一次不定方程的解法
一次不定方程的解法

精心整理一次不定方程的解我们现在就这个问题,先给出一个定理定理如是互质的正整数是整数,且方,①cby?ax?有一组整数解则此方程的一切整数解可以表示为yx,00其中…3,??1,?2,t?0,证因为是方程①的整数解,当然满足y,x00②c?ax?by00因此.cby?at)?ax?ba(x?bt)?(y?0000这表明,也是方程①的解.at?y??x?xbty00设是方程①的任一整数解,则有??y,x③??caxby???②得④③??)y(?)x(ax??by?00精心整理.精心整理t是整数.将,其中代入④,即得由于,所以,即???atyy?y?at??y ya?y1)?,(ab000.因此可以表示成,的形式,所以,???y?y?atx?x?x?x?btyy?x??x?btatbty,x00000表示方程①的一切整数解,命题得证.有了上述定理,求解二元一次不定方程的关键是求它的一组特殊解. 例1求的整数解.715y?11x?将方程变形得1解是这个方程的的倍数.由观察是整数,所应是因211组整数解,所以方程的解先考,通过观察易得解11114所以(7711,,从而可取21?x??28,y00可见,二元一次不定方程在无约束条件的情况下,通常有无数组整数解,由于求出的特解不同,同一个不定方程的解的形式可以不同,但它们所包含的全部解是 t一样的.将解中的参数做适当代换,就可化为同一形式.求方程的非负整数解.2例9022y??6x得因为,所以方程两边同除以解2?(6,22)2①45?3x?11y由观察知,是方程1??yx?4,11②1?11y?x3的一组整数解,从而方程①的一组整数解为由定理,可得方程①的一切整数解为精心整理.精心整理因为要求的是原方程的非负整数解,所以必有180?11t?0?③??45?3t?0?由于是整数,由③得,所以只有两种可能.16?t?15,tt16t?15?当;当.所以原方程的非负整数解是3??4,yy?0?t16,xt?15,x?15,x?415x???,??y?3y?0??求方的所有正整数解211?分析这个方程的系数较大,用观察法去求其特殊解比较困难,碰到这种情况们可用逐步缩小系数的方法使系数变小,最后再用观察法求得其解解用方211?的最小系除方程①的各项,并移项211y②?30?2y?x?77y?53.化简得到是整数,故因为也是整数,于是?u yx,3?7u5y?7③3??7u5y3?2u(整数),由此得令?v5④35v?2u?u??1u??1??是方程④的一组解.将代入③得,再将由观察知代入②得2?2y?y??v?1v?1??x?25x?25?19t??t为整数,所以它的一切解为.于是方程①有一组解025x???y?2y?2?7t??0由于要求方程的正整数解,所以解不等式,得只能取.因此得原方程的正整数解为0,1t精心整理.精心整理x?25x?6??,??y?2y?9??当方程的系数较大时,我们还可以用辗转相除法求其特解,其解法结合例题说明.求方程的整数解.4例25??107y37x解为表示,我们把上述辗转相除过程回代,1031由此可是方的一组整数解.于2610322652?x22600是方的一组整数解23107所以原方程的一切整数解某国硬币分分两种,问用这两种硬币支分货款,有多少种不例14的方法解设需枚分,枚分恰好支付分,于是x y57142①1425?y?7x所以由于,所以,并且由上式知.因为,所以,从而1xx?1)5?52(12)?(5,20x?x7?142,所以①的非负整数解为1,6,11,16?x x?1x?6x?11x?16????,,,????y?27y?20y?13y?6????所以,共有4种不同的支付方式.说明当方程的系数较小时,而且是求非负整数解或者是实际问题时,这时候的解的组数往往较少,可以用整除的性质加上枚举,也能较容易地解出方程.多元一次不定方程可以化为二元一次不定方程.精心整理.精心整理求方程的整数解.6例1000?y?5z9x?24解设,即,于是.于是原方程可化为t8y?3t?3x?9x?24y1000??5z3t3x?8y?t?①?3t?5z?1000?用前面的方法可以求得①的解为x?3t?8?(是整数)②u?y??t?3u②的解为200是整数)100,得消去1600都是整数200100年以前,我国古代数学家张丘建在他编写的《张丘建算经》里,曾1500 大约提出并解决了“百钱买百鸡”这个有名的数学问题,通俗地讲就是下例.只个钱买小鸡每个钱三只.用母鸡每只三个钱,今有公鸡每只五个钱,7 例100100鸡,问公鸡、母鸡、小鸡各买了多少只?只,由题意列方程组解设公鸡、母鸡、小鸡各买z,x,y①②化简得③300?z?15x?9y②得③?200y?14x?8得,解即1?100x7?4y?4x7?y的一个特解为于是1004x7?y?精心整理.精心整理由定理知的所有整数解为100?x?4y7由题意知,,所以100?y,z0?x,4?25?t?28??7解得?24?28??t14?77?4∴28t?25?7只公鸡只母鸡8811精心整理.。
二元一次不定方程的解法及其应用

一次不定方程#
$&) 有整数解的条件
定理 $&$ 设 A!g4Bi%有一组整数解 !i!% "BiB% "且
( A"4) i8"A iA$ 8"4i4$ 8"则'$( 式的所有解可以表示成!
