2018年浙江省中考数学模拟试题与答案

合集下载

浙教版2018-2019学年中考数学模拟试卷含答案

浙教版2018-2019学年中考数学模拟试卷含答案

∵S△ABC=?AB ?BC=×2×2 =4,∴S△ADC=2,∵= 2 ,∵△DEF∽△DAC,∴GH =BG=,∴BH=,又∵EF=AC=2,∴S△BEF=?EF?BH=×2×=,应选 C.方法二: S△BEF= S 四边形ABCD﹣ S△ABE﹣ S△BCF﹣ S△FED,易知 S△ABE+ S△BCF=S 四边形ABCD=3, S△EDF=,∴S△BEF= S 四边形ABCD﹣ S△ABE﹣ S△BCF﹣ S△FED=6﹣3﹣=.应选: C.【点评】此题主要考察了三角形面积的运算,作出恰当的辅助线得到三角形的底和高是解答此题的关键.11 .如图,将半径为 2 ,圆心角为 120 °的扇形OAB 绕点A逆时针旋转60 °,点,B的对应点分别O为 O′,B′,连接BB′,那么图中阴影局部的面积是〔〕A.B.2﹣C.2﹣D.4﹣【分析】连接 OO ′,BO′,根据旋转的性质得到∠OAO ′=60°,推出△OAO ′是等边三角形,得到∠AOO ′=60 °,推出△OO′B是等边三角形,得到∠AO′B= 120 °,得到∠O′B′B=∠O′BB′=30 °,根据图形的面积公式即可得到结论.【解答】解:连接 OO ′,BO′,∵将半径为 2,圆心角为120 °的扇形OAB绕点A逆时针旋转60 °,∴∠OAO ′=60°,∴△OAO ′是等边三角形,∴∠AOO ′=60°,OO′=OA ,∴点 O′中⊙O 上,∵∠AOB=120°,∴∠O′OB=60°,∴△OO ′B 是等边三角形,∴∠AO ′B=120°,∵∠AO ′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影局部的面积=S△B′O′B﹣〔 S 扇形O′OB﹣ S△OO′B〕=×1×2﹣〔﹣×2×〕=2﹣.【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,。

