二次函数图象的平移,熟练掌握二次函数的性质及“左加右减,上加下减”的平移规律是解题关键.17.D【分析】根据二次函数22y x =-的图象和性质,逐一判断选项,即可.【详解】∵a=1>0,∵抛物线开口向上,故A 错误,∵当0x =时,函数的最小值是2-,∵B 错误,∵抛物线的对称轴是y 轴,∵C 错误,∵∆=224041(2)80b ac -=-⨯⨯-=>,∵抛物线与x 轴有两个交点,∵D 正确,故选D.【点睛】本题主要考查二次函数的图象和性质,掌握二次函数的系数的几何意义,是解题的关键.18.C【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:∵二次函数y =﹣2x 2+1,∵该函数图象开口向下,故选项A 错误;顶点坐标为(0,1),故选项B 错误;当x <0时,y 随x 的增大而增大,故选项C 正确;当x =0时,y 有最大值1,故选项D 错误;故选:C .【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.19.D【分析】根据二次函数的性质对A 、C 进行判断;根据二次函数图象上点的坐标特征对B 进行判断;利用方程2x 2-1=0解的情况对D 进行判断.【详解】A. a =2,则抛物线y =2x 2−1的开口向上,所以A 选项错误;B. 当x =1时,y =2×1−1=1,则抛物线不经过点(1,-1),所以B 选项错误;C. 抛物线的对称轴为直线x =0,所以C 选项错误;D. 当y =0时,2x 2−1=0,此方程有两个不相等的实数解,所以D 选项正确.故选D.【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质,二次函数图象上点的坐标特征,结合图像是解题的关键.20.B【分析】根据二次函数的图像与性质逐项进行判断即可.【详解】因为20a =-<,所以二次函数图像开口向下,故A 选项错误;因为抛物线开口向下,对称轴为y 轴,所以当x <0时,y 随x 的增大而增大,故B 选项正确;二次函数221y x =-+的顶点为(0,1),故C 选项错误;因为二次函数开口向下,对称轴为y 轴,所以当x =0时,y 有最大值1,故D 选项错误. 故选B.【点睛】本题考查二次函数的图像与性质,熟练掌握图像与性质是解题的关键.21.A【详解】两图象与y 轴的交点相同,故排除了B 、D,若a>0,选A,C 中两个函数中的a 符号相反.22.B【分析】分a>0与a<0两种情况分类讨论即可确定正确的选项.【详解】解:当a>o 时,函数a y x=的图象位于一、三象限,20()y ax a a =--≠的开口向下,交y 轴的负半轴,选项B 符合;当a<o 时,函数a y x=的图象位于二、四象限,20()y ax a a =--≠的开口向上,交y 轴的正半轴,没有符合的选项.故答案为:B.【点睛】本题考查的知识点是反比例函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键.23.C【分析】根据题意,把问题转化为二次函数问题.【详解】根据题意,min{x 2+1,1-x 2}表示x 2+1与1-x 2中的最小数,不论x 取何值,都有x 2+1≥1-x 2,所以y=1-x 2;可知,当x=0时,y=1;当y=0时,x=±1;则函数图象与x 轴的交点坐标为(1,0),(-1,0);与y 轴的交点坐标为(0,1). 故选C .【点睛】本题考查了二次函数的性质,熟练掌握二次函数图像的性质是解决此题的关键.24.C【详解】解:二次函数y =x 2+1中,a =1>0,图象开口向上,顶点坐标为(0,1),符合条件的图象是C.故选C.25.B【分析】利用二次函数的开口方向和顶点坐标,结合图象找出答案即可.【详解】解:二次函数y =x 2+1中,a =1>0,图象开口向上,顶点坐标为(0,1),符合条件的图象是B .故选B .【点睛】此题考查二次函数的图象,掌握二次函数的性质,图象的开口方向和顶点坐标是解决问题的关键.26.A【分析】本题由一次函数y ax b =+图象得到字母系数的正负,再与二次函数2y ax b =+的图象相比较看是否一致.【详解】解:A 、由抛物线可知,a 0<,b 0<,由直线可知,a 0<,b 0<,故本选项正确; B 、由抛物线可知,a 0<,b 0>,由直线可知,a 0>,b 0>,故本选项错误; C 、由抛物线可知,a 0>,b 0<,由直线可知,a 0>,b 0>,故本选项错误; D 、由抛物线可知,a 0>,b 0>,由直线可知,a 0<,b 0>,故本选项错误. 故选A .【点睛】本题考查了一次函数和二次函数的图象.解答该题时,一定要熟记一次函数、二次函数的图象的性质.27.D【详解】解:由图象,根据二次函数的性质,有A .若12y y =,则12x x =±,原说法错误;B .若12x x =-,则12y y =,原说法错误;C .若120x x <<,则12y y <,原说法错误;D .若120x x <<,则12y y >,原说法正确.故选D .【点睛】本题考查二次函数的图象和性质.28. 下 y 轴 (0,-3)【解析】略29. 描点 向上 y 轴 ()0,1 向上 y 轴 ()0,1-【分析】根据画二次函数的图像采用描点法,然后根据二次函数性质得出开口方向,对称轴,顶点坐标即可.【详解】解:通过描点法画出221y x =+和221y x =-的图像,通过图像可知:221y x =+的开口方向向上,对称轴为y 轴,顶点坐标为(0,1),221y x =-的开口方向向上,对称轴y 轴,顶点坐标(0,1)-,故答案为:描点;向上;y 轴;()0,1;向上;y 轴;()0,1-.【点睛】本题考查了画函数图像的方法,二次函数的基本性质,根据题意画出相应的图像是解本题的关键.30.23y x =-【分析】根据开口方向与抛物线2y x =-的方向相反,形状相同可得1a =,再利用顶点坐标即可写出解析式.