{!i!% j4$ " ( "i%"f$"f)"f("3) BiB% jA$ "
')(
定理 $&) 二元一次不定方程 A!g4Bi%有整数解的充
其中
.i)"("3"?#
C% i%"C$ i$"C.iE.C.j$ gC.j)
依次求出 D) "C) "D( "C( "3"D? "C? "即可得到'(( 式# )&( 降低系数法 逐步取整法
当方程的系 数 较 大 时" 以 较 小 的 系 数 作 除 数 辗 转 相
除"根据不定方 程 的 解 是 整 数 这 一 条 件" 把 所 求 不 定 方 程
则 A!g4Bi%与方程 A !g 4 Bi % 即 A !g4Bi ( A"4) ( A"4) ( A"4) 8 8
%同解"令 8
A
:8 iA$
"4:8 i4$ "%:8 i%$ "得
A$
!g4$ Bi%$ "此方
程中未 知 数 !和 B的 系 数 是 互 质 的" 所 以 只 需 求 出 A$ ! g4$ Bi$ 的一组整数解为 !i!% "BiB% "则 !i%$ !% "Bi%$ B% 为 方程 A$ !g4$ Bi%$ 的一组整数解"也即为 A!g4Bi%的一组 整数解#
(完整word版)不定方程的解法研究

不定方程的解法研究摘 要:本文研究了一次不定方程,并从二元到n 元给出了一次不定方程有解的充要条件和几种不定方程的基本求解方法。
其中首先给出了不定方程的定义和通解公式,然后举例应用辗转相除法、整数分离法、Euler 函数法、解同余式法、矩阵解法、整消法变换解决了不定方程的求解问题。
由本文看出,解不定方程的关键就是求出不定方程的特解。
关键词:不定方程 ;通解 ;Euler 函数 ;初等整数矩阵 ;解法1引言及有关基础知识不定方程是变数个数多于方程个数,且取整数值的方程.不定方程是数论中最古老的一个分支,我国古代数学家在这方面的研究内容极为丰富,在数学史上占有重要地位。
1969年“不定方程之王”L.Jmordell 系统的总结了当时的成果,写成了著名的《丢番图方程》(Diphantine Equations,Adcmic Press )。
1950 年,著名的数学家柯召和孙琦在我国出版了第一部专门研究不定方程的专著《谈谈不定方程》(上海教育出版社)。
在这两部专著的基础上,曹珍富于1987年完成了全面总结与系统研究不定方程的成果和方法的手稿《丢番图方程引论》,并于1989年由哈尔滨工业大学出版社出版.最近十余年,不定方程不仅自身的发展异常活跃,而且全面应用于其他各个领域,例如,计算机科学、组合数学、密码学、代数编码、信号的数字处理、计算方法等领域有着广泛的运用,所以数论又成为现在数学界的热门课题.[1]本文主要研究了一次不定方程和不定方程的几种解法.并利用辗转相除法、整数分离法、Euler 函数法、解同余式法、矩阵解法解决了不定方程的求解问题.不定方程的整数解问题是数论的一个重要课题,在现实生活中,该问题有很强的实用意义。
不定方程的概念、有解条件及通解公式[2]定义1:设整数2≥n ,c ,1a ,n a a ,2是整数,且n a a a ,,21都不等于零,n x x x ,,21是整数变数,方程c x a x a x a n n =+++ 2211(1)n 元一次不定方程,n a a a ,,21称为它的系数。
初等数论不定方程的解法

初等数论不定方程的解法初等数论是数论中的一部分,主要研究整数之间的性质和关系。
在初等数论中,不定方程是一个非常重要的研究对象。
不定方程是指一个方程中包含的未知数不确定,需要求解这些未知数的取值以满足方程。
本文将介绍不定方程的一般解法,并通过具体例子进行演示。
首先,我们来介绍一下一元一次不定方程的解法。
一元一次不定方程的一般形式为ax + by = c,其中a、b、c为已知整数,x、y为未知整数。
解决这个方程的关键是找到一组x、y的取值,使得方程成立。
我们可以通过以下步骤来解决一元一次不定方程:1.首先,我们要判断方程是否有解。
我们知道,当且仅当c是a和b的最大公约数的倍数时,方程才有整数解。
我们可以使用欧几里得算法来求出a和b的最大公约数gcd(a,b),然后判断c是否是gcd(a,b)的倍数。
2.如果方程有解,我们需要求出一个特解。
我们可以使用扩展欧几里得算法来求解特解。
扩展欧几里得算法可以找到一组整数x0和y0,使得ax0 + by0 = gcd(a,b)。
我们可以将c除以gcd(a,b)得到c',然后将特解x0和y0乘以c'得到一个特解x1 = x0 * c',y1 = y0 * c'。
3.一旦我们找到了一个特解,我们可以通过以下形式来构造方程的通解:x = x1 + k * (b / gcd(a, b))y = y1 - k * (a / gcd(a, b))其中k为整数。
这样,我们就可以通过改变k的值来得到方程的所有整数解。
接下来,我们来介绍一下二次不定方程的解法。
二次不定方程的一般形式为ax^2 + bxy + cy^2 + dx + ey + f = 0,其中a、b、c、d、e、f为已知整数,x、y为未知数。
对于二次不定方程,我们可以通过一些特殊的方法来求解。
下面介绍两种常用的方法:1.利用配方法。
如果二次不定方程中的系数是已知整数,且可以对方程进行配方法,那么我们可以通过配方法来求解方程。
一次不定方程的解法