浙江省杭州市2018年中考数学模拟试题(1)及答案

浙江省杭州市2018年中考数学模拟试题(1)及答案

2018年杭州市初中毕业升学文化考试数学试题一考生须知:1. 本试卷满分120分,考试时间100分钟.2. 答题前,在答题纸上写姓名和准考证号,并在试卷首页的指定位置写上姓名和座位号.3. 必须在答题纸的对应答题位置上答题,写在其他地方无效,答题方式详见答题纸上的说明.4. 如需画图作答,必须用黑色字迹的钢笔或签字笔将图形线条描黑.5. 考试结束后,试题卷和答题纸一并上交.参考公式:二次函数:y=ax2+bx+c(a≠0)图象的顶点坐标公式:(-b2a,4ac-b24a).试题卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列实数中,结果最大的是()A. |-3|B. -(-π)C. 7D. 32. 下列运算正确的是()A. a8÷a2=a4B. b3+b3=b6C. a2+ab+b2=(a+b)2D. (a+b)(4a-b)=4a2+3ab-b23. 某学习报经理通过对几种学习报订阅量的统计(如下表),得出应当多印刷《数学天地》报,他是应用了统计学中的()A. 平均数B. 众数C. 中位数D. 方差4. 下列几何体中,三视图有两个相同而另一个不同的是()第4题图A. (1)(2)B. (2)(3)C. (2)(4)D. (3)(4)5. 如图,网格中的四个格点组成菱形ABCD ,则tan ∠DBC 的值为( )第5题图A. 13B. 22C. 3D. 26. 现给出四个命题:①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;③正八边形的每个内角度数为45°;④一组数据2,5,4,3,3的中位数是4,众数是3,其中假命题的个数是( )A. 1个B. 2个C. 3个D. 4个7. 如图,在平面直角坐标系中,正方形的中心在原点O 处,且正方形的一组对边与x 轴平行,点P (2a ,a )是反比例函数y =2x 的图象与正方形的一个交点,则图中阴影部分的面积是( )A. 2B. 3C. 4D. 5第7题图第9题图第10题图8. 某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问原计划每天加工服装多少套?在这个问题中,设原计划每天加工x套,则根据题意可得方程为()A. 160x+400-160(1+20%)x=18 B.160x+400(1+20%)x=18C. 160x+400-16020%x=18 D.400x+400-160(1+20%)x=189. 如图,直线y=nx+3n(n≠0)与y=-x+m的交点的横坐标为-1,则关于x的不等式-x+m>nx+3n>0的整数解为()A. -2B. -5C. -4D. -110. 如图,在Rt△ABC中,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A 顺时针旋转90°,得到△AFB,连接EF,则()A. ∠AED=∠AFEB. △ABE∽△ACDC. BE+DC=DED. BE2+DC2=DE2二、填空题:本大题有6个小题,每小题4分,共24分.11. 计算:4812=________.12. 为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是________个.13. 若随机向一个边长分别为3,4,5的三角形内投一根针,则针尖落在三角形的内切圆内的概率为________.14. 已知二次函数y=(x-h)2+1(h为常数),在自变量x的值满足1≤x≤4的情况下,若其对应的函数值y的最小值为5,则h的值为________.第15题图15. 如图,点C是⊙O上一点,⊙O的半径为22,D、E分别是弦AC、BC上的点,且OD=OE=2,则AB的最大值为________.16. 若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.在和谐四边形ABCD中,AB=AD=BC,∠BAD=90°,若AC是四边形ABCD的和谐线,则∠BCD=____________.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17. (本小题满分6分)以下是小华同学做的整式运算一题的解题过程:计算:2b2-(a+b)(a-2b).解:原式=2b2-(a2-2b2)…………第①步=2b2-a2+2b2……………第②步=4b2-a2…………………第③步老师说:“小华的过程有问题”.请你指出计算过程中错误的步骤,并改正.18. (本小题满分8分)如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的点.(1)求证:△ACE≌△BCD;(2)若DE =13,BD =12,求线段AB 的长.第18题图19. (本小题满分8分)第十三届全国学生运动会将于2017年9月4日— 9月16日在杭州市举办,是首次将大、中学生运动会合并后举行的一次全国性学校体育重大活动.某校组织了主题为“我是运动会志愿者”的电子小报作品征集活动,先从中随机抽取了部分作品,按A ,B ,C ,D 四个等级进行评分,然后根据统计结果绘制了如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)求此次抽取的作品中等级为B 的作品数,并补全条形统计图; (2)求扇形统计图中等级为D 的扇形圆心角的度数;(3)该校计划从抽取的这些作品中选取部分作品参加市区的作品展.已知其中所选取的到市区参展的A 类作品比B 类作品少4份,且A 、B 两类作品数量和正好是本次抽取的四个等级作品数量的15,求选到市区参展的B 类作品有多少份.第19题图20. (本小题满分10分)如图,甲、乙两只捕捞船同时从A 港出海捕鱼,甲船以152千米/小时的速度沿北偏西60°方向前进,乙船以15千米/小时的速度沿东北方向前进,甲船航行2小时到达C 处,此时甲船发现渔具丢在乙船上,于是甲船加快速度(匀速)沿北偏东75°的方向追赶乙船,结果两船在B 处相遇.(1)甲船从C 处追赶上乙船用了多少时间? (2)求甲船追赶乙船时的速度.(结果保留根号)第20题图21. (本小题满分10分)已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处.如图,已知折痕与边BC 交于点O ,连接AP 、OP 、OA .(1)求证:OC PD =OPAP;(2)若△OCP 与△PDA 的面积比为1∶4,求边AB 的长.第21题图22. (本小题满分12分)过反比例函数y =kx (k <0)的图象上一点A 作x 轴的垂线交x 轴于点B ,O 为坐标原点,且S △ABO =4.(1)求k 的值;(2)若二次函数y =ax 2与反比例函数y =kx (k <0)的图象交于C (-2,m ).请结合函数图象写出满足ax 2<kx的x 的取值范围.23. (本小题满分12分)如图,已知▱ABCD 中,AC ⊥CD ,点E 在射线CB 上,点F 在射线DC 上,且∠EAF =∠B .(1)当∠BAD =135°时,若点E 在线段CB 上,点F 在线段DC 上,求证:BE +22DF =AD ;(2)当∠BAD =120°时,若点E 在线段CB 上,点F 在线段DC 上,求AD 、BE 、DF 之间有怎样的数量关系?并证明你的结论;(3)当∠BAD =120°时,连接EF ,设直线AF 、直线BC 交于点Q ,当AB =3,BE =2时,请分别求出EQ 和EF 的长.第23题图答案三、解答题17. (本小题满分6分)解:错误的步骤是第①步,(2分)改正:原式=2b2-(a2-2ab+ab-2b2)=2b2-a2+2ab-ab+2b2=4b2+ab-a2.(6分)18. (本小题满分8分)(1)证明:∵△aCb 与△E CD 都是等腰直角三角形, ∴C E =CD ,aC =bC ,∠aCb =∠E CD =90°,∠b =∠baC =45°,∴∠aC E =∠bCD =90°-∠aCD ,在△aC E 和△bCD 中,⎩⎪⎨⎪⎧CE =CD ∠ACE =∠BCD AC =BC, ∴△aC E ≌△bCD (SaS );(4分) (2)解:∵△aC E ≌△bCD , ∴a E =bD ,∠E aC =∠b =45°, ∵bD =12, ∴∠E aD =45°+45°=90°,a E =12, 在Rt △E aD 中,∠E aD =90°,D E =13,a E =12, 由勾股定理得:aD =5,∴ab =bD +aD =12+5=17.(8分) 19. (本小题满分8分) 解:(1)30÷25%=120(份).(2分)此次抽取的作品中等级为b 的作品数为120-36-30-6=48(份),补全条形统计图,如解图,第19题解图(4分)(2)扇形统计图中等级为D 的扇形圆心角的度数为6120×360°=18°;(6分)(3)设b 类作品共x 份,则a 类作品共(x -4)份, 根据题意得(x -4)+x =120×15,解得x =14,答:选到市区参展的b 类作品有14份.(8分) 20. (本小题满分10分)解:(1)如解图,过点a 作aD ⊥bC 于D ,第20题解图由题意得: ∠b =30°,∠baC =60°+45°=105°,则∠bCa =45°,aC =302千米, 在Rt △aDC 中,aD =CD =aC ·cos 45°=30(千米), 在Rt △abD 中,ab =2aD =60千米,t =6015=4(时).4-2=2(时),答:甲船从C 处追赶上乙船用了2小时;(5分)(2)由(1)知:bD =ab ·cos 30°=303千米, ∴bC =30+303(千米),甲船追赶乙船的速度v =(30+303)÷2=(15+153)千米/时. 答:甲船追赶乙船时的速度为:(15+153)千米/小时.(10分) 21. (本小题满分10分)(1)证明:∵四边形abCD 是矩形,∴aD =bC ,DC =ab ,∠Dab =∠b =∠C =90°,由折叠可得:a P =ab ,PO =b O ,∠P a O =∠ba O ,∠a PO =∠b . ∴∠a PO =90°. ∴∠a P D =90°-∠C PO =∠PO C . ∵∠D =∠C ,∠a P D =∠PO C . ∴△O C P ∽△P Da , ∴OC PD =OPAP ;(4分) (2)解:∵△O C P 与△P Da 的面积比为1∶4, ∴OC PD =OP PA =CP DA=14=12.∴P D =2O C ,P a =2OP ,Da =2C P ,∵aD =8,∴C P =4,bC =8.设OP =x ,则O b =x ,C O =8-x.在Rt △P C O 中,∵∠C =90°,C P =4,OP =x ,C O =8-x ,∴x 2=(8-x)2+42.解得:x =5.∴ab =a P =2OP =10.∴边ab 的长为10.(10分)22. (本小题满分12分)解:(1)设点a 的坐标为(n ,k n), ∵ab ⊥x 轴,∴O b =|n |,ab =|k n|, ∵△ab O 的面积S △ab O =12O b ·ab =|k|2=4,k <0, ∴k =-8;(4分)(2)依照题意画出图形,如解图所示.第22题解图令x =-2,y =-8-2=4, 即点C 的坐标为(-2,4).(7分)∵点C (-2,4)在二次函数y =a x 2的图象上,∴4=(-2)2·a ,解得:a =1.(9分)结合图象可知,:当-2<x <0时,y =-8x的图象在y =x 2的图象的上方, ∴满足x 2<-8x的x 的取值范围为:-2<x <0.(12分) 23. (本小题满分12分)(1)证明:∵∠baD =135°,且∠baC =90°,∴∠CaD =45°,即△abC 、△aDC 都是等腰直角三角形;∴aD =2aC ,且∠D =∠aCb =45°;又∵∠E aC =∠Da F =45°-∠F aC ,∴△a E C ∽△a F D ,∴AE AF =EC FD =AC AD =12,即E C =22F D ; ∴bC =b E +22D F ,即b E +22D F =aD ;(4分) (2)解:2b E +D F =aD ;理由如下:第23题解图①如解图①,取bC 的中点G ,连接a G ;易知:∠DaC =∠bCa =30°,∠b =∠D =60°;在Rt △abC 中,G 是斜边bC 的中点,则:∠a GE =60°,aD =bC =2a G ;∵∠G aD =∠a GE =60°=∠E a F ,∴∠E a G =∠F aD =60°-∠G a F ;又∵∠a GE =∠D =60°,∴△a GE ∽△aD F ,得:AG AD =EG FD =12; 即F D =2EG ;∴bC =2b G =2(b E +EG)=2b E +2EG =2b E +D F ,即aD =2b E +D F ;(7分)第23题解图② 第23题解图③(3)解:在Rt △abC 中,∠aCb =30°,ab =3,则bC =aD =6,E C =4.①当点E 、F 分别在线段bC 、CD 上时,如解图②,过F 作FH ⊥b Q 于H ;同(2)可知:D F =2EG =2,C F =CD -D F =1;在Rt △C FH 中,∠F C H =60°,则:C H =12,FH =32; 易知:△aD F ∽△Q C F ,由D F =2C F ,可得C Q =12aD =3; ∴EQ =E C +C Q =4+3=7;在Rt △EFH 中,EH =E C +C H =92,FH =32; 由勾股定理可求得:EF =21;(9分)②当点E 、F 分别在Cb 、DC 的延长线上时,如解图③;分别过点a 、F 作bC 的垂线,垂足分别为m 、n ,∵∠E a F =∠G aD =60°,∴∠E a G =∠F aD =60°+∠F a G ,又∵∠EG a =∠D =60°,∴△E a G ∽△F aD ,得:EG FD =AG AD =12; 即F D =2EG =10,F C =10-CD =7;在Rt △F Cn 中,∠F Cn =60°,易求得F n =732,nC =72,G n =12; 在等边△ab G 中,am ⊥b G ,易求得am =332,m G =32,mn =m G -G n =1; 由△am Q ∽△F n Q ,得:AM FN =MQ NQ =37,即Q n =710,m Q =310; EQ =E b +bm +m Q =2+32+310=195; 由勾股定理,得:EF =57;综上可知:EQ =7或195,EF =21或57.(12分)。