【详解】∵抛物线与2y x =-的方向相反,形状相同,且顶点坐标(0,-3)∵设抛物线解析式为:2y x k =+,代入顶点坐标(0,-3)得:3k =-∵解析式为23y x =-故答案为23y x =-.【点睛】本题考查求抛物线解析式,熟记抛物线顶点式是解题的关键.31. 向上 向下 |k |【解析】略32.23(2)32y x =++ 【分析】根据二次函数的图象与性质即可得. 【详解】抛物线的顶点为(2,3)-∴可设此抛物线的解析式为2(2)3y a x =++ 又此抛物线的形状,开口方向与23312y x x =-+相同 32a ∴= 则此抛物线的解析式为23(2)32y x =++ 故答案为:23(2)32y x =++. 【点睛】本题考查了二次函数的图象与性质,熟记二次函数的图象与性质是解题关键. 33.12y y <.【分析】先判断抛物线的开口方向和对称轴,再根据二次函数的性质解答即可.【详解】∵二次函数2y x c =-+的开口向下,对称轴为y 轴,∵当0x <时,y 随x 的增大而增大,∵21-<-,∵12y y <,故答案为:12y y <.【点睛】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性,熟练掌握抛物线的性质是解题的关键.34.4.【分析】根据所给二次函数的解析式结合“自变量的取值范围”进行分析解答即可.【详解】∵在24y x =-+中:23x -≤≤,∵其图象开口向下,顶点坐标为(0,4),∵其最大值为4.故答案为:4.【点睛】熟记“二次函数2(0)y ax k a =+≠的图象的顶点坐标为(0)k ,”是解答本题的关键.35. 1- y 轴 上升【分析】根据二次函数的指数是2列出方程求出m 的值,再根据抛物线开口方向向下可得10+<m ,然后求解即可.【详解】解:由题意得,222m m +=且10+<m , 解得113m ,213m 且1m <-,∵1m =-对称轴是y 轴, ∵113130m∵在对称轴左侧部分是上升;故答案是:1-y 轴,上升.【点睛】本题考查了二次函数的性质,二次函数的定义,熟记性质和概念是解题的关键.36.b ≥﹣4【分析】先表示出二次函数的对称轴,再根据二次函数的增减性列出不等式求解即可.【详解】解:二次函数y =2x 2+bx 对称轴为直线x =﹣22⨯b =﹣4b , ∵a =2>0,x >1时,y 随x 增大而增大,∵﹣4b ≤1, 解得b ≥﹣4.故答案为:b ≥﹣4.【点睛】本题主要考查了二次函数图像的性质与二次函数的对称轴,解题的关键在于能够熟练掌握二次函数的增减性.37.y1>y2>y3【分析】由题意可得对称轴为y 轴,则(-1,y 1)关于y 轴的对称点为(1,y 1),根据二次函数的增减性可得函数值的大小关系.【详解】∵抛物线y=-x 2+a ,∵对称轴为y 轴,∵(-1,y 1)关于对称轴y 轴对称点为(1,y 1),∵a=-1<0,∵当x >0时,y 随x 的增大而减小,∵1<2<3,∵y 1>y 2>y 3,故答案为y 1>y 2>y 3.【点睛】本题考查了二次函数图象上的点的坐标特征,二次函数的增减性,利用增减性比较函数值的大小是本题的关键.38.(1)见解析;(2)见解析.【分析】(1)根据二次函数的图象解答即可;(2)从开口大小和增减性两个方面作答即可.【详解】(1)解:如图:,2113=+y x 与2113=--y x 图象的相同点是:形状都是抛物线,对称轴都是y 轴, 2113=+y x 与2113=--y x 图象的不同点是:2113=+y x 开口向上,顶点坐标是(0,1),2113=--y x 开口向下,顶点坐标是(0,﹣1); (2)解:两个函数图象的性质的相同点:开口程度相同,即开口大小一样;不同点:2113=+y x ,当x <0时,y 随x 的增大而减小,当x >0时,y 随x 的增大而增大;2113=--y x ,当x <0时,y 随x 的增大而增大,当x >0时,y 随x 的增大而减小. 【点睛】本题考查了二次函数的图象与性质,属于基础题型,熟练掌握抛物线的图象与性质是解答的关键.39.解:(1)(0,4);(2)见解析;(3)上,4;(4)22x -<<..【分析】(1)求出对称轴得到抛物线的顶点坐标;(2)先确定抛物线与y 轴的交点为(0,4),与x 轴交点为(-2,0)和(2,0),然后利用描点法画函数图像;(3)根据二次函数的平移规律“上加下减,左加右减”即可求解;(4)结合函数图像,写出函数图像上x 轴上方所对应的自变量的范围即可.【详解】(1)抛物线的对称轴为:x =-2b a=0 令x =0,y =4则顶点坐标为(0,4);(2)由(1)得,抛物线与y 轴的交点为(0,4),令y =0,x =±2,则抛物线与x 轴交点为(-2,0)和(2,0),画图得:(3)由上加下减的原则可得,y =-x 2向上平移4个单位可得出y =-x 2+4;(4)根据图像得,当y >0时,x 的取值范围为:-2<x <2.【点睛】本题考查抛物线与坐标轴的交点、二次函数的性质和抛物线的平移等知识,解题的关键是熟练掌握二次函数的性质.40.(1)对称轴为直线x=2,顶点坐标为(2,4)(2)图象与x轴的交点坐标是(0,0)和(4,0).【详解】试题分析:(1)可根据配方法的解题步骤,将一般式转化为顶点式,根据顶点式可确定对称轴及顶点坐标;(2)令y=0,解一元二次方程可求抛物线与x轴两交点的坐标.试题解析:(1)y=-(x2-4x)=-(x-2)2+4,对称轴为直线x=2,顶点坐标为(2,4)(2)当y=0时,-x2+4x=0,解得x=0或4,∵图象与x轴的交点坐标是(0,0)和(4,0).考点:1.二次函数的三种形式;2.二次函数的性质;3.抛物线与x轴的交点.。
二次函数的图像与性质-同步练习(含解析)