一次不定方程的解法我们现在就这个问题,先给出一个定理.定理 如果,a b 是互质的正整数,c 是整数,且方程ax by c += ①有一组整数解00,x y 则此方程的一切整数解可以表示为00x x bty y at =-⎧⎨=+⎩其中0,1,2,3,t =±±±…证 因为00,x y 是方程①的整数解,当然满足00ax by c += ②因此0000()()a x bt b y at ax by c -++=+=.这表明0x x bt =-,0y y at =+也是方程①的解. 设,x y ''是方程①的任一整数解,则有ax by c ''+= ③③-②得 00()()a x x b y y ''-=-- ④由于(,)1a b =,所以0a y y '-,即0y y at '=+,其中t 是整数.将0y y at '=+代入④,即得0x x bt '=-.因此,x y ''可以表示成0x x bt =-,0y y at =+的形式,所以0x x bt =-,0y y at =+表示方程①的一切整数解,命题得证.有了上述定理,求解二元一次不定方程的关键是求它的一组特殊解.例1 求11157x y +=的整数解.解法1 将方程变形得71511y x -=因为x 是整数,所以715y -应是11的倍数.由观察得002,1x y ==-是这个方程的一组整数解,所以方程的解为215111x t y t=-⎧⎨=-+⎩ t 为整数解法2 先考察11151x y +=,通过观察易得11(4)1531⨯-+⨯=,所以11(47)15(37)7⨯-⨯+⨯⨯=,可取0028,21x y =-=,从而28152111x ty t=--⎧⎨=+⎩ t 为整数 可见,二元一次不定方程在无约束条件的情况下,通常有无数组整数解,由于求出的特解不同,同一个不定方程的解的形式可以不同,但它们所包含的全部解是一样的.将解中的参数t 做适当代换,就可化为同一形式.例2 求方程62290x y +=的非负整数解. 解 因为(6,22)2=,所以方程两边同除以2得31145x y += ①由观察知,114,1x y ==-是方程3111x y += ②的一组整数解,从而方程①的一组整数解为0045418045(1)45x y =⨯=⎧⎨=⨯-=-⎩ 由定理,可得方程①的一切整数解为18011453x ty t=-⎧⎨=-+⎩ 因为要求的是原方程的非负整数解,所以必有1801104530t t -≥⎧⎨-+≥⎩③ 由于t 是整数,由③得1516t ≤≤,所以只有15,16t t ==两种可能.当15,15,0t x y ===;当16,4,3t x y ===.所以原方程的非负整数解是150x y =⎧⎨=⎩ ,43x y =⎧⎨=⎩ 例3 求方程719213x y +=的所有正整数解.分析 这个方程的系数较大,用观察法去求其特殊解比较困难,碰到这种情况我们可用逐步缩小系数的方法使系数变小,最后再用观察法求得其解. 解 用方程719213x y += ①的最小系数7除方程①的各项,并移项得213193530277y yx y --==-+② 因为,x y 是整数,故357yu -=也是整数,于是573y u +=.化简得到573y u += ③令325uv -=(整数),由此得 253u v += ④由观察知11u v =-⎧⎨=⎩是方程④的一组解.将11u v =-⎧⎨=⎩代入③得2y =,再将2y =代入②得25x =.于是方程①有一组解00252x y =⎧⎨=⎩,所以它的一切解为251927x t y t =-⎧⎨=+⎩t 为整数由于要求方程的正整数解,所以25190270t t ->⎧⎨+>⎩解不等式,得t 只能取0,1.因此得原方程的正整数解为252x y =⎧⎨=⎩ ,69x y =⎧⎨=⎩ 当方程的系数较大时,我们还可以用辗转相除法求其特解,其解法结合例题说明. 例4 求方程3710725x y +=的整数解.解1072373337133433841=⨯+=⨯+=⨯+ 为用37和107表示1,我们把上述辗转相除过程回代,得13384=-⨯37484=--⨯ 3794=-⨯ 379(3733)=-⨯- 933837=⨯-⨯9(107237)837=⨯-⨯-⨯ 91072637=⨯-⨯ 37(26)1079=⨯-+⨯由此可知1126,9x y =-=是方程371071x y +=的一组整数解.于是025(26)650x =⨯-=-,0259225y =⨯=是方程3710725x y +=的一组整数解. 所以原方程的一切整数解为65010722537x t y t=--⎧⎨=+⎩ t 为整数例5 某国硬币有5分和7分两种,问用这两种硬币支付142分货款,有多少种不同的方法?解 设需x 枚7分,y 枚5分恰好支付142分,于是75142x y += ①所以142722222828555x x x y x x ---==-+=--由于7142x ≤,所以20x ≤,并且由上式知52(1)x -.因为(5,2)1=,所以51x -,从而1,6,11,16x =,所以①的非负整数解为127x y =⎧⎨=⎩ ,620x y =⎧⎨=⎩ ,1113x y =⎧⎨=⎩ ,166x y =⎧⎨=⎩所以,共有4种不同的支付方式.说明 当方程的系数较小时,而且是求非负整数解或者是实际问题时,这时候的解的组数往往较少,可以用整除的性质加上枚举,也能较容易地解出方程.多元一次不定方程可以化为二元一次不定方程. 例6 求方程92451000x y z +-=的整数解.解 设9243x y t +=,即38x y t +=,于是351000t z -=.于是原方程可化为38351000x y tt z +=⎧⎨-=⎩ ① 用前面的方法可以求得①的解为383x t y t u =-⎧⎨=-+⎩(u 是整数) ② ②的解为2000510003t vz v=+⎧⎨=+⎩ (v 是整数) ③ 消去t ,得600081520003510003x u v y u v z v =-+⎧⎪=-+-⎨⎪=+⎩(,u v 都是整数) 大约1500年以前,我国古代数学家张丘建在他编写的《张丘建算经》里,曾经提出并解决了“百钱买百鸡”这个有名的数学问题,通俗地讲就是下例.