2018年浙教版中考数学模拟试卷及答案

2018年浙教版中考数学模拟试卷及答案

2018年中考数学模拟卷一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.在0,2,(-3)0,-5这四个数中,最大的数是( ) A .0 B .2 C .(-3)0 D .-5 2.如图中几何体的俯视图是( )第2题图3.中国人口众多,地大物博,仅领水面积就约为370000km 2,将“370000”这个数用科学记数法表示为( )A .3.7×106B .3.7×105C .37×104D .3.7×104 4.下列各式的变形中,正确的是( ) A .(-x -y )(-x +y )=x 2-y 2 B.1x -x =1-x xC .x 2-4x +3=(x -2)2+1D .x ÷(x 2+x )=1x+15.如图,在△ABC 中,∠ACB =90°,分别以点A 和B 为圆心,以相同的长⎝⎛⎭⎫大于12AB 为半径作弧,两弧相交于点M 和N ,作直线MN 交AB 于点D ,交BC 于点E ,连结CD ,下列结论错误的是( )A .AD =BDB .BD =CDC .∠A =∠BED D .∠ECD =∠EDC第5题图 第6题图 第9题图6.如图,在△ABC 中,AB =AC ,BD 平分∠ABC 交AC 于点D ,AE ∥BD 交CB 的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40°B.45°C.60°D.70°7.以下是甲、乙、丙三人看地图时对四个地标的描述:甲:从学校向北直走500米,再向东直走100米可到图书馆;乙:从学校向西直走300米,再向北直走200米可到博物馆;丙:博物馆在体育馆正西方向200米处.根据三人的描述,若从图书馆出发,其终点是体育馆,则下列描述正确的是() A.向南直走300米,再向西直走200米B.向南直走300米,再向西直走600米C.向南直走700米,再向西直走200米D.向南直走700米,再向西直走600米8.某文具店的学习用品计算器、钢笔、笔记本,已知一台计算器的价钱比6支钢笔的价钱多6元,一本笔记本的价钱比2支钢笔的价钱少2元.则下列判断正确的是() A.一台计算器的价钱是一本笔记本的3倍B.若一台计算器降价4元,则其价钱是一本笔记本的3倍C.若一台计算器降价8元,则其价钱是一本笔记本的3倍D.若一台计算器降价12元,则其价钱是一本笔记本的3倍9.已知甲、乙为两把不同刻度的直尺,且同一把直尺上的刻度之间距离相等,小明将此两把直尺紧贴,并将两直尺上的刻度0彼此对准后,发现甲尺的刻度36会对准乙尺的刻度48,如图1所示.若今将甲尺向右平移且平移过程中两把直尺维持紧贴,使得甲尺的刻度0会对准乙尺的刻度4,如图2所示,此时甲尺的刻度21会对准乙尺的刻度m,则m的值是()A.24 B.28 C.31 D.3210.校运动会期间,甲、乙、丙、丁四位班长一起到学校小卖部购买相同单价的棒冰和相同单价的矿泉水.四位班长购买的数量及总价如表所示.若其中一人的总价算错了,则此人是谁()A.甲B.乙C.丙D.丁二、填空题(本大题有6小题,每小题5分,共30分) 11.分解因式:m 3-m = .12.不等式组⎩⎪⎨⎪⎧2x +2>3x -2,3x<-6的解是 .13.在“直通春晚”总决赛中,选手小王、小张、小李、小刘组合要经过抽签进行终极PK ,工作人员准备了4个签,签上分别写有A 1,B 1,A 2,B 2的字样.规定:抽到A 1和B 1,A 2和B 2的选手分两组进行终极PK.小张第一个抽签,抽到了A 1,小王第二个抽签,则小王和小张进行PK 的概率是 .14.如图,点A 在双曲线y =3x 上,点B 在双曲线y =kx (k ≠0)上,AB ∥x 轴,过点A作AD ⊥x 轴于D.连结OB ,与AD 相交于点C ,若AC =2CD ,则k 的值为 .第14题图15.在矩形ABCD 中,AD =5,AB =4,点E ,F 在直线AD 上,且四边形BCFE 为菱形.若线段EF 的中点为点M ,则线段AM 的长为 .16.如图,在Rt △ABC 中,∠C =90°,BC =4,BA =5,点D 是边AC 上的一动点,过点D 作DE ∥AB 交边BC 于点E ,过点B 作BF ⊥BC 交DE 的延长线于点F ,分别以DE ,EF 为对角线画矩形CDGE 和矩形HEBF ,则在D 从A 到C 的运动过程中,当矩形CDGE 和矩形HEBF 的面积和最小时,AD 的长度为____________________.第16题图三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22、23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:(-1)2018+⎝⎛⎭⎫12-1-4sin30°+16; (2)解方程组:⎩⎪⎨⎪⎧2x -3y =1,x +2y =4.18.某校新生入学后,对校服款式情况抽取了部分新生问卷调查,调查分为款式A ,B ,C ,D 四种,每位新生只能选择一种款式.现将调查统计结果制成了如下两幅不完整的统计图,请结合这两幅统计图,回答下列问题:(1)在本次调查中,一共抽取了多少名新生,并补全条形统计图; (2)若该校有3000名新生,请估计该校新生选择款式B 的人数.第18题图19.如图1是一副创意卡通圆规,图2是其平面示意图,OA 是支撑臂,OB 是旋转臂,使用时,以点A 为支撑点,铅笔芯端点B 可绕点A 旋转作出圆.已知OA =OB =10cm.第19题图(1)当∠AOB =18°时,求所作圆的半径;(结果精确到0.01cm )(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm) (参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器)20.在探究“面积为常数的△ABC,边BC与BC边上高线AD的关系”的活动中,探究小组测得BC的长为x(cm),AD的长为y(cm)的一组对应值如下表:x(cm) 5 7 8 10 12 14y(cm)12 8.6 7.5 6 5 4.3第20题图(1)在右图坐标系中,用描点法画出相应的函数图象;(2)求出y关于x的函数关系式;(3)如果三角形BC边的长不小于15cm,求高线AD的范围.21.某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C 处,B在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:第21题图(1)填空:乙的速度v2=米/分;(2)写出d1与t的函数关系式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?22.△ABC中,∠C是最小内角.若过顶点B的一条直线把这个三角形分成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC的关于点B的伴侣分割线.例如:如图1,△ABC中,∠A=90°,∠C=20°,若过顶点B的一条直线BD交AC于点D,且∠DBC=20°,则直线BD是△ABC的关于点B的伴侣分割线.第22题图(1)如图2,△ABC中,∠C=20°,∠ABC=110°.请在图中画出△ABC关于点B的伴侣分割线,并注明角度;(2)△ABC中,设∠B的度数为y,最小内角∠C的度数为x.试探索y与x应满足什么要求时,△ABC存在关于点B的伴侣分割线.23.在四边形ABCD中,对角线AC与BD交于点O,E是OC上任意一点,AG⊥BE 于点G,交BD于点F.第23题图(1)如图1,若四边形ABCD是正方形,判断AF与BE的数量关系;明明发现,AF与BE分别在△AOF和△BOE中,可以通过证明△AOF和△BOE全等,得到AF与BE的数量关系;请回答:AF与BE的数量关系是;(2)如图2,若四边形ABCD是菱形,∠ABC=120°,请参考明明思考问题的方法,求的值.24.如图,平面直角坐标系中,已知A(0,4),B(5,0),D(3,0),点P从点A出发,沿y轴负方向在y轴上以每秒1个单位长度的速度匀速运动,过点P作PE∥x轴交直线AD 于点E.第24题图(1)设点P的运动时间为t(s),DE的单位长度为y,求y关于t的函数关系式,并写出t 的取值范围;(2)当t 为何值时,以EP 为半径的⊙E 恰好与x 轴相切?并求此时⊙E 的半径; (3)在点P 的运动过程中,当以D ,E ,P 三点为顶点的三角形是等腰三角形时,求此时t 的值.参考答案2018年中考数学模拟卷一、1—5.BABAD 6—10.AADDD二、11.m(m +1)(m -1) 12.x<-2 13.13 14.9 15.5.5或0.5 16.32三、17.(1)5 (2)⎩⎪⎨⎪⎧x =2,y =1.18.(1)设抽取了x 名新生,则40%x =20,∴x =50,∴抽取了50名新生.选择款式C 的新生50-10-20-5=15人,∴补全条形统计图如下: (2)3000×40%=1200人,∴估计该校新生选择款式B 的人数为1200名.第18题图19.(1)作OC ⊥AB 于点C ,如图1所示,由题意可得,OA =OB =10cm ,∠OCB =90°,∠AOB =18°,∴∠BOC =9°,∴AB =2BC =2OB·sin 9°≈2×10×0.1564≈3.13cm ,即所作圆的半径约为3.13cm ; (2)作AD ⊥OB 于点D ,作AE =AB ,如图2所示,∵保持∠AOB =18°不变,在旋转臂OB 末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,∴折断的部分为BE ,∵∠AOB =18°,OA =OB ,∠ODA =90°,∴∠OAB =81°,∠OAD =72°,∴∠BAD =9°,∴BE =2BD =2AB·sin 9°≈2×3.13×0.1564≈0.98cm ,即铅笔芯折断部分的长度是0.98cm .第19题图 第20题图20.(1)函数图象如图所示. (2)根据图象的形状,选择反比例函数模型进行尝试.设y =k x (k ≠0),选点(5,12)的坐标代入,得k =60,∴y =60x .∵其余点的坐标代入验证,近似符合关系式y =60x ,∴所求的函数解析式是y =60x(x >0). (3)由题意得:x ≥15,∴由图象知:0<y ≤4.即高线AD 的范围是0cm <AD ≤4cm .21.(1)40 (2)v 1=1.5v 2=1.5×40=60(米/分),60÷60=1(分钟),a =1,d 1=⎩⎪⎨⎪⎧-60t +60(0≤t <1),60t -60(1≤t ≤3); (3)d 2=40t ,当0≤t<1时,d 2+d 1>10,即-60t +60+40t >10,解得0≤t <1;当1≤t ≤3时,d 2-d 1>10,即40t -(60t -60)>10,解得1≤t <52时.综上所述:当0≤t <52时,两遥控车的信号不会产生相互干扰.22.(1)如图1所示;(2)考虑直角顶点,只有点A ,B ,D 三种情况.当点A 为直角顶点时,如图2,此时y =90°-x.当点B 为直角顶点时,再分两种情况:若∠DBC =90°,如图3,此时y =90°+12(90°-x)=135°-12x.若∠ABD =90°,如图4,此时y =90°+x.当点D 为直角顶点时,又分两种情况:若△ABD 是等腰三角形,如图5,此时y =45°+(90°-x)=135°-x.若△DBC 是等腰三角形,如图6,此时x =45°,45°<y <135°.第22题图23.(1)AF =BE (2)AFBE = 3.理由如下:∵四边形ABCD 是菱形,∠ABC =120°,∴AC ⊥BD ,∠ABO =60°.∴∠FAO +∠AFO =90°.∵AG ⊥BE ,∴∠EAG +∠BEA =90°.∴∠AFO =∠BEA.又∵∠AOF =∠BOE =90°,∴△AOF ∽△BOE.∴AF BE =AOOB .∵∠ABO =60°,AC ⊥BD ,∴AO OB =tan 60°= 3.∴AFBE= 3.24.(1)在Rt △AOD 中,OA =4,OD =3,则AD =5.①当点P 在AO 上运动时,∵PE ∥x 轴,AE =5-y ,∴AP AO =AE AD ,则t 4=5-y 5,即y =-54t +5(0≤t ≤4).②当点P 在y 轴负半轴上运动时,∵PE ∥x 轴,AE =5+y ,∴AP AO =AE AD ,则4t =55+y ,即y =54t -5(t >4). (2)由题意以EP 为半径的⊙E 恰好与x 轴相切,设切点为M ,则EM =EP.故分别作第一、四象限角的平分线交直线AD 于点E 1,E 2.由A(0,4),D(3,0)得到直线y AD =-43x +4.解方程组⎩⎪⎨⎪⎧y =x ,y =-43x +4,得⎩⎨⎧x =127,y =127,即E 1(127,127).∴t 1=4-127=167.此时圆的半径是127.解方程组⎩⎪⎨⎪⎧y =-x ,y =-43x +4,得⎩⎪⎨⎪⎧x =12,y =-12,即E 2(12,-12).∴t 2=4+12=16,此时圆的半径是12.综上:当t =167或t =16时,以EP 为半径的⊙E 恰好与x 轴相切,此时⊙E 的半径分别是127和12.(3)当点P 在AO 上运动时,等腰△DEP 中只有EP =ED 这一种情况.∵EP =34t ,∴34t =-54t+5,∴t =52.当点P 在y 轴负半轴上运动时:①若PD =DE ,则PD 2=32+(t -4)2,DE 2=(54t-5)2,从而32+(t -4)2=(54t -5)2,解得t 1=0,t 2=8.(t =0舍去);②若PD =PE ,则PD 2=32+(t -4)2,PE 2=(34t)2,从而32+(t -4)2=(34t)2,解得t 1=1007,t 2=4.(t =4舍去);③若DE。