二次函数的图像与性质同步练习一、单选题1.已知点(3,1y ),(4,2y ), (5,3y )在函数y=2x 2+8x+7的图象上,则y 1,y 2,y 3的大小关系是( )A 、y 1>y 2>y 3B 、y 2> y 1> y 3C 、y 2>y 3> y 1D 、y 3> y 2> y 1 2.已知二次函数y=2x2+8x+7的图象上有有点A ,B ,C ,则y1、y2、y3的大小关系为( )A . y1 > y2> y3B . y2> y1> y3C . y2> y3> y1D . y3> y2> y13.已知二次函数y=x 2+bx+c 的图象上有三个点(﹣1,y 1)、(1,y 2)、(3,y 3),若y 1=y 3,则( )A .y 2>c >y 1B .y 2<c <y 1C .c >y 1>y 2D .c <y 1<y 24.已知抛物线y=-(x+1)2上的两点A (x 1,y 1)和B (x 2,y 2),如果x 1<x 2<-1,那么下列结论一定成立的是( ) A .y 1<y 2<0B .0<y 1<y 2C .0<y 2<y 1D .y 2<y 1<0.5.二次函数y=ax 2+bx+c 的图像如图所示,反比例函数ay x=与正比例函数y=(b+c)x 在同一坐标系中的大致图像可能是( )A .B .C .D .6.在同一坐标系中,二次函数2y ax bx =+与一次函数y bx a =-的图像可能是( )1(2)y -,21(5)3y -,31(1)5y -,A .B .C .D .7.反比例函数ky x=与一次函数()1y k x =-在同一坐标系中的图像可能是( ) A . B .C .D .8.在同一坐标系中,函数x k y =和3+=kx y 的图像可能是( )A .B .C .D . 9.如图,坐标系中抛物线是函数y=ax 2+bx +c 的图象,则下列式子能成立的是( )xxxxyyyyOOOO10.已知抛物线y=ax 2+bx+c (a≠0)在平面直角坐标系中的位置如图所示,对称轴是直线13x =.则下列结论中,正确的是( )A .a <0B .c <﹣1C .a ﹣b+c <0D .2a+3b=011.二次函数2y x bx c =++中(b ,c 是常数)的自变量x 与函数值y 的部分对应值如下表:下列结论正确的是:A .当2x =时,y 有最大值1B .当2x <时,y 随x 的增大而增大C .点(5,9)在该函数的图像上D .若1(,)A m y ,2(1,)B m y +两点都在该函数的图象上,则当32m >时,12y y <. 12.如图,四个二次函数的图象中,分别对应的是:①2y ax =;①2y bx =;①2y cx =;①2y dx =,则a b c d ,,,的大小关系为A .a b c d >>>B .a b d c >>>C .b a c d >>>D .b a d c >>>13.如图,抛物线的对称轴是直线x=1,且经过点P (3,0),则的值为( )A .0B .-1C .1D .214.若二次函数的x 与y 的部分对应值如下表,则当x 1=时,y 的值为( )A .5B .3-C .13-D .27-15.已知二次函数()2y ax bx c a 0=++≠,函数y 与自变量x 的部分对应值如下表所示下列说法错误的是( ) A .图象开口向下 B .抛物线的对称轴是直线x 2= C .2b 4ac 0-> D .当1x 3<<时,y 6<二、填空题16.已知抛物线2y x x =+-65经过点1()4a -,和1()a y -,,则y 1的值是_________. 17.将抛物线()2241y x =--先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为__________.18.将抛物线y =-2x 2向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为_____ 19.将抛物线的解析式y=向上平移3个单位长度,在向右平移1个单位长度后,得到的抛物线的解析式是 .20.如果二次函数y=(-2k+4)x 2-3x+1的图象开口向上,那么常数k 的取值范围是________三、解答题21.已知函数y=(k ﹣2)x k²﹣4k+5+2x 是关于x 的二次函数.求: (1)满足条件的k 的值;(2)当k 为何值时,抛物线有最高点?求出这个最高点,这时,x 为何值时,y 随x 的增大而增大?22.已知函数()242mm y m x +-=+是关于x 的二次函数.()1求m 的值.()2如果这个二次函数的图象经过点()18P -,求m 的值;()3对于()2中二次函数,函数有无最大值?若有,此时的x 为何值.23.求抛物线217322y x x =--+的对称轴、顶点坐标. 24.阅读下面文字:求代数式24x 7x -+的最值,我们可以这样做:()()2224x 74x 4323x x x -+=-++=-+,因为()22x -≥0,所以当x=2时,该代数式有最小值,最小值为3.仿照以上方法,求(1)28a 3a +-的最值.(2)222y y -++的最值.25.把函数y=3x 2+6x+10转化成y=a (x-h )2+k 的形式,然后指出它的图象开口方向,对称轴,顶点坐标和最值.26.如图,已知抛物线y=2x -+mx+3与x 轴交于A ,B 两点,与y 轴交于点C ,点B 的坐标为(3,0),(1)求m 的值及抛物线的顶点坐标.(2)点P 是抛物线对称轴l 上的一个动点,当PA+PC 的值最小时,求点P 的坐标.参考答案1.D【解析】解:抛物线的对称轴为2482-=-=-=a b x ,又02φ=a ,抛物线开口向上,在对称轴的右边y 随x 的增大而增大,345φφΘ,123y y y φφ∴,故选D 。
1.2二次函数y=a(x-h)^2的图象与性质(3)

2. 在同一直角坐标系中,分别画出函数 y=-0.3x2与y=-8x2 的图象,并分别说出它们的共同点和不同点.