例7 今有公鸡每只五个钱,母鸡每只三个钱,小鸡每个钱三只.用100个钱买100只鸡,问公鸡、母鸡、小鸡各买了多少只?解 设公鸡、母鸡、小鸡各买,,x y z 只,由题意列方程组 ①②化简得159300x y z ++= ③ ③-②得148200x y +=即74100x y +=,解741x y +=得12x y =-⎧⎨=⎩于是74100x y +=的一个特解为⎧⎪⎨⎪⎩1531003x y z ++=100x y z ++=00100200x y =-⎧⎨=⎩ 由定理知74100x y +=的所有整数解为10042007x t y t =-+⎧⎨=-⎩t 为整数由题意知,0,,100x y z <<,所以0100410002007100t t <-+<⎧⎨<-<⎩t 为整数解得42528724142877t t ⎧<<⎪⎪⎨⎪<<⎪⎩∴ 425287t <<由于t 是整数,故t 只能取26,27,28,而且,,x y z 还应满足100x y z ++=.即可能有三种情况:4只公鸡,18只母鸡,78只小鸡;或8只公鸡,11只母鸡,81只小鸡;或12只公鸡,4只母鸡,84只小鸡.。
初一数学不定式方程的解法精华

初一数学不定式方程的解法精华一次不定方程的整数解⑴设整系数方程0=++c by ax (a >0,b ≠0) ①中(a,b )=1,则它必有整数解⑵设①中,(a,b )=d >1,则当d c ,时,方程①中无整数解;当d |c 时,,方程①有整数解⑶设x =x0,y =y0,是①的一组整数解(称为一个特解),则它的一切整数解(称为通解)可以表示为⎩⎨⎧-=+=kb y y kb x x 00(k 为任意整数) ②求不定方程3x +7y +16z =40的整数解分析:这是一个三元一次不定方程,把其中一个未知数暂时看做常数,这样就把原方程化为二元一次不定方程了。
解法1、把z 看做常数,则3x +7y =40-16z利用观察法(或连分数法)易知:x =-2,y =1是方程3x +7y =1的一个特解于是⎩⎨⎧-=+-=z y z x 16403280是方程3x +7y =40-16z 的一个特解,于是⎪⎩⎪⎨⎧=--=++-=z z tz y t z x 3164073280(z,t 取一切整数)是原方程3x +7y +16z =40的通解解法2、将原方程变形为315213316740z y z y z y x --+--=--=令t z y =--31 则y =1-z -3t ,于是x =11-3z +7t ,从而,原方程的通解是 ⎪⎩⎪⎨⎧=+-=+-=z z tz y t z x 317311(z,t 取一切整数)例2、(百鸡问题)鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问鸡翁,鸡母、鸡雏各几何?分析:本题是我国古代数学家张丘建《算经》中的名题,基本解法是消元,化为二元一次不定方程求解解:用x,y,z 分别表示鸡翁,鸡母,鸡雏的数目,依题意得方程组⎪⎩⎪⎨⎧=++=++ ②①100100335z y x z y x3×①-②得 7x +4y =100=7×20-4×10也即7(x -20)+4(y +10)=07(x -20)+4(y +10)=0∴x0=20 y0=-10,从而得⎩⎨⎧--=-=+=+=k k y y k k x x 7107420400∵x,y 均为非负,故有⎩⎨⎧≥≥+07100420k k --10从而知-5≤k≤-7由此可得整数k与非负整数x,y,z的取值如下:。
一次不定方程及方程的整数解问题-1

一次不定方程(组)及方程的整数解问题【写在前面】不定方程(组)是数论中的一个重要课题,不仅是数学竞赛,甚至在中考试卷中也常常出现. 对于不定方程(组),我们往往只求整数解,甚至是只求正整数解,加上条件限制后,解就可确定.有时还可以解决计数、求最值等方面的问题.二元一次不定方程是最简单的不定方程,一些复杂的不定方程(组)常常要转化为二元一次不定方程问题加以解决.【本讲重点】求一次不定方程(组)的整数解【知识梳理】不定方程(组)是指未知数的个数多于方程的个数的方程(组),其特点是往往有无穷多个解,不能唯一确定.重要定理:设a 、b 、c 、d 为整数,则不定方程c by ax =+有:定理1 若,),(d b a =且d 不能整除c ,则不定方程c by ax =+没有整数解;定理2 若),(00y x 是不定方程c by ax =+且的一组整数解(称为特解),则⎩⎨⎧-=+=aty y bt x x 00,(t 为整数)是方程的全部整数解(称为通解). (其中d b a =),(,且d 能整除c ).定理3 若),(00y x 是不定方程1=+by ax ,1),(=b a 的特解,则),(00cy cx 是方程c by ax =+的一个特解. (其中d b a =),(,且d 能整除c ).求整系数不定方程c by ax =+的正整数解,通常有以下步骤: (1) 判断有无整数解; (2) 求出一个特解; (3) 写出通解;(4) 有整数t 同时要满足的条件(不等式组),代入命题(2)中的表达式,写出不定方程的正整数解.解不定方程(组),需要依据方程(组)的特点,并灵活运用以下知识和方法: (1)分离整系数法; (2)穷举法; (3)因式分解法; (4)配方法;(5)整数的整除性; (6)奇偶分析; (7)不等式分析; (8)乘法公式.【学法指导】【例1】求下列不定方程的整数解(1)862=+y x ; (2)13105=+y x . 