浙江省湖州市2018年中考数学模拟试卷(含答案解析)

浙江省湖州市2018年中考数学模拟试卷(含答案解析)

2018年浙江省湖州市中考数学模拟试卷一、单选题(本大题共10小题,每个小题给出的四个选项中,只有一个符合题目要求)1.(3分)﹣5的相反数是()A.B.C.﹣5 D.52.(3分)计算(﹣a3)2的结果是()A.a5B.﹣a5 C.a6D.﹣a63.(3分)若函数y=kx的图象经过点(﹣1,2),则k的值是()A.﹣2 B.2 C.﹣ D.4.(3分)如图,直线a∥b,直线c分别与a,b相交,∠1=50°,则∠2的度数为()A.150°B.130°C.100° D.50°5.(3分)以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A.B.C.D.6.(3分)如图,点A为反比例函数y=﹣图象上一点,过点A作AB⊥x轴于点B,连结OA,则△ABO的面积为()A.16 B.8 C.4 D.27.(3分)一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是()A.B.C.D.8.(3分)如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是()A.200cm2B.600cm2C.100πcm2D.200πcm29.(3分)七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是()A.B.C.D.10.(3分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有20×20的正方形网格图形(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A.13 B.14 C.15 D.16二、填空题11.(3分)分解因式:x2﹣16=.12.(3分)不等式3x+1>2x﹣1的解集为.13.(3分)一个小球由地面沿着坡度1:2的坡面向上前进了10米,此时小球距离地面的高度为米.14.(3分)已知一组数据a1,a2,a3,a4的平均数是2017,则另一组数据a1+3,a2﹣2,a3﹣2,a4+5的平均数是.15.(3分)如图,已知∠AOB=30°,在射线OA上取点O1,以O1为圆心的圆与OB相切;在射线O1A上取点O2,以O2为圆心,O2O1为半径的圆与OB相切;在射线O2A上取点O3,以O3为圆心,O3O2为半径的圆与OB相切;…;在射线O9A 上取点O10,以O10为圆心,O10O9为半径的圆与OB相切.若⊙O1的半径为1,则⊙O10的半径长是.16.(3分)如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=和y=在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是.三、解答题17.计算:24÷(﹣2)3﹣3.18.解方程:=.19.对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.(1)若3⊗x=﹣2011,求x的值;(2)若x⊗3<5,求x的取值范围.20.为了培养学生的阅读习惯,某校开展了“读好书,助成长”系列活动,并准备购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,根据统计图所提供的信息,回答下列问题:(1)本次调查共抽查了名学生;(2)两幅统计图中的m=,n=;(3)已知该校共有960名学生,请估计该校喜欢阅读“A”类图书的学生约有多少人?21.一个不透明的口袋中装有4个分别标有数字﹣1,﹣2,3,4的小球,它们的形状、大小完全相同.小红先从口袋中随机摸出一个小球记下数字为x;小颖在剩下的3个小球中随机摸出一个小球记下数字为y.(1)小红摸出标有数字3的小球的概率是;(2)请用列表法或画树状图的方法表示出由x,y确定的点P(x,y)所有可能的结果,并求出点P(x,y)落在第三象限的概率.22.定义:如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P在该抛物线上(P点与A、B两点不重合),如果△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点.(1)直接写出抛物线y=﹣x2+1的勾股点的坐标.(2)如图2,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A,B两点,点P(1,)是抛物线C的勾股点,求抛物线C的函数表达式.=S△ABP的Q点(异(3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ于点P)的坐标.23.问题背景如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.类比探究如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.(2)△DEF是否为正三角形?请说明理由.(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.24.在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA 于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB 上移动,设移动时间为t秒.(1)如图1,当t=3时,求DF的长.(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.(3)连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t 的值.2018年浙江省湖州市中考数学模拟试卷参考答案与试题解析一、单选题(本大题共10小题,每个小题给出的四个选项中,只有一个符合题目要求)1.(3分)﹣5的相反数是()A.B.C.﹣5 D.5【解答】解:﹣5的相反数是5,故选:D.2.(3分)计算(﹣a3)2的结果是()A.a5B.﹣a5 C.a6D.﹣a6【解答】解:(﹣a3)2=a6.故选:C.3.(3分)若函数y=kx的图象经过点(﹣1,2),则k的值是()A.﹣2 B.2 C.﹣ D.【解答】解:把点(﹣1,2)代入正比例函数y=kx,得:2=﹣k,解得:k=﹣2.故选:A.4.(3分)如图,直线a∥b,直线c分别与a,b相交,∠1=50°,则∠2的度数为()A.150°B.130°C.100° D.50°【解答】解:如图所示,∵a∥b,∠1=50°,∴∠3=∠1=50°,∵∠2+∠3=180°,∴∠2=130°.故选:B.5.(3分)以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:B.6.(3分)如图,点A为反比例函数y=﹣图象上一点,过点A作AB⊥x轴于点B,连结OA,则△ABO的面积为()A.16 B.8 C.4 D.2【解答】解:设点A的坐标为(a,),∵AB⊥x轴于点B,∴△ABO是直角三角形,∴△ABO的面积是:=2,故选:D.7.(3分)一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是()A.B.C.D.【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出红球的有9种情况,∴两次摸出红球的概率为;故选:D.8.(3分)如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是()A.200cm2B.600cm2C.100πcm2D.200πcm2【解答】解:观察三视图知:该几何体为圆柱,高为2,底面直径为1,侧面积为:πdh=2×π=2π,∵是按1:10的比例画出的一个几何体的三视图,∴原几何体的侧面积=100×2π=200π,故选:D .9.(3分)七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( )A .B .C .D .【解答】解:图C 中根据图7、图4和图形不符合,故不是由原图这副七巧板拼成的.故选:C .10.(3分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图1),从点A 经过一次跳马变换可以到达点B ,C ,D ,E 等处.现有20×20的正方形网格图形(如图2),则从该正方形的顶点M 经过跳马变换到达与其相对的顶点N ,最少需要跳马变换的次数是( )A.13 B.14 C.15 D.16【解答】解:如图1,连接AC,CF,则AF=3,∴两次变换相当于向右移动3格,向上移动3格,又∵MN=20,∴20÷3=,(不是整数)∴按A﹣C﹣F的方向连续变换10次后,相当于向右移动了10÷2×3=15格,向上移动了10÷2×3=15格,此时M位于如图所示的5×5的正方形网格的点G处,再按如图所示的方式变换4次即可到达点N处,∴从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是14次,故选:B.二、填空题11.(3分)分解因式:x2﹣16=(x﹣4)(x+4).【解答】解:x2﹣16=(x+4)(x﹣4).12.(3分)不等式3x+1>2x﹣1的解集为x>﹣2.