解:
共同点:均开口向下;对称轴 均为y轴;对称轴与图象的交点 是(0,0);图象均是“左升” “右降”;当x=0时,函数值最 大,为0; 不同点: y=-8x2的图象开口比 y=-0.3x2的图象开口小.
.
因此,所求的二次函数的表达式为
y= 3 (x + 2 )2+ 1 = 3 x 2+ 3 x 4 .
4
4
练习
1. 说出下列二次函数的图象的对称轴、顶点坐标和开口方向: ( 1) y=5 2(x-9)2+7; 答:对称轴为直线x=9,顶点(9,7),开口向上.
( 2) y=-1 3 (x+ 18) 2-13. 答:对称轴为直线x=-18,顶点(-18,-13),开口向下.
y=12(x-1)2+3 y=12(x-1)2
物线,因它此的,对二称次轴函为数直y=线12(xx=-11()与2+抛3的物图线象y=也12(是x-抛1)2 的对称轴一样),顶点坐标为(1,3)(它是由抛物 线 y=12(x-1)2 的顶点(1,0)向上平移3个单位得到), 它的开口向上.
结论
一般地,二次函数y=a(x-h)2+k的图象是抛物线, 它具有下述性质:
例5 已知某抛物线的顶点坐标为(-2,1),且与y 轴 相交于点(0,4),求这个抛物线所表示的二次 函数的表达式.
解 由于点(-2,1)是该抛物线的顶点,可设这个 抛物线所表示的二次函数的表达式为 y=a(x+2)2+1.
由函数图象过点(0,4), 可得 4=a(0+2)2 + 1,
人教版数学九年级上学期课时练习-二次函数y=ax2(a≠0)的图象与性质(知识讲解)(人教版)

专题22.3 二次函数(巩固篇)(专项练习)一、单选题知识点一、二次函数的判断1.下列实际问题中,可以看作二次函数模型的有( )①正常情况下,一个人在运动时所能承受的每分钟心跳的最高次数b 与这个人的年龄a 之间的关系为b =0.8(220-a );①圆锥的高为h ,它的体积V 与底面半径r 之间的关系为V =13πr 2h (h 为定值);①物体自由下落时,下落高度h 与下落时间t 之间的关系为h =12gt 2(g 为定值); ①导线的电阻为R ,当导线中有电流通过时,单位时间所产生的热量Q 与电流I 之间的关系为Q =RI 2(R 为定值).A .1个B .2个C .3个D .4个2.关于函数y=(500﹣10x )(40+x ),下列说法不正确的是( ) A .y 是x 的二次函数 B .二次项系数是﹣10 C .一次项是100D .常数项是200003.下列函数关系中,是二次函数的是( )A .在弹性限度内,弹簧的长度y 与所挂物体质量x 之间的关系B .当距离一定时,火车行驶的时间t 与速度v 之间的关系C .等边三角形的周长c 与边长a 之间的关系D .圆心角为120°的扇形面积S 与半径R 之间的关系 4.下列各式中,y 是x 的二次函数的是( ) A .y=a 2x +bx+c B .x 2+y -2=0C .y 2-ax=-2D .2x -y 2+1=0知识点二、二次函数的参数5.若函数y =(a ﹣1)x 2+2x +a 2﹣1是二次函数,则( ) A .a ≠1B .a ≠﹣1C .a =1D .a =±16.当函数21(1)23a y a x x +=-++ 是二次函数时,a 的取值为( )A .1a =B .1a =±C .1a ≠D .1a =-7.若y=(m +1)265m m x --是二次函数,则m= ( )A .-1B .7C .-1或7D .以上都不对8.下列结论正确的是( ) A .y=ax 2是二次函数B .二次函数自变量的取值范围是所有实数C .二次方程是二次函数的特例D .二次函数的取值范围是非零实数知识点三、二次函数的解析式9.用一根长60cm 的铁丝围成一个矩形,那么矩形的面积2()y cm 与它的一边长()x cm 之间的函数关系式为( )A .230(030)y x x x =-<<B .230(030)y x x x =-+<C .230(030)y x x x =-+<<D .230(030)y x x x =-+<10.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售为x 元,则可卖出(350-10x )件商品,那么商品所赚钱y 元与售价x 元的函数关系为( )A .2105607350y x x =--+B .2105607350y x x =-++C .210350y x x =-+D .2103507350y x x =-+-11.下列函数关系中,可以看做二次函数y=ax 2+bx+c (a≠0)模型的是( ) A .在一定距离内,汽车行驶的速度与行驶的时间的关系 B .正方形周长与边长之间的关系 C .正方形面积和正方形边长之间的关系 D .圆的周长与半径之间的关系12.某商店从厂家一每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售为x 元,则可卖出(350-10x )件商品,那商品所赚钱y 元与售价x 元的函数关系为( )A .y =-10 x 2-560x+7350B .y =-10 x 2+560x -7350C .y =-10 x 2+350xD .y =-10 x 2+350x -7350二、填空题知识点一、二次函数的判断13.二次函数21212y x x =-+ 中,二次项系数为____,一次项是____,常数项是___ 14.下列函数中:①y=-x 2;①y=2x ;①y=22+x 2-x 3;①m=3-t -t 2是二次函数的是______(其中x 、t 为自变量).15.