【分析】根据定理1、定理2确定方程的整数解. 【解答】(1)原方程变形为:43=+y x , 观察得到⎩⎨⎧==1,1y x 是43=+y x 的一组整数解(特解),根据定理2 ,)(1,31是整数t t y t x ⎩⎨⎧-=+=是原方程的所有整数解.(2)∵(5,10)=5,但5不能整除13,∴根据定理1,原方程的无整数解.【点评】先判断方程是否有整数解,多于系数不大的题目优先选用观察法寻找特解. 求出的特解不同,同一个不定方程的解的形式可以不同,但它们所包含的全部解是一样的. 【实践】求下列不定方程的整数解(1)211147=+y x ; (2)11145=-y x .答案:(1)无整数解;(2))(51,145是整数t ty t x ⎩⎨⎧-=-= 【例2】求方程213197=+y x 的所有正整数解.【分析】此方程的系数较大,不易用观察法得出特解.根据方程用y 来表示x ,再将含y 的代数式分离出整系数部分,然后对分数系数部分进行讨论,赋予y 不同的整数,寻找一个使分数系数部分成为正整数的y 0,然后再求x 0,写出通解,再解不等式组确定方程的正整数解. 【解答】∵(7,19)=1,根据定理2,原方程有整数解.由原方程可得75323075314210719213yy y y y x -+-=-+-=-=, 由此可观察出一组特解为x 0=25,y 0=2.∴方程的通解为)(72,1925是整数t t y t x ⎩⎨⎧-=+=.其中⎩⎨⎧>->+072,01925t t ∴⎪⎪⎩⎪⎪⎨⎧<->72,1925t t ∴721925<<-t ∴0,1-=t 代入通解可得原方程的正整数解为⎩⎨⎧==⎩⎨⎧==.2,25.9,6y x y x 或 【点评】根据定理2解这类方程,若未知数的系数较大不容易观察出一组整数解时,可用一个未知数去表示另一个未知数,再利用整数的知识,这是解二元一次不定方程基本的方法,称为分离整系数法. 这样就容易找出一组整数解来.【实践】求方程2654731=+y 的正整数解. 答案: x=4,y=3.【例3】大客车能容纳54人,小客车能容纳36人,现有378人要乘车,问需要大、小客车各几辆才能使每个人都能上车且各车都正好坐满.【分析】本题是不定方程的应用,根据题意列出方程并求出非负整数解即可. 【解答】设需要大客车x 辆,小客车y 辆,根据题意可列方程 3783654=+y x ,即2123=+y x .又(3,2)=1,根据定理2,原方程有整数解. 易知⎩⎨⎧==9,1y x 是一个特解,通解为)(99,21是整数t ty t x ⎩⎨⎧-=+= 由题意可知⎩⎨⎧≥-≥+099,021t t 解得.3,2,1,0=t 相应地⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==.0,7.3,5.6,3.9,1y x y x y x y x 答:需要大客1车辆,小客车9辆;或需要大客车3辆,小客车6辆;或需要大客车5辆,小客车3辆;也可以只要大客车7辆,不要小客车. 【点评】一般来说实际问题通常取正整数解或者非负整数解.【实践】某次考试共需做20道小题,对1道得8分,错一道扣5分,不做不得分.某生共得13分,他没做的题目有几道? 答案:7【例4】某人的生日月份数乘以31,生日的日期数乘以12,相加后得347,求此人的生日. 【分析】本题的隐含条件是:月份的取值[1,12],日期的取值[1,31]. 【解答】设此人生日的月份数为x ,日期数y. 根据题意可列方程 31x+12y=347.〈方法一〉 〈方法二〉特解:)(3116125165是整数通解:t ty t x y x ⎩⎨⎧-=+=⎩⎨⎧== )31347(|123134712x x y -∴-=答:此人的生日为5月16日.【点评】求出通解后,要利用隐含条件求出符合题意的解. 其中方法二是利用了同余的知识. 【实践】已知有一个三位数,如果它本身增加3,那么新的三位数的各位数字和就减少到原来的31,求一切这样三位数的和. 答案:432【例5】(新加坡数学竞赛题)设正整数m,n 满足698+=+mn n m ,则m 的最大值为 . 【分析】把m 用含有n 的代数式表示,用分离整系数法,再结合整除的知识,求出m 的最大值.【解答】∵698+=+mn n m ,∴n mn m 968-=-,n m n 96)8(-=- 由题意可得,n ≠8,∴8669866729869896-+=-+-=--=--=n n n n n n n m , ∵m,n 为正整数, ∴ 当n=9时,m 有最大值为75.【点评】此题是求最值的问题,利用分离整系数法是一种典型的常用方法.【实践】(北京市数学竞赛题)有8个连续的正整数,其和可以表示成7个连续的正整数的和,但不能3个连续的正整数的和,那么这8个连续的正整数中最大数的最小值是 . 答案:281655125121121)(512)12(mod 711)12(mod 31347===∴=∴≤+≤∴≤≤+=∴≡∴≡∴y x x t t x t t x x x 代入原方程得:把是整数 .16503131161121251311121是符合题意解解得⎩⎨⎧==∴=∴⎩⎨⎧≤-≤≤+≤∴⎩⎨⎧≤≤≤≤y x t t t y x【例6】我国古代数学家张建丘所著《算经》中的“百钱买百鸡”问题:鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一,百钱买百鸡,问鸡翁,鸡母,鸡雏各几何? 【分析】分析:用x,y,z 来表示鸡翁,鸡母,鸡雏的只数,则可列方程组:⎪⎩⎪⎨⎧=++=++1001003135z y x z y x如何解这个不定方程组?