【解答】解:3x+1>2x﹣1移项及合并同类项,得x>﹣2,故答案为:x>﹣2.13.(3分)一个小球由地面沿着坡度1:2的坡面向上前进了10米,此时小球距离地面的高度为米.【解答】解:如图.Rt△ABC中,tanA=,AB=10.设BC=x,则AC=2x,∴x2+(2x)2=102,解得x=2(负值舍去).即此时小球距离地面的高度为2米.14.(3分)已知一组数据a1,a2,a3,a4的平均数是2017,则另一组数据a1+3,a2﹣2,a3﹣2,a4+5的平均数是2018.【解答】解:由题意(a1+a2+a3+a4)=2017,∴a1+a2+a3+a4=8068,∴另一组数据a1+3,a2﹣2,a3﹣2,a4+5的平均数===2018,故答案为2018.15.(3分)如图,已知∠AOB=30°,在射线OA上取点O1,以O1为圆心的圆与OB相切;在射线O1A上取点O2,以O2为圆心,O2O1为半径的圆与OB相切;在射线O2A上取点O3,以O3为圆心,O3O2为半径的圆与OB相切;…;在射线O9A 上取点O10,以O10为圆心,O10O9为半径的圆与OB相切.若⊙O1的半径为1,则⊙O10的半径长是29.【解答】解:作O1C、O2D、O3E分别⊥OB,∵∠AOB=30°,∴OO1=2CO1,OO2=2DO2,OO3=2EO3,∵O1O2=DO2,O2O3=EO3,∴圆的半径呈2倍递增,∴⊙O n的半径为2n﹣1 CO1,∵⊙O1的半径为1,∴⊙O10的半径长=29,故答案为29.16.(3分)如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=和y=在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是或.【解答】解:∵点B是y=kx和y=的交点,y=kx=,解得:x=,y=3,∴点B坐标为(,3),点A是y=kx和y=的交点,y=kx=,解得:x=,y=,∴点A坐标为(,),∵BD⊥x轴,∴点C横坐标为,纵坐标为=,∴点C坐标为(,),∴BA≠AC,若△ABC是等腰三角形,①AB=BC,则=3﹣,解得:k=;②AC=BC,则=3﹣,解得:k=;故答案为k=或.三、解答题17.计算:24÷(﹣2)3﹣3.【解答】解:原式=24÷(﹣8)﹣3=﹣3﹣3=﹣6.18.解方程:=.【解答】解:去分母得3(x+2)=6(x﹣2),解得x=6,检验:当x=6时,(x﹣2)(x+2)≠0,则x=6为原方程的解.所以原方程的解为x=6,19.对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.(1)若3⊗x=﹣2011,求x的值;(2)若x⊗3<5,求x的取值范围.【解答】解:(1)根据题意,得:2×3﹣x=﹣2011,解得:x=2017;(2)根据题意,得:2x﹣3<5,解得:x<4.20.为了培养学生的阅读习惯,某校开展了“读好书,助成长”系列活动,并准备购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,根据统计图所提供的信息,回答下列问题:(1)本次调查共抽查了120名学生;(2)两幅统计图中的m=48,n=15;(3)已知该校共有960名学生,请估计该校喜欢阅读“A”类图书的学生约有多少人?【解答】解:(1)这次调查的学生人数为42÷35%=120(人);(2)m=120﹣42﹣18﹣12=48,18÷120=15%;所以n=15;(3)该校喜欢阅读“A”类图书的学生人数为:960×35%=336(人).21.一个不透明的口袋中装有4个分别标有数字﹣1,﹣2,3,4的小球,它们的形状、大小完全相同.小红先从口袋中随机摸出一个小球记下数字为x;小颖在剩下的3个小球中随机摸出一个小球记下数字为y.(1)小红摸出标有数字3的小球的概率是;(2)请用列表法或画树状图的方法表示出由x,y确定的点P(x,y)所有可能的结果,并求出点P(x,y)落在第三象限的概率.【解答】解:(1)小红摸出标有数字3的小球的概率是;故答案为:;(2)列表如下:共有12种等可能的结果,点(﹣1,﹣2)和(﹣2,﹣1)落在第三象限,所以P (点P 落在第三象限)==.22.定义:如图1,抛物线y=ax 2+bx +c (a ≠0)与x 轴交于A ,B 两点,点P 在该抛物线上(P 点与A 、B 两点不重合),如果△ABP 的三边满足AP 2+BP 2=AB 2,则称点P 为抛物线y=ax 2+bx +c (a ≠0)的勾股点.(1)直接写出抛物线y=﹣x 2+1的勾股点的坐标.(2)如图2,已知抛物线C :y=ax 2+bx (a ≠0)与x 轴交于A ,B 两点,点P (1,)是抛物线C 的勾股点,求抛物线C 的函数表达式.(3)在(2)的条件下,点Q 在抛物线C 上,求满足条件S △ABQ =S △ABP 的Q 点(异于点P )的坐标.【解答】解:(1)抛物线y=﹣x 2+1的勾股点的坐标为(0,1);(2)抛物线y=ax 2+bx 过原点,即点A (0,0), 如图,作PG ⊥x 轴于点G ,∵点P 的坐标为(1,),∴AG=1、PG=,PA===2,∵tan ∠PAB==,∴∠PAG=60°,在Rt△PAB中,AB===4,∴点B坐标为(4,0),设y=ax(x﹣4),将点P(1,)代入得:a=﹣,∴y=﹣x(x﹣4)=﹣x2+x;=S△ABP知点Q的纵坐标为,(3)①当点Q在x轴上方时,由S△ABQ则有﹣x2+x=,解得:x1=3,x2=1(不符合题意,舍去),∴点Q的坐标为(3,);=S△ABP知点Q的纵坐标为﹣,②当点Q在x轴下方时,由S△ABQ则有﹣x2+x=﹣,解得:x1=2+,x2=2﹣,∴点Q的坐标为(2+,﹣)或(2﹣,﹣);综上,满足条件的点Q有3个:(3,)或(2+,﹣)或(2﹣,﹣).23.问题背景如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.类比探究如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.(2)△DEF是否为正三角形?请说明理由.(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.【解答】解:(1)△ABD≌△BCE≌△CAF;理由如下:∵△ABC是正三角形,∴∠CAB=∠ABC=∠BCA=60°,AB=BC,∵∠ABD=∠ABC﹣∠2,∠BCE=∠ACB﹣∠3,∠2=∠3,∴∠ABD=∠BCE,在△ABD和△BCE中,,∴△ABD≌△BCE(ASA);(2)△DEF是正三角形;理由如下:∵△ABD≌△BCE≌△CAF,∴∠ADB=∠BEC=∠CFA,∴∠FDE=∠DEF=∠EFD,∴△DEF是正三角形;(3)作AG⊥BD于G,如图所示:∵△DEF是正三角形,∴∠ADG=60°,在Rt△ADG中,DG=b,AG=b,在Rt△ABG中,c2=(a+b)2+(b)2,∴c2=a2+ab+b2.24.在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA 于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB 上移动,设移动时间为t秒.(1)如图1,当t=3时,求DF的长.(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.(3)连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t 的值.【解答】解:(1)当t=3时,点E为AB的中点,∵A(8,0),C(0,6),∴OA=8,OC=6,∵点D为OB的中点,∴DE∥OA,DE=OA=4,∵四边形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF ⊥DE ,∴∠EDF=90°,∴四边形DFAE 是矩形,∴DF=AE=3;(2)∠DEF 的大小不变;理由如下:作DM ⊥OA 于M ,DN ⊥AB 于N ,如图2所示: ∵四边形OABC 是矩形,∴OA ⊥AB ,∴四边形DMAN 是矩形,∴∠MDN=90°,DM ∥AB ,DN ∥OA ,∴, =,∵点D 为OB 的中点,∴M 、N 分别是OA 、AB 的中点,∴DM=AB=3,DN=OA=4,∵∠EDF=90°,∴∠FDM=∠EDN ,又∵∠DMF=∠DNE=90°,∴△DMF ∽△DNE ,∴=,∵∠EDF=90°,∴tan ∠DEF==;(3)作DM ⊥OA 于M ,DN ⊥AB 于N , 若AD 将△DEF 的面积分成1:2的两部分, 设AD 交EF 于点G ,则点G 为EF 的三等分点; ①当点E 到达中点之前时,如图3所示,NE=3﹣t ,由△DMF ∽△DNE 得:MF=(3﹣t ),∴AF=4+MF=﹣t +,∵点G 为EF 的三等分点,∴G (, t ),设直线AD 的解析式为y=kx +b ,把A (8,0),D (4,3)代入得:,解得:,∴直线AD 的解析式为y=﹣x +6,把G (, t )代入得:t=;②当点E 越过中点之后,如图4所示,NE=t ﹣3,由△DMF ∽△DNE 得:MF=(t ﹣3),∴AF=4﹣MF=﹣t +,∵点G 为EF 的三等分点,∴G (, t ),代入直线AD 的解析式y=﹣x +6得:t=;综上所述,当AD 将△DEF 分成的两部分的面积之比为1:2时,t 的值为或。