下列各式:()()()()2222212;2;;;12;2(1)2;2122y x y x y y y x x y x y x x x x x=+====-+=-+=+--;其中y 是x 的二次函数的有________(只填序号)16.二次函数y =3x 2+5的二次项系数是_____,一次项系数是_____.知识点二、二次函数的参数17.定义:由a ,b 构造的二次函数()2y ax a b x b =+++叫做一次函数y =ax +b 的“滋生函数”,一次函数y =ax +b 叫做二次函数()2y ax a b x b =+++的“本源函数”(a ,b 为常数,且0a ≠).若一次函数y =ax +b 的“滋生函数”是231y ax x a =-++,那么二次函数231y ax x a =-++的“本源函数”是______.18.如果函数2(1)2m m y m x -=++是二次函数,那么m =____.19.当m____________________________时,函数22(23)(2)y m m x m x m =--+-+是二次函数.20.点(),1m 是二次函数221y x x =--图像上一点,则236m m -的值为__________知识点三、二次函数的解析式21.图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,则第n 个叠放的图形中,小正方体木块总数m 与n 的解析式是______.22.如图,正方形ABCD 的边长是10cm ,E 是AB 上一点,F 是AD 延长线上的一点,BE DF =.四边形AEGF 是矩形,矩形AEGF 的面积()2cm y 与BE 的长cm x ()010x <≤的函数关系是______.23.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________. 24.二次函数()()y 412x x 3=-+-的一般形式2y ax bx c =++是________. 三、解答题25.已知函数y =(m 2-m )x 2+(m -1)x +2-2m . (1)若这个函数是二次函数,求m 的取值范围. (2)若这个函数是一次函数,求m 的值. (3)这个函数可能是正比例函数吗?为什么?26.已知函数()229123y k x kx =-++是关于x 的二次函数,求不等式141123k k -+≥-的解集.27.某农科所研究出一种新型的花生摘果设备,一期研发成本为每台6万元,该摘果机的销售量y (台)与售价x (万元/台)之间存在函数关系:24y x =-+.(1)设这种摘果机一期销售的利润为1W (万元),问一期销售时,在抢占市场份额(提示:销量尽可能大)的前提下利润达到32万元,此时售价为多少?(2)由于环保局要求该机器必须增加除尘设备,科研所投入了7万元研究经费,使得环保达标且机器的研发成本每台降低了1万元,若科研所的销售战略保持不变,请问在二期销售中利润达到63万元时,该机器单台的售价为多少?参考答案1.C解:形如y=ax2+bx+c(a、b、c是常数且a≠0)的函数是二次函数,由二次函数的定义可得①①①是二次函数,故选C.2.C【分析】先化简,整理成一般式,然后对每个选项判断即可.解:①y=(500﹣10x)(40+x)=-10x2+100x+20000,①y是x的二次函数,二次项系数是-10,一次项系数是100,常数项是20000,①A、B、D正确,C错误.故选C.【点拨】本题考查了二次函数的一般形式,一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做二次函数,其中a是二次项系数,b是一次项系数,c是常数项,据此求解即可.3.D【分析】根据各选项的意思,列出个选项的函数表达式,再根据二次函数定义的条件判定则可.解:A、y=mx+b,当m≠0时(m是常数),是一次函数,错误;B、t=sv,当s≠0时,是反比例函数,错误;C、C=3a,是正比例函数,错误;D、S=13πR2,是二次函数,正确.故选D.【点拨】本题考查二次函数的定义.4.B解:利用二次函数的定义,可知:A.y=a2x+bx+c,应说明a≠0,故此选项错误;B.x2+y-2=0可变为y=2x+2,是二次函数,故此选项正确;C.y2-ax=-2不是二次函数,故此选项错误;D.x2-y2+1=0不是二次函数,故此选项错误;故选B.5.A 【分析】利用二次函数定义进行解答即可. 解:由题意得:a ﹣1≠0,解得:a ≠1, 故选:A .【点拨】本题主要考查了二次函数的定义,准确计算是解题的关键. 6.D 【分析】根据二次函数的定义去列式求解计算即可. 解:①函数21(1)23ay a x x +=-++ 是二次函数,①a -1≠0,2a 1+=2, ①a≠1,21a =, ①1a =-, 故选D .【点拨】本题考查了二次函数的定义,熟记二次函数的定义并灵活列式计算是解题的关键.7.B 【分析】令x 的指数为2,系数不为0,列出方程与不等式解答即可. 解:由题意得:m 2-6m -5=2;且m+1≠0;解得m=7或-1;m≠-1, ①m=7, 故选:B .【点拨】利用二次函数的定义,二次函数中自变量的指数是2;二次项的系数不为0. 8.B 【分析】根据二次函数的定义和自变量的取值范围,逐一判断解答问题. 解:A 、应强调a 是常数,a≠0,错误;B、二次函数解析式是整式,自变量可以取全体实数,正确;C、二次方程不是二次函数,更不是二次函数的特例,错误;D、二次函数的自变量取值有可能是零,如y=x2,当x=0时,y=0,错误.故选B.【点拨】本题考查二次函数的定义和自变量的取值范围,解题关键是熟练掌握定义.9.C【分析】由矩形另一边长为周长的一半减去已知边长求得另一边的长,进一步根据矩形的面积等于相邻两边长的积列出关系式即可.