消元转化为不定方程.【解答】解:设鸡翁,鸡母,鸡雏的只数分别为x,y,z.⎪⎩⎪⎨⎧=++=++)2(1003135)1(100z y x z y x (2)×3-(1)得:14x +8y =200,即7x +4y =100.〈方法一〉)(71844.184是整数通解:,特解:t t y tx y x ⎩⎨⎧-=+=⎩⎨⎧== .2,1,07181071804400=∴⎪⎩⎪⎨⎧<->⎩⎨⎧>->+∴⎩⎨⎧>>t t t t t y x 解得 ⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===844128111878184,z y x z y x z y x 原方程有三组解:相应地〈方法二〉〉下面的方法同〈方法一为整数)(通解:的特解是其特解为令.75004300.1004750030053,147t t y tx y x y x y x y x ⎩⎨⎧--=+==+⎩⎨⎧-==∴⎩⎨⎧-===+ 〈方法三〉下面方法同〈一〉是整数得:代入把是整数,即,,).(71844718)3(44).(44)4(mod 30:)4(mod 7100)7100(|4)3(71004t ty tx ty t x t t x x x x x y ⎩⎨⎧-=+=∴-=+=+=∴≡≡∴-∴-= 【点评】充分挖掘题目的隐含条件,进而求整数解.【实践】如果1只兔可换2只鸡,2只兔可换3只鸭,5只兔可换7只鹅.某人用20只兔换得鸡、鸭、鹅共30只.问:其中的鸡、鸭、鹅各多少只? 答案:(2,21,7)、(4,12,14)、(6,3,21)【例7】求方程23732=++z y x 的整数解.【分析】对于三元一次不定方程,可以另外引进一个未知数,将其转化为方程组,然后分别解方程组中的各个方程,从而得到原方程的解.【解答】设t y x =+32,则原方程可看作⎩⎨⎧=+=+)2(.237)1(,32z t t y x 对于方程(1)x =-t ,y =t 是一个特解,从而(1)的整数解是)()4(.2)3(,3-是整数u u t y u t x ⎩⎨⎧+=-=又t =2,z =3是方程(2)的一个特解,于是(2)的整数解是)()6(.72)5(,3是整数v v t v z ⎩⎨⎧+=-= 将(6)代入(3)、(4)消去t 得到原方程的所有整数解为:)(.3,272,372是整数、v u v z u v y u v x ⎪⎩⎪⎨⎧-=++=---= 【点评】一次不定方程在无约束条件的情况下,通常有无数组整数解,由于求出的特解不同,同一个不定方程的解的形式可以不同,但它们所包含的全部解是一样的,将解中的参数作适当代换,就可以化为同一形式.【实践】求方程7892439=+-z y x 的整数解.答案:)(.83213,3,238是整数、v u v u z v y u v x ⎪⎩⎪⎨⎧--=-=+-=【例8】(海峡两岸友谊赛试题)甲组同学每人有28个核桃,乙组同学每人有30个核桃,丙组同学没人有31个核桃,三组共有核桃总数是365个.问:三个小组共有多少名同学? 【分析】设甲组同学a 人,乙组同学b 人,丙组同学c 人,由题意得365313028=++c b a . 要求c b a ++,可以运用放缩法从确定c b a ++的取值范围入手.【解答】设甲组同学a 人,乙组同学b 人,丙组同学c 人,则365313028=++c b a .∵)(31365313028)(28c b a c b a c b a ++<=++<++,∴2836531365<++<c b a .∵c b a ++是整数,∴c b a ++=12或13.但当c b a ++=13时,得132=+c b ,无正整数解. 答:三个小组共有12名同学.【点评】整体考虑和的问题,巧妙运用放缩法.【实践】Alice wants to buy some radios, pens and bags. If she buys 3 radios,6 pens,2 bags,she will pay ¥302. If she buys 5 radios,11 pens,3 bags,she will pay ¥508. Question: How much will Alice pay for 1 radio,1 pen and 1 bag?答案:96【例9】一个布袋里有红、黄、蓝三种颜色大小相同的木球.红球上标有数字1,黄球上标有数字2,蓝球上标有数字3.小明从布袋中摸出10个球,它们上面所标的数字和等于21.(1) 小明摸出的球中,红球的个数最多不超过几个? (2) 若摸出的球中三种颜色都有,有多少种不同的摸法?【分析】由于知道三种球的个数和,因此可设二元.第(2)问计数问题的实质是就是求正整数解的组数.【解答】(1)设小明摸的红球有x 个,黄球有y 个,蓝球有)(y x --10个,则21)10(32=--++y x y x ,整理,得x y 29-=,因为x 、y 均为正整数,可知x 的最大值为4.即红球最多不超过4个.(2)由(1)知蓝球的个数是1)29(1010+=---=--=x x x y x z ,又∵.290.01,029,0,0,0,0<<⎪⎩⎪⎨⎧>+>->∴⎪⎩⎪⎨⎧>>>x x x x z y x 解得 ∴.4,3,2,1=x因此共有4种不同的摸法,如下:(1,7,2),(2,5,3),(3,3,4),(4,1,5).【点评】此题求的是未知数的范围及可能取值的个数,因此不需要求出方程的通解,而是根据题意对未知数的限制利用不等式分析出未知数的取值范围,以及整数解的个数. 