最新-2018年中考数学模拟试卷及答案【浙江省】 精品

最新-2018年中考数学模拟试卷及答案【浙江省】 精品

2018年初中毕业生中考模拟试卷(浙江省)数学试题卷考生须知:1.本试卷分试题卷和答题卷两部分。

满分120分,考试时间100分钟。

2.答题时,必须在答题卷密封区内写明校名、姓名和准考证号。

3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。

4.考试结束后,上交试题卷和答题卷。

一. 仔细选一选 (本题有10个小题, 每小题4分, 共40分) 下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在答题卷中相应的格子内. 注意可以用多种不同的方法来选取正确答案. 1、-2的倒数是(▲) A.-2 B.-21 C.21D.2 2、据统计,2018年“超级男生”短信投票的总票数约327 000 000张,将这个数写成科学数法是(▲) A.3.27×118 B.3.27×118 C.3.27×118 D.3.27×118 3、如图所示的图案中是轴对称图形的是(▲)4、已知α为等边三角形的一个内角,则cosα等于(▲) A.21 B.22 C.23 D.335、已知圆锥的侧面积为10πcm 2,侧面展开图的圆心角为36º,则该圆锥的母线长为(▲)A.100cmB.10cm cm 6、某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,用1小时爬上山顶。

游客爬山所用时间t 与山高h 间的函数关系用图形表示是(▲)A B C D7、为了弘扬雷锋精神,某中学准备在校园内建造一座高2m 的雷锋人体雕像,向全体师生征集设计方案.小兵同学查阅了有关资料,了解到黄金分割数常用于人体雕像的设计中。

如图是小兵同学根据黄金分割数设计的雷锋人体雕像的方案,其中雷锋人体雕像下部的设计高度(精确到0.01m1.4141.732)是(▲)A.0.62mB.0.76mC.1.24mD.1.62m 8、若反比例函数ky x=的图象经过点(–1,2),则这个函数的图象一定经过点(▲) A 、(2,-1) B 、(12-,2) C 、(-2,-1) D 、(12,2)9、中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏. 游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸就不得奖. 参与这个游戏的观众有三次翻牌的机会(翻过的牌不能再翻). 某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是(▲)A.14B.15C.16D.32010、阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=ca.根据该材料填空:已知x 1,x 2是方程x 2+6x ++3=0的两实数根,则21x x +12x x 的值为(▲) A. 4 B. 6 C. 8 D. 10二. 认真填一填 (本题有6个小题, 每小题5分, 共30分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.11、分解因式:x 3-4x = . 12、函数函数12-+=x x y 中自变量x 的取值范围是 . 13、要在一个矩形纸片上画出半径分别是4cm 和1cm 的两个外切圆,该矩形纸片面积的最小值是 .14、如图有一直角梯形零件ABCD ,AD ∥BC ,斜腰DC 的长为10cm , ∠D =120︒,则该零件另一腰AB 的长是 m . 15、某住宅小区6月份随机抽查了该小区6天的用水量(单位:吨),结果分别是30、34、32、37、28、31,那么,请你估计该小区6月份(30天)的总用水量约是 吨. 16、在数学中,为了简便,记1nk k =∑=1+2+3+…+(n -1)+ n .1!=1,2!=2×1,3!=3×2×1,…,n !=n ×(n -1)×(n -2)×…×3×2×1.则20061k k =∑-20071k k =∑+2007!2006!=___. A B C D三. 全面答一答(17~19题每题8分,20~22每题10分,23每题12分,24题14分,共80分) 解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以. 17、(本小题满分8分)化简求值:a a a a a a a ÷--++--22121222,其中12+=a ;18、(本小题满分8分)如图,在1010⨯正方形网格中,每个小正方形的边长均为1个单位.将ABC △向下平移4个单位,得到A B C '''△,再把A B C '''△绕点C '顺时针旋转90 ,得到A B C '''''△,请你画出A B C '''△和A B C '''''△(要求写出画法). 19、(本小题满分8分)在“3.15”消费者权益日的活动中,对甲、乙两家商场售后服务的满意度进行了抽查. 如图反映了被抽查用户对两家商场售后服务的满意程度(以下称:用户满意度),分为很不满意、不满意、较满意、很满意四个等级,并依次记为1分、2分、3分、4分.(1)请问:甲商场的用户满意度分数的众数为 ;乙商场的用户满意度分数的众数为 .(2)分别求出甲、乙两商场的用户满意度分数的平均值(计算结果精确到0.01).(3)请你根据所学的统计知识,判断哪家商场的用户满意度较高,并简要说明理由.20、(本小题满分10分)如图,小丽在观察某建筑物AB.(1)请你根据小亮在阳光下的投影,画出建筑物AB 在阳光下的投影. (2)已知小丽的身高为1.65m ,在同一时刻测得小丽和建筑物AB 的投影长分别为1.2m 和8m ,求建筑物AB 的高.AB C很不满不满意 较满意很满10020021、(本小题满分10分)温度与我们的生活息息相关,你仔细观察过温度计吗?如图12是一个温度计实物示意图,左边的刻度是摄氏温度(℃),右边的刻度是华氏温度(°F ),设摄氏温度为x (℃),华氏温度为y (°F),则y 是x 的一次函数. (1)仔细观察图中数据,试求出y 与x 之间的函数表达式; (2)当摄氏温度为零下15℃时,求华氏温度为多少? 22、(本小题满分10分) 如图,已知△ABC ,∠ACB=90º,AC=BC ,点E 、 F 在AB 上,∠ECF= 45º, (1)求证:△ACF ∽△BEC (5分) (2)设△ABC 的面积为S ,求证:AF·BE=2S (5分)23、(本小题满分12分)如图①②,图①是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图②.已知铁环的半径为5个单位(每个单位为5cm ),设铁环中心为O ,铁环钩与铁环相切点为M ,铁环与地面接触点为A ,∠MOA=α,且sin α=35. (1)求点M 离地面AC 的高度BM (单位:厘米); (2)设人站立点C 与点AMF 的长度(单位:厘米).24、(本小题满分14分)如图,以O 为原点的直角坐标系中,A 点的坐标为(0,1),直线x =1交x 轴于点B 。