解:由题意得:矩形的另一边长=60÷2-x=30-x,矩形的面积y(cm2)与它的一边长x(cm)之间的函数关系式为y=x(30-x)=-x2+30x (0<x<30).故选:C.【点拨】此题考查根据实际问题列二次函数关系式,掌握矩形的边长与所给周长与另一边长的关系是解题的关键.10.B【分析】商品所赚钱=每件的利润×卖出件数,把相关数值代入即可求解.解:每件的利润为(x-21),①y=(x-21)(350-10x)=-10x2+560x-7350.故选B.【点拨】本题考查了根据实际问题列二次函数关系式,解决本题的关键是找到总利润的等量关系,注意先求出每件商品的利润.11.C【分析】利用二次函数的性质:一般地,把形如y=ax2+bx+c(其中a、b、c是长常数,a≠0,b,c可以为0)的函数叫做二次函数.逐一分析解答即可.解:A、在一定距离内,汽车行驶的速度与行驶的时间的关系是一种反比例关系,不能看作二次函数y=ax2+bx+c模型;B 、正方形周长与边长之间的关系属于一次函数,不能看作二次函数y=ax 2+bx+c模型;C 、正方形面积和正方形边长之间的关系,可以看做二次函数y=ax 2+bx+c 模型;D 、圆的周长与半径之间的关系属于一次函数,不能看作二次函数y=ax 2+bx+c 模型.故选C .【点拨】本题考查了二次函数的性质,建立二次函数的模型要从解析式,数值的变化和图象几个方面分析.12.B解:根据商品的单价利润×销售的件数=总利润,即可得y=(x -21)(350-10x )=-10x 2+560x -7350,故选B.13.12-2x , 1【分析】函数化简为一般形式:y=ax 2+bx+c (a ,b ,c 是常数且a≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.解:①y=ax 2+bx+c (a ,b ,c 是常数且a≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项①21212y x x =-+ 中,二次项系数为12,一次项是-2x ,常数项是1.故答案是:12; -2x;1.【点拨】考查了二次函数的定义,二次函数的一般形式:y=ax 2+bx+c (a ,b ,c 是常数且a≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.14.①① 【分析】一般地,如果y =ax 2+bx +c (a ,b ,c 是常数,a ≠0),那么y 叫做x 的二次函数.根据二次函数的定义条件判定则可.解:①y =-x 2,二次项系数为-1,是二次函数;①y =2x ,是一次函数;①y =22+x 2-x 3,含自变量的三次方,不是二次函数;①m =3-t -t 2,是二次函数. 故填①①.【点拨】本题考查二次函数的定义.一般地,如果y =ax 2+bx +c (a ,b ,c 是常数,a ≠0),那么y 叫做x 的二次函数. 判断一个函数是二次函数需要注意三点: (1)经整理后,函数表达式是含自变量的整式; (2)自变量的最高次数为2;(3)二次项系数不为0,尤其是含有字母系数的函数,应特别注意,二次项系数a 是否为0.15.①①① 【分析】根据二次函数的定义与一般形式即可求解. 解:y 是x 的二次函数的有①,①,①. 故答案是:①,①,①.【点拨】本题考查了二次函数的定义,一般形式是y=ax 2+bx+c (a≠0,且a ,b ,c 是常数,x 是未知数).16. 3 0 【分析】根据二次函数的定义解答即可.解:二次函数y =3x 2+5的二次项系数是3,一次项系数是0. 故答案是:3;0.【点拨】考查二次函数的定义,是基础题,熟记概念是解题的关键,要注意没有一次项,所以一次项系数看做是0.17.2-1y x =﹣【分析】由“滋生函数”和“本源函数”的定义,运用待定系数法求出函数231y ax x a =-++的本源函数.解:由题意得3=++1=a b a b ⎧⎨⎩﹣解得=2=1a b ⎧⎨⎩﹣﹣①函数231y ax x a =-++的本源函数是2-1y x =﹣. 故答案为:2-1y x =﹣. 【点拨】本题考查新定义运算下的一次函数和二次函数的应用,解题关键是充分理解新定义“本源函数”.18.2.【分析】直接利用二次函数的定义得出m 的值.解:①函数2(1)2m m y m x -=++是二次函数,①m 2−m =2,(m−2)(m +1)=0,解得:m 1=2,m 2=−1,①m +1≠0,①m≠−1,故m =2.故答案为:2.【点拨】此题主要考查了二次函数的定义,正确得出m 的方程是解题关键.19.不等于1-和3【分析】我们一般把形如2y ax bx c =++(a b c 、、为常数)的函数称之为二次函数,其中二次项系数不能为0,据此进一步求解即可.解:根据二次函数的定义可得:2230m m --≠,即:()()130m m +-≠,①1m ≠-,且3m ≠,即当m 不等于1-和3时,原函数为二次函数,故答案为:不等于1-和3.【点拨】本题主要考查了二次函数的定义的运用,熟练掌握相关概念是解题关键. 20.6【分析】把点(),1m 代入221y x x =--即可求得22m m -值,将236m m -变形()232m m -,代入即可.解:①点(),1m 是二次函数221y x x =--图像上,①2121m m =--则222m m -=.①()223632326m m m m -=-=⨯=故答案为:6.【点拨】本题考查了二次函数图象上点的坐标特征,根据点坐标求待定系数是解题的关键.21.m =2n 2−n【分析】图(1)中只有一层,有(4×0+1)一个正方形,图(2)中有两层,在图(1)的基础上增加了一层,第二层有(4×1+1)个.