【实践】已知有两堆水泥,若从第一堆中取出100袋放进第二堆,则第二堆比第一堆多一倍;相反,若从第二堆中取出一些放进第一堆,则第一堆比第二堆多5倍.问第一堆中可能的最少水泥袋数是多少?并在这种情况下求出第二堆水泥的袋数. 答案:170,40.【例10】设非负整数n ,满足方程n z y x =++2的非负整数(x,y,z )的组数记为n a . (1)求3a 的值;(2)求2001a 的值.【分析】审清题中n a 的n 与方程n z y x =++2是同一个非负整数,3a 的含义是方程32=++z y x 的非负整数解的(x,y,z )的组数.【解答】(1)当n=3时,原方程为32=++z y x ,由于.10,0,0≤≤≥≥z y x 得 当z=1时,方程为x+y=1,其解(x,y )=(0,1),(1,0) 有2组;当z=0时,方程为x+y=3,其解(x,y )=(0,3),(1,2),(2,1),(3,0) 有4组. 综上,3a =6.(2)当n=2001时,原方程为20012=++z y x ,由于.10000,0,0≤≤≥≥z y x 得当z=1000时,方程为x+y=1,其解有2组;当z=999时,方程为x+y=3,其解有4组;当z=998时,方程为x+y=5,其解(x,y )=(0,5),(1,4),(2,3),(3,2),(4,1),(5,0)有6组;…;当z=0时,方程为x+y=2001,其解(x,y )=(0,2001),(1,2000),…,(2001,0)有2002组.综上,2001a =2+4+6+…+2002=1003002.【点评】此题综合较强,涉及解不定方程、分类讨论、计数等方面的知识,需要灵活运用所学只是解决问题.【实践】一次不定方程x+y+z=1999的非负整数解有( )个 CA.20001999B.19992000C.2001000D.2001999【总结反思】以上介绍了初中数学竞赛中一次不定方程的基本解法、各种解题技巧以及应用. 解不定方程的基本方法是分离整系数法,要熟练掌握. 在具体应用问题上,能将实际问题转化为不定方程的问题,并根据题意挖掘题目的隐含条件,也就是未知数的取值范围.【题海拾贝】1.(2000年希望杯竞赛题)若a 、b 均为正整数,且2a>b ,2a+b=10,则b 的值为( ) A. 一切偶数 B.2、4、6、8 C.2、4、6 D.2、42. 若正整数x,y 满足2004a=15y ,则 x+y 的最小值为 .3. 如果三个既约真分数6,432b a ,的分子都加上b ,这时得到的三个分数之和为6. 求这三个既约真分数的和.4. (重庆市竞赛题)一个盒子里装有不多于200粒棋子,如果每次2粒、3粒、4粒或6粒地取出,最终盒内都剩余1粒棋子;如果每次11粒地取出,那么正好取完.问:盒子里装有多少粒棋子?5. (2006年国际城市竞赛题)一辆汽车下坡的速度是72km/h ,在平地上的速度是63km/h ,上坡的速度是56km/h.汽车从A 地到B 地用了4h ,而返程用了4小时40分,求AB 两地的距离. 答案: 1.D 2.673 3.125 4.121 5.273。
不定方程求解题技巧

不定方程求解题技巧不定方程是指在未知数为整数的条件下,求满足方程的整数解的问题。
解不定方程的方法有很多种,下面将介绍一些常见的技巧和方法。
1. 分类讨论法这种方法适用于一元不定方程,即方程只有一个未知数。
根据方程中未知数的系数,可以将不定方程分为以下几类:A. 当方程中未知数系数为1时,通常可以考虑逐个尝试法,即从0开始尝试,逐渐增加或减少,直到找到满足方程的整数解为止。
B. 当方程中未知数系数为负数时,可以将方程两边同时乘以-1,转化为系数为正数的方程,然后按照分类A的方法求解。
C. 当方程中未知数系数为其他整数时,可以将方程两边同时乘以适当的倍数,转化为系数为1或负数的方程,然后按照分类A或B的方法求解。
2. 辗转相除法辗转相除法是求解线性不定方程(即方程的最高次数为1)的有效方法。
假设要解形如ax + by = c的方程(a、b、c为整数),首先通过欧几里得算法求得a和b的最大公约数d。
然后,如果c不是d的倍数,那么方程无整数解。
如果c是d的倍数,可以将方程两边同除以d,得到形如(a/d)x + (b/d)y = c/d的新方程。
由于a/d和b/d互质,可以通过扩展欧几里得算法求得一个整数解x0和y0。
然后,通解可以表示为x = x0 + (b/d)t和y = y0 - (a/d)t (t为整数),对所有整数t都满足原方程。
3. 特殊解与通解对于一些特殊的不定方程,可以通过观察得到一个或多个特殊解,并通过特殊解推导出通解。
例如,对于二次不定方程x^2 + y^2 = z^2(其中x、y、z为整数),可以取特殊解x = 3,y = 4,z = 5,然后可以推导出通解x = 3(m^2 - n^2),y = 4mn,z = 5(m^2 + n^2)(m、n 为整数)。
通过这个通解,可以找到无穷多个满足方程的整数解。
4. 数论方法数论是研究整数性质的一门学科,其中有许多定理和技巧可以应用于解不定方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次不定方程的解法
我们现在就这个问题,先给出一个定理.
定理如果,a b 是互质的正整数,c 是整数,且方程
ax by c +=①
有一组整数解00,x y 则此方程的一切整数解可以表示为
其中0,1,2,3,t =±±±…
证因为00,x y 是方程①的整数解,当然满足
00ax by c +=②
因此
0000()()a x bt b y at ax by c -++=+=.
这表明0x x bt =-,0y y at =+也是方程①的解.