2018年杭州市中考数学模拟试卷(含答案)

2018年杭州市中考数学模拟试卷(含答案)

2018年杭州市中考数学模拟试卷(含答案)一、填空题(每题3分)1.(3分)(2018•杭州)=()A.2 B.3 C.4 D.52.(3分)(2018•杭州)如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若=,则=()A.B.C.D.13.(3分)(2018•杭州)下列选项中,如图所示的圆柱的三视图画法正确的是()A.B.C.D.4.(3分)(2018•杭州)如图是某市2018年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A.14℃,14℃B.15℃,15℃C.14℃,15℃D.15℃,14℃5.(3分)(2018•杭州)下列各式变形中,正确的是()A.x2•x3=x6B.=|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+6.(3分)(2018•杭州)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A.518=2(106+x)B.518﹣x=2×106 C.518﹣x=2(106+x)D.518+x=2(106﹣x)7.(3分)(2018•杭州)设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x 的函数图象可能为()A.B.C.D.8.(3分)(2018•杭州)如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.DE=EB C.DE=DO D.DE=OB9.(3分)(2018•杭州)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0 10.(3分)(2018•杭州)设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④ B.①③④ C.①②④ D.①②③二、填空题(每题4分)11.(4分)(2018•黔东南州)tan60°=.12.(4分)(2018•杭州)已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是.13.(4分)(2018•杭州)若整式x2+ky2(k为不等于零的常数)能在有理数范围内因式分解,则k的值可以是(写出一个即可).14.(4分)(2018•杭州)在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为.15.(4分)(2018•杭州)在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D关于坐标原点的对称点的坐标为.16.(4分)(2018•杭州)已知关于x的方程=m的解满足(0<n<3),若y >1,则m的取值范围是.三、解答题17.(6分)(2018•杭州)计算6÷(﹣),方方同学的计算过程如下,原式=6+6=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.。

2018年浙江省宁波市慈溪市中考数学模拟考试试卷(3月份)(解析版)

2018年浙江省宁波市慈溪市中考数学模拟考试试卷(3月份)(解析版)

2018年浙江省宁波市慈溪市中考数学模拟试卷(3月份)一、选择题(本题有12小题,每小题4分,共48分)1.计算-1X2的结果是()A.1B.2C.-3D.-22.下列计算正确的是()A.x+x=x2B.x*x=2xC.(x2)3=x5D.x34-x=x23.2015年我国大学生毕业人数将达到7490000A,这个数据用科学记数法表示为()A.7.49X107B.7.49X106C.74.9X105D.0.749X1074.若正多边形的一个内角是150°,则该正多边形的边数是()A.6B.12C.16D.185.实数a在数轴上的位置如图所示,则下列说法不正确的是()~~a0~2>A.a的相反数大于2B.a的相反数是2C.\a\>2D.2aV06.一小组8位同学一分钟跳绳的次数如下:150,176,168,183,172,164,168,185,则这组数据的中位数为()A.172B.171C.170D.1687.如图,平行四边形ABCD的顶点A、B、。

在上,顶点C在。

的直径BE上,连接AE,ZE=36°,则ZADC的度数是()8.不等式3x2x-5的最小整数解是(9.在平面直角坐标系中,点P(m,2m-2),则点F不可能在()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,在矩形ABCQ中,AD=1,AB>1,AG平分Z8AQ,分别过点8、C作BELAG于点E,CF±AG于点F,贝ij(A£-GF)的值为()11.将抛物线(x+2) 2+5绕着点(0,3)旋转180。

以后,所得图象的解析式是()A.y=- —(x+2)2+5B.y=-—(x-2)2-522C.y———(x- 2)?+2D.y=——(x- 2)?+12212.如图,在矩形曲CD中,AB=5,AD=3,动点F满足S^PAB=^S^ABCD>则点F到A、B两点距离之和PA+PB的最小值为()A.V29B.V34C.5扼D.V41二、填空题(本题有6小题,每小题4分,共24分)13.分解因式:x3 -9x=.14.九(5)班有男生27人,女生23人,班主任发放准考证时,任意抽取一张准考证,恰好是女生的准考证的概率是.15.某市居民用电价格如表所示:用电量不超过a千瓦时超过a千瓦时的部分单价(元/千瓦时)0.50.6小芳家二月份用电200千瓦时,交电费105元,则a=.16.在uABCD中,AB=3,BC=4,当口ABCD的面积最大时,下列结论:①AC=5;(2)ZA+ZC=180°;@AC±BD;@AC=BD.其中正确的有.(填序号)17.一个圆锥的三视图如图,则此圆锥的表面积为正视图左视图俯视图18,如图,RtZXABC中,AC=3,BC=4,ZACB=90°,P为AB上一点,S.AP=2BP,若点A绕点C顺时针旋转60°,则点F随之运动的路径长是.三、解答题(本题有8小题,共78分,各小题都必须写出解答过程)19.(6分)计算:(T)2016-(号)2+-(/16- cos60°20.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A2两名男生,Bp彪两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.21.(9分)如图是8X8的正方形网格,A、B两点均在格点(即小正方形的顶点)上,试在下面三个图中,分别画出一个以A,B,C,。

(完整)2018年中考数学模拟试卷及答案,推荐文档

(完整)2018年中考数学模拟试卷及答案,推荐文档

2 2 2 2 2一、选择题(共 40 分)2018 年中考模拟卷(2018.05.31)1. 下列各式中,计算结果为 1 的是( ). A .-2-1B .1 ÷ 1⨯ 22C . -12D .1-12. 如果和互为余角,那么下列表示的补角的式子中,错误的是( ).A.0o -B . 90o +C .2+D .+ 23. 如图是五个大小相同的正方体组成的几何体,这个几何体的俯视图是( ).从正面看ABCD4. 下列式子中,可以表示为 2—3 的是( ).A .22÷25B .25÷22C .22×25D .(-2)×(-2)×(-2)5. △ABC 中,∠A ,∠B ,∠C 的度数之比为 2:1:1,则下列直线一定是△ABC 的对称轴的是( ).A. △ABC 的边 AB 的垂直平分线B .∠BAC 的角平分线所在的直线C .△ABC 的 AB 边上的中线所在的直线D .△ABC 的 AC 边上的高所在的直线6. 已知( -1)n = m ,若 m 是整数,则 n 的值可能是( ).A.B . -1C .1-D . +17. 如图,正方形网格中,每个小正方形的边长均为 1 个单位长度,A 、B 在格点上,现将线段 AB 向下平移 m 个单位长度,再向左平移 n 个单位长 度,得到线段 A ' B ',连接 A A ',B A ',若四边形 A A ' B ' B 是正方形, 则 m +n 的值是().A .3B .4C .5D .6第 7 题8. 若 A (x 1,y 1) 、B (x 2,y 2 ) 是某函数图象上的不同两点,且(x 1 - x 2 )( y 1 - y 2 ) < 0 .则该函数可能是( ).A . y = x 2 ( x > 0)B . y = 1 ( x < 0) xC . y = - 2 (x > 0) xD . y = x9. 若 x 1,x 2(x 1 <x 2)是方程(x -a )(x -b ) = 1(a < b )的两个根,则实数 x 1,x 2,a,b 的大小关系为( ).A .x 1<x 2<a <bB .x 1<a <x 2<bC .x 1<a <b <x 2D .a <x 1<b <x 210. 已知数据 x 1, x 2 , , x n 的平均数为 x ,数据 y 1, y 2 , , y m 的平均数为 y .( x ≠ y ).若数据x , x , , x , y , y , , y 的平均数 z = ax + (1- a ) y ,其中0 < a < 1.则 m ,n 的大小关系为( 1 2 n 1 2 m2). A. n = mB. n ≥ mC. n < mD. n > m二、填空题(共 24 分) 11.16 的算术平方根为.yAa212.截至 2016 年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600 亿美元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年浙江省中考数学模拟试题与答案(全卷满分 150 分,考试时间 120 分钟)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.)1.-2018 的相反数是( )A .|﹣2018|B .±2018C .20181D .2018 2.下列各式运算结果为m 5的是( )A .m 2+m 3B .m 10÷m 2C .m 2•m 3D .(m 2)33.近日,公益组织“上学路上”发布了《2017年中国留守儿童心灵状况白皮书》。