图(3)中有三层,在图(2)的基础长增加了一层,第三层有(4×2+1),依此类推出第n 层正方形的个数,即可推出当有n 层时总的正方形个数.解:经分析,可知:第一层的正方形个数为(4×0+1),第二层的正方形个数为(4×1+1),第三层的正方形个数为(4×2+1),……第n 层的个数为:[4×(n −1)+1],第n 个叠放的图形中,小正方体木块总数m 为:1+(4×1+1)+(4×2+1)+…+[4×(n −2)+1]+[4×(n −1)+1]=1+4×1+1+4×2+1+…+4×(n −2)+1+4×(n −1)+1=n +4(1+2+3+…+n −2+n −1)=n +4()()1112n n +--⨯ =n +2n (n −1)=2n 2−n .即:m =2n 2−n .故答案为:m =2n 2−n【点拨】本题解题关键是根据图形的变换总结规律,由图形变换得规律:每次都比上一次增加一层,增加第n 层时小正方形共增加了4(n −1)+1个,将n 层的小正方形个数相加即可得到总的小正方形个数.22.2100y x =-+##2100y x =-【分析】由已知图形可以分析得到矩形AEGF 的长AF 为(10)x +cm ,宽AE 为(10)x -cm ,由面积公式即可计算得到正确答案.解:①正方形ABCD 的边长是10cm ,且BE DF =①矩形AEGF 的长AF 的长为(10)x +cm ,宽AE 的长为(10)x -cm①矩形AEGF 的面积为:()()21010=100y AF AE x x x ==+--+故答案为:2100y x =-+【点拨】本题考查变量之间的关系,由矩形面积推导二次函数关系式等知识点.数形结合列式计算是解此类题的关键.23.22()1y x =-+【分析】利用配方法整理即可得解.解:222454()4121y x x x x x =-+=-++=-+,所以22()1y x =-+.故答案为22()1y x =-+.【点拨】本题考查了二次函数的解析式有三种形式:(1)一般式:2(y ax bx c =++0,a a b c ≠、、为常数); (2)顶点式:2()y a x h k =-+;(3)交点式(与x 轴):12()()y a x x x x =--.24.2y 8x 20x 12=-++【分析】直接利用乘法运算法则化成一般式.解:y =−4(1+2x )(x−3)=−8x 2+20x +12,故答案为y =−8x 2+20x +12.【点拨】此题考查二次函数的解析式的三种形式,熟练掌握这几种形式是解题的关键.25.(1). m ≠0且m ≠1.(2). m =0.(3). 不可能试题分析:(1)根据二次函数的二次项系数不等于0,可得答案;(2)根据二次函数的二次项系数等于0,常数项不等于0,是一次函数,可得答案; (3)根据二次函数的二次项系数等于0,常数项等于0,可得正比例函数. 解:(1)①这个函数是二次函数,①m 2-m ≠0,①m (m -1)≠0,①m ≠0且m ≠1.(2)①这个函数是一次函数,①①m =0.(3)不可能.①当m =0时,y =-x +2,①不可能是正比例函数.26.15k ≤且13k ≠-. 【分析】首先利用二次函数的定义得出k 不能取的值,进而解不等式得出答案.解:∵函数()229123y k x kx =-++是关于x 的二次函数,∴2910k -≠, 解得:13k ≠±, 141123k k -+≥- ()()312416k k -≥+-, 解得:15k ≤, 故不等式141123k k -+≥-的解集为:15k ≤且13k ≠-. 【点拨】此题主要考查了二次函数的定义以及解不等式,正确解不等式是解题关键. 27.(1)在抢占市场份额的前提下利润要达到32万元,此时售价为8万元/台;(2)要使二期利润达到63万元,销售价应该为10万元/台.【分析】(1)先根据等量关系式:总利润=(售价-成本)⨯销售量,列出函数关系式,再将132W =代入函数关系式得出方程求解即得;(2)先根据等量关系式:总利润=(售价-新成本)⨯销售量-7,列出函数关系式,再将263W =代入函数关系式得出方程求解即得.解:(1)根据题意列出函数关系式如下:21(6)(6)(24)(15)81W x y x x x =-⋅=--+=--+当132W =时,2(15)8132x --+=,解得18x =,222x =.①要抢占市场份额①8x =.答:在抢占市场份额的前提下利润要达到32万元,此时售价为8万元/台.(2)降低成本之后,每台的成本为5万元,每台利润为(5)x -万元,销售量24y x =-+.依据题意得22(5)(24)729127W x x x x =--+-=-+-,当263W =时,22912763x x -+-=,解得110x =,219x =.①要继续保持扩大销售量的战略①10x =答:要使二期利润达到63万元,销售价应该为10万元/台.【点拨】本题考查函数解析式及解一元二次方程,解题关键是正确找出等量关系式:总利润=(售价-成本)⨯销售量.。
二次函数的图像与性质知识点及练习

第二节二次函数的图像与性质1.能够利用描点法做出函数y =ax 2,y=a(x-h)2,y =a(x-h)2+k 和c bx ax y ++=2图象,能根据图象认识和理解二次函数的性质;2.理解二次函数c bx ax y ++=2中a 、b 、c 对函数图象的影响。
一、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x例1. 在同一平面坐标系中分别画出二次函数y =x 2 2,y=2(x-1)2 的图像。