设,x y ''是方程①的任一整数解,则有
ax by c ''+=③
③-②得00()()a x x b y y ''-=--④
由于(,)1a b =,所以0a y y '-,即0y y at '=+,其中t 是整数.将0y y at '=+代入④,即得0x x bt '=-.因此,x y ''可以表示成0x x bt =-,0y y at =+的形式,所以0x x bt =-,0y y at =+表示方程①的一切整数解,命题得证.
有了上述定理,求解二元一次不定方程的关键是求它的一组特殊解.
例1求11157x y +=的整数解.
解法1将方程变形得
因为x 是整数,所以715y -应是11的倍数.由观察得002,1x y ==-是这个方程的一组整数解,所以方程的解为
解法2先考察11151x y +=,通过观察易得
11(4)1531⨯-+⨯=,
所以
11(47)15(37)7⨯-⨯+⨯⨯=,
可取0028,21x y =-=,从而
可见,二元一次不定方程在无约束条件的情况下,通常有无数组整数解,由于求出的特解不同,同一个不定方程的解的形式可以不同,但它们所包含的全部解是一样的.将解中的参数t 做适当代换,就可化为同一形式.
例2求方程62290x y +=的非负整数解.
解因为(6,22)2=,所以方程两边同除以2得
31145x y +=①
由观察知,114,1x y ==-是方程
3111x y +=②
的一组整数解,从而方程①的一组整数解为
由定理,可得方程①的一切整数解为
因为要求的是原方程的非负整数解,所以必有
1801104530t t -≥⎧⎨-+≥⎩
③ 由于t 是整数,由③得1516t ≤≤,所以只有15,16t t ==两种可能.
当15,15,0t x y ===;当16,4,3t x y ===.所以原方程的非负整数解是
150x y =⎧⎨=⎩
,43x y =⎧⎨=⎩ 例3求方程719213x y +=的所有正整数解.
分析这个方程的系数较大,用观察法去求其特殊解比较困难,碰到这种情况我们可用逐步缩小系数的方法使系数变小,最后再用观察法求得其解.
解用方程
719213x y +=①
的最小系数7除方程①的各项,并移项得
213193530277
y y x y --=
=-+② 因为,x y 是整数,故357y u -=也是整数,于是573y u +=.化简得到 573y u +=③ 令325
u v -=(整数),由此得 253u v +=④
由观察知11u v =-⎧⎨=⎩是方程④的一组解.将11
u v =-⎧⎨=⎩代入③得2y =,再将2y =代入②得25x =.于是方程①有一组解00252x y =⎧⎨=⎩,所以它的一切解为251927x t y t =-⎧⎨=+⎩
t 为整数 由于要求方程的正整数解,所以
解不等式,得t 只能取0,1.因此得原方程的正整数解为
252x y =⎧⎨=⎩,69x y =⎧⎨=⎩
当方程的系数较大时,我们还可以用辗转相除法求其特解,其解法结合例题说明.
例4求方程3710725x y +=的整数解.
解
为用37和107表示1,我们把上述辗转相除过程回代,得
由此可知1126,9x y =-=是方程371071x y +=的一组整数解.于是
025(26)650x =⨯-=-,0259225y =⨯=
是方程3710725x y +=的一组整数解.
所以原方程的一切整数解为
例5某国硬币有5分和7分两种,问用这两种硬币支付142分货款,有多少种不同
的方法?
解设需x 枚7分,y 枚5分恰好支付142分,于是
75142x y +=①
所以
由于7142x ≤,所以20x ≤,并且由上式知52(1)x -.因为(5,2)1=,所以51x -,从而1,6,11,16x =,所以①的非负整数解为
127x y =⎧⎨=⎩,620x y =⎧⎨=⎩,1113x y =⎧⎨=⎩,166x y =⎧⎨=⎩
所以,共有4种不同的支付方式.
说明当方程的系数较小时,而且是求非负整数解或者是实际问题时,这时候的解的组数往往较少,可以用整除的性质加上枚举,也能较容易地解出方程. 多元一次不定方程可以化为二元一次不定方程.
例6求方程92451000x y z +-=的整数解.
解设9243x y t +=,即38x y t +=,于是351000t z -=.于是原方程可化为
38351000
x y t t z +=⎧⎨-=⎩① 用前面的方法可以求得①的解为
383x t y t u
=-⎧⎨=-+⎩(u 是整数)② ②的解为
2000510003t v z v =+⎧⎨=+⎩
(v 是整数)③ 消去t ,得
600081520003510003x u v y u v z v =-+⎧⎪=-+-⎨⎪=+⎩
(,u v 都是整数)
大约1500年以前,我国古代数学家张丘建在他编写的《张丘建算经》里,曾经
提出并解决了“百钱买百鸡”这个有名的数学问题,通俗地讲就是下例.例7今有公鸡每只五个钱,母鸡每只三个钱,小鸡每个钱三只.用100个钱买100只鸡,问公鸡、母鸡、小鸡各买了多少只?
解设公鸡、母鸡、小鸡各买,,
x y z只,由题意列方程组
①
②
化简得159300
x y z
++=③
③-②得148200
x y
+=
即74100
x y
+=,解741
x y
+=得
于是74100
x y
+=的一个特解为
由定理知74100
x y
+=的所有整数解为
由题意知,0,,100
x y z
<<,所以
解得
4 2528
7
24 1428
77
t
t
⎧
<<
⎪⎪
⎨
⎪<<
⎪⎩
∴4
2528
7
t<<
由于t是整数,故t只能取26,27,28,而且,,
x y z还应满足100
x y z
++=.
即可能有三种情况:4只公鸡,18只母鸡,78只小鸡;或8只公鸡,11只母鸡,81只小鸡;或12只公鸡,4只母鸡,84只小鸡.。