《白皮书》根据中国义务教育阶段农村中小学生4000万的总数进行估算,结果显示中国农村共有超过2300万留守儿童。

“2300万”用科学记数法表示为( ) A .2.3×103 B .2.3×105C .2.3×107D .2.3×1044. 下列几何体中,三视图有两个相同,另一个不同的是( )A. ①② B .②③ C. ②④ D. ③④5.如图,AB ∥CD ,CE 于AB 交于E 点,∠1=50°,∠2=15°,则∠CEB 的度数为( )A .50°B .60°C .65°D .70°6.立定跳远是小刚同学体育中考的选考项目之一.某次体育课上,体育老师记录了小刚的一组立定跳远训练成绩如下表:则下列关于这组数据的说法中正确的是( )A .众数是2.45B .平均数是2.45C .中位数是2.5D .方差是0.487.把一元二次方程x2﹣4x+1=0,配成(x+p)2=q的形式,则p、q的值是()A.p=﹣2,q=5 B.p=﹣2,q=3 C.p=2,q=5 D.p=2,q=38. 池州某企业今年1月份产值为a万元,2月份比1月份减少了10%,预计3月份比2月份增加15%.则3月份的产值将达到( )A. (a-10%)(a+15%)万元B. (a-10%+15%)万元C. a(1-10%)(1+15%)万元D. a(1-10%+15%)万元9.如图,已知二次函数y=ax2+bx+c(a<0)的图象与x轴有两个交点O(0,0),A(k,0),且该函数图象还经过点B(1,1),则函数y=kx+k﹣1的图象可能是()A.B.C.D.10.随着互联网的发展,互联网消费逐渐深入人们的生活,如图所示的是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象,有下列说法:其中正确说法的个数有()①“快车”行驶里程不超过5公里计费8元;②“顺风车”行驶里程超过2公里的部分,每公里计费1.2元;③A点的坐标为(6.5,10.4);④从合肥西站到会展中心的里程是15公里,则“顺风车”要比“快车”少用3.4元.A.1个B.2个 C.3个 D.4个二、填空题(本大题共4小题,每小题5分,共20分). 11.分解因式:x ﹣4x 3= .12. (-5)2+(2-π)0- 60sin 3=______________.13.如图,一个含有30°角的直角三角板ABC 的直角边AC 与⊙O 相切于点A ,∠C=90°,∠B=30°,⊙O 的直径为4,AB 与⊙O 相交于D 点,则AD 的长为 .14.如图1,一张纸条上依次写有10个数,如图2,一卡片每次可以盖住纸条上的3个数,那么随机地用卡片盖住的3个数中有且只有一个是负数的概率 .三、解答题(本大题共2小题,每小题8分,共16分.解答写出文字说明、证明过程或演算过程.)15.计算:﹣2﹣1+(1﹣)0﹣4cos45°.16.解一元二次方程:(x+2)(x ﹣2)=3x .四、解答题(本题共2小题,每小题8分,满分16分.)17.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点都在格点上,建立如图所示的平面直角坐标系.(1)将△ABC 向左平移7个单位后再向下平移3个单位,请画出两次平移后的△A 1B 1C 1,若M 为△ABC 内的一点,其坐标为(a ,b ),直接写出两次平移后点M 的对应点M 1的坐标;(2)以原点O 为位似中心,将△ABC 缩小,使变换后得到的△A 2B 2C 2与△ABC 对应边的比为1:2.请在网格内画出在第三象限内的△A 2B 2C 2,并写出点A 2的坐标.18.如图,正方形ABCD 内部有若干个点,用这些点以及正方形ABCD 的顶点A 、B 、C 、D 把原正方形分割成一些三角形(互相不重叠):(1)填写如表:(2)如果原正方形被分割成2016个三角形,此时正方形ABCD 内部有多少个点?(3)上述条件下,正方形又能否被分割成2017个三角形?若能,此时正方形ABCD 内部有多少个点?若不能,请说明理由.(4)综上结论,你有什么发现?(写出一条即可) 五、解答题(本大题共2小题,每小题10分,满分20分)19.如图,某校数学兴趣小组为测量校园主教学楼AB 的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C ,用测角器测得主教学楼顶端A 的仰角为30°,再向主教学楼的方向前进24米,到达点E 处(C ,E ,B 三点在同一直线上),又测得主教学楼顶端A 的仰角为60°,已知测角器CD 的高度为1.6米,请计算主教学楼AB 的高度.(≈1.73,结果精确到0.1米)20.一款关于儿童成长的图书十分畅销,某书店第一次批发1800元这种图书(批发价是按书定价4折确定),几天内销售一空,又紧急去市场再购1800元这种图书.因为第二次批发正赶上举办图书艺术节,每本批发价比第一次降低了10%,这样所购该图书数量比第一次多20本.(1)书店第二次批发了多少本图书?(2)如果书店两次均按该书定价7折出售,试问该书店这两次售书总共获利多少元?六、解答题(共1小题,满分13分)21.为加强公路的节水意识,合理利用水资源,某市对居民用水实行阶梯水价,居民家庭每月用水量划分为两个阶梯,一、二阶梯用水的单价之比等于1:2,如图折线表示实行阶梯水价后每月水费y(元)与用水量x(m3)之间的函数关系,其中射线AB表示第二级阶梯时y与x之间的函数关系.(1)写出点B的实际意义;(2)求射线AB所在直线的表达式.七、解答题(共1小题,满分13分)22.对称轴为直线x=﹣1的抛物线y=x2+bx+c,与x轴相交于A,B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标.(2)点C是抛物线与y轴的交点,点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.参考答案一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.)1.D2.C3.C4.B5.C6.C7.A8.C9.A 10.D 二、填空题(本大题共4小题,每小题5分,共20分). 11. x (1+2x )(1﹣2x ) 12.4.5 13. 2 14.三、解答题 15.解:原式=2﹣+1﹣2=.16.解:方程化为x 2﹣3x ﹣4=0,(x ﹣4)(x+1)=0, x ﹣4=0或x+1=0, 所以x 1=4,x 2=﹣1.17.解:(1)所画图形如下所示,其中△A 1B 1C 1即为所求,根据平移规律:左平移7个单位,再向下平移3个单位,可知M 1的坐标(a ﹣7,b ﹣3);(2)所画图形如下所示,其中△A 2B 2C 2即为所求,点A 2的坐标为(﹣1,﹣4).18. 解:(1)如图:(2)设点数为n , 则2(n+1)=2016, 解得n=1007,答:原正方形被分割成2016个三角形时正方形ABCD内部有1007个点.(3)设点数为n,则2(n+1)=2017,解得n=1007.5,答:原正方形不被分割成2017个三角形;(4)被分割成的三角形的个数永远是偶数个.19. 解:在Rt△AFG中,tan∠AFG=,∴FG==,在Rt△ACG中,tan∠ACG=,∴CG==AG.又∵CG﹣FG=24m,即AG﹣=24m,∴AG=12m,∴AB=12+1.6≈22.4m.20.解:(1)设第一次购书的进价为x元,可得:,解得:x=10,经检验x=10是原方程的解,所以,第二次购书的进价为10×(1﹣10%)=9元,第一次购书:本,第二次购书:180+20=200本;(2)每本书定价是:10=25元,两次获利:元,答:该书店这两次售书总共获利3050元.21.解:(1)图中B点的实际意义表示当用水25m3时,所交水费为70元;(2)设第一阶梯用水的单价为x元/m3,则第二阶梯用水单价为2x元/m3,设A(a,30),则,解得,,∴A(15,30),B(25,70)设线段AB所在直线的表达式为y=kx+b,则,解得,∴线段AB所在直线的表达式为y=4x﹣30.22.解:(1)∵点A(﹣3,0)与点B关于直线x=﹣1对称,∴点B的坐标为(1,0).(2)∵a=1,∴y=x2+bx+c.∵抛物线过点(﹣3,0),且对称轴为直线x=﹣1,∴∴解得:,∴y=x2+2x﹣3,且点C的坐标为(0,﹣3).设直线AC的解析式为y=mx+n,则,解得:,∴y=﹣x﹣3如图,设点Q的坐标为(x.y),﹣3≤x≤0.则有QD=﹣x﹣3﹣(x2+2x﹣3)=﹣x2﹣3x=﹣(x+)2+∵﹣3≤﹣≤0,∴当x=﹣时,QD有最大值.∴线段QD长度的最大值为.。

相关文档
最新文档