一、二次函数的基本形式1. y =ax 2的性质:2. y =ax 2+k 的性质: (k 上加下减)3. y =a (x -h )2的性质:(h 左加右减)4. y =a (x -h)2+k 的性质:5. y =ax2+bx+c 的性质:二、二次函数图象的平移1.平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿x 轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,. 六、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变. 例1、例2、已知直线y=-2x +3与抛物线y=ax 相交于A 、B 两点,且A 点坐标为(-3,m ).(1)求a 、m 的值;(2)求抛物线的表达式及其对称轴和顶点坐标;(3)x 取何值时,二次函数y=ax 2中的y 随x 的增大而减小; (4)求A 、B 两点及二次函数y=ax 2的顶点构成的三角形的面积. 例3、求符合下列条件的抛物线y=ax 2的表达式:(1)y=ax 2经过(1,2);(2)y=ax 2与y=21x 2的开口大小相等,开口方向相反;(3)y=ax 2与直线y=21x +3交于点(2,m ).例4、试写出抛物线y=3x 2经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2二次函数2ax y =的图象和性质
知识点:
1.用描点发画函数图象的步骤是 , , 。
2.二次函数图象是 ,开口方向由 决定,开口大小的程度由 决定的。
3.一般地,抛物线2ax y =的对称轴是 ,顶点坐标是 .当0>a 时,抛物线开口向 ,顶点是抛物线的 ,a 越大,抛物线的开口越 ;当0<a 时,抛物线开口向 ,顶点是抛物线的 ,a 越
大,抛物线的开口越 。
一.选择题
1.关于函数23x y = 的性质的叙述,错误的是( ).
A .对称轴是y 轴
B .顶点是原点
C .当0>x 时,y 随x 的增大而增大
D .y 有最大值
2.在同一坐标系中,抛物线2222
1,,x y x y x y =-==的共同点是( ). A .开口向上,对称轴是y 轴,顶点是原点 B .对称轴是y 轴,顶点是原点
C .开口向下,对称轴是y 轴,顶点是原点
D .有最小值为0
3.函数2ax y =与b ax y +-=的图象可能是( )
A B C D
4.在同一平面直角坐标系中,同一水平线上开口最大的抛物线是( )
A. 2x y -=
B. 23
1x y -= C. 233x y -= D. 22x y -= 5.下列函数中,具有过原点,且当0>x 时,y 随x 增大而减小,这两个特征的有( ).
①)0(2>-=a ax y ;②)1()1(2<-=a x a y ;③)0(22≠+-=a a x y ;④)0(2
3≠-=a a x y A .1个 B .2个 C .3个 D .4个
6.下列说法错误的是( ).
A .在二次函数2
3x y = 中,当0>x 时,y 随x 的增大而增大
B .在二次函数26x y -= 中,当0=x 时,y 有最大值0
C .a 越大图象开口越小,a 越小图象开口越大
D .不论a 是正数还是负数,抛物线)0(2≠=a ax y 的顶点一定是坐标原点
7.已知点),2(),,1(),,3(321y C y B y A --在抛物线23
2x y = 上,则321,,y y y 的大小关系是( ). A .321y y y << B .321y y y >> C .231y y y << D .132y y y <<
二.填空题
1.抛物线22
1x y =的对称轴是 ,顶点坐标是 ,抛物线上 的点都在x 轴的 方,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x = 时,该函数有最 值是 。
2..抛物线26x y -=的对称轴是 ,顶点坐标是 ,抛物线上 的点都在x 轴的 方,当x
时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当=x 时,该函数有最 值是 。
3.二次函数22
3x y -=,当x 1>x 2>0时,试比较1y 和2y 的大小:1y _2y (填“>”,“<”或“=”) 4.二次函数12-=m mx y 在其图象对称轴的左则,y 随x 的增大而增大,=m 。
5、.若对任意实数x ,二次函数2)1(x a y +=的值总是非负数,则a 的取值范围是 .
6.如图所示,在同一坐标系中,作出①23x y =②22
1x y =③2x y =的图 象,则图象从里到外的三条抛物线对应的函数依次是 (填序号)
7、已知点)7,(1-x 和点))(7,(212x x x ≠-均在抛物线2ax y =上,则当21x x x +=时,y 的值 是 。
8、.如图,边长为2的正方形ABCD 的中心在直角坐标系的原点O ,AD ∥x 轴,以O 为顶点且过A 、D 两点的抛物线与以O 为顶点且过B 、C 两点的抛物线将正方形分割成几部分.则图中阴影部分的面积是 _________ .
9.如图,⊙O 的半径为2.C 1是函数y=x 2的图象,C 2是函数y=﹣x 2的图象,则阴影部分的面积是 _____.
10、已知函数()422-++=m m x m y 是关于x 的二次函数,求:
(1)满足条件的m 的值;
(2)m 为何值时,抛物线有最底点?求出这个最底点,当x 为何值时,y 随x 的增大而增大;
(3)m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小?。