环境监测扬子津校区景观水体监测方案(D组)

环境监测扬子津校区景观水体监测方案(D组)
环境监测扬子津校区景观水体监测方案(D组)

目录

小组任务一览表-------------------------------------- (一)监测方案--------------------------------------

1、监测目的

2、监测对象

3、监测断面和采样点

4、采样时间和频率

5、采样及检测技术的选择

6、质量保证程序和措施

(二)实施计划

1、基础资料的收集

2、采样点的布设

3、配制试剂

4、采样技术和分析项目

(三)结果评价

(四)课程设计总结

(五)附录

1、参考文献

2、个人方案汇总

小组任务一览表

小组成员学号091602217 091602219 091602220 091602225 姓名王鸿谢进徐萍余梦宇

星期

上午熟悉设计任务;收集、查找相关资料;书写个人设计方案

下午小组确定小组方案(初步)并讨论出详实的监测计划;校园水体现场观测,熟悉各个水体的污染程度并确定其监测断面及监测点;实

验室领取相应的实验仪器及试剂

星期二上午

到各个相应的

景区监测点采

集水样,并现

场测定水体的

温度、溶氧量、

电导率

到各个相应的

景区监测点采

集水样,并现场

测定水体的温

度、溶氧量、电

导率

在实验室配置

测定水质项目

所需的试剂,

为水质项目的

测定做好准备

到各个相应的

景区监测点采

集水样,并现

场测定水体的

温度、溶氧量、

电导率

下午实验室进行水质的COD及氨氮含量的测定并记录相应的数据

星期三上午

到各个相应的景区监测点进行第二轮的水样采

集,并现场测定水体的温度、溶解氧、电导率,

记录其数据

在实验室配置

测定水质项目

所需的试剂,

为水质项目的

测定做好准备下午实验室进行水质的COD及氨氮含量的测定并记录相应的数据

星期四上午

数据处理及结果分析;制定监测设计书并完善其内容下午

星期

上午提交设计成果,并进行面试成员签名

(一)监测方案

1、监测目的

(1)通过对校园水质的监测,进一步强化基本操作的训练。(2)通过对校园水质的监测,了解水环境监测的整个过程。(3)通过对校园水质的监测,初步学会综合运用环境监测,环境微生物,环境评价水处理技术等课程中的相关专业知识和技术,对河道水体进行评价并提出净化处理方案。

(4)通过实习,增强学生对环境监测工作的感性认识。使学生对环境监测工作的一般程序和过程有深刻的认识和理解。(5)通过实习,将理论和实际相结合,进一步巩固和深入理解已学的理论知识。

(6)通过亲身参加环境监测实践,培养分析问题和解决问题的独立工作能力,为将来参加工作打下基础。

2、监测对象

扬子津校区景观水体

3、监测断面的布设及采样点的确定

(1)监测断面布设:

根据污染情况在扬子津校区各水系取控制断面。(2)采样点布设:

监测断面水宽≤50m,设一条中泓垂线;水面宽50—100m,在

近左右岸有明显水流处各设一条垂线。

扬子津校区景观水体水深为0.5—5m,只在水面下0.5m处设

一个采样点。

4、采样时间和采样频率

(1)采样时间

2011年12月20日、21日各采一次样。(2)采样频率

一天一次。

5、采样及检测技术的选择

(1)采样技术

选用实验室的水质采样器直接进行采样。

(2)检测技术

溶解氧:溶氧仪

温度:溶氧仪

电导率:电导仪

PH:PH计

COD:重铬酸钾法

氨氮:纳式试剂分光光度法

6、质量保证程序和措施

(1)实验室设施与环境条件的要求

①实验室检测设施及环境条件应满足相关法律法规、技术规范

或标准的要求,确保监测结果质量,并确保实验室的安全。

②实验室的空间布局应合理、科学,相互干扰的监测项目不得在同一操作间内实施。

③液体试剂不得与固体试剂混放,试剂柜应避免阳光的直射。

④化学试剂、实验用水、用气均应符合分析方法中规定的质量要求,并按规定的方法配制和储存。冰箱内不宜贮放易挥发物。(2)监测人员要求

①在户外采样时应充分配合小组人员工作,听从组长安排,及时保质保量完成小组任务,保证安全。

②在室内配制试剂时应准确选取各化学品,认真负责完成各项试剂配制,贴好标签。

③进行样品测定时应准确选取各试剂及剂量,及时记录数据并清洗仪器,保证安全卫生以及人员安全。

(3)水质监测质量保证

A、水质监测采样质量保证

1)水质监测采样前的准备

①确定采样负责人

②制定采样计划

采样负责人在制定计划前要充分了解该项监测任务的目的

和要求;应对要采样的监测断面周围情况了解清楚;熟悉采样方法、容器的洗涤、样品的保存技术;有现场测定项目和任务时,还应了解有关现场测定技术。

2)采样器材与现场测定仪器的准备

采样器材主要是水质采样器和水样容器。包括仪器完好性的检查、校准,容器的洗涤等。

容器材质选择原则:

①容器不能引起新的玷污。

②所用的容器不应吸收或某些待测组分。

③容器不应与某些待测组分发生反应。

容器清洗原则:分析微量化学组分时,通常要使用彻底清洗过的新容器,以减少再次污染的可能性。

清洗的程序是:用水和洗涤剂洗,然后用自来水和蒸馏水冲洗干净即可,所用的洗涤剂类型和选用的容器材质要随待测组分来确定。用于微生物分析的样品时容器及塞子、盖子应经灭菌。

固定剂准备:水样固定剂如酸、碱或其它试剂在采样前应进行空白试验,其纯度和等级要达到分析的要求。

采样器准备:采样前应检查采样瓶的本底空白,将备好待用的采样瓶分批,每批用同一份去离子水荡洗。

容器存放要求:水环境监测水样容器和污染源监测水样容

器应分架存放,不得混用。环境水质采样容器应按监测项目与采样点位,分类编号,固定专用。

(4)水质监测采样中的质量保证

①采样断面应有明显的标志物,采样人员不得擅自改动采样

位置。

②采样时不可搅动水底的沉积物

③采样时,除细菌总数、大肠菌群、油类、溶解氧、生化需氧量、有机物、余氯等有特殊要求的项目外,要先用采样水荡洗采样器与水样容器2-3次,然后再将水样采入容器中,并按要求立即加入相应的固定剂,帖好标签。严禁使用医用胶布当标签。

④测溶解氧、生化需氧量和有机污染物等项目时,水样必须注满容器,避免水样暴气或有气泡存在于瓶中。

⑤测定油类、生化需氧量、溶解氧、硫化物、余氯、粪大肠菌群、悬浮物、放射性等项目要单独采样。同一采样点,优先采集细菌监测项目水样。

⑥除测溶解氧、生化需氧量以及硫化物等样品外,其他样品装瓶时应保证容器中留有十分之一的空隙,以防运输途中溢出。硫化物采样时应先加醋酸锌-醋酸钠溶液,再加水样。水样应充满瓶,贮于棕色瓶内。

⑦采样时要认真填写“水质采样记录表”,用签字笔在现场记录,字迹端正、清晰。

⑧现场测定湖库水体的pH值、溶解氧时,应记录测定水体的

深度、测定时间、水温和天气情况等。

⑨采样结束前,应核对采样计划、记录与水样,如有错误或遗

漏,应立即补采或重采。

⑩如采样现场水体很不均匀,无法采到有代表性的样品,则应详细记录不均匀的情况和实际采样情况,供使用该数据者参考。

(5)水质监测采样后运输过程及样品交接质量保证

①水样运输前应将容器的外(内)盖盖紧。玻璃容器装箱时应

用采取一定的分隔措施,以防破坏。

②针对不同的监测项目要求采用适宜的保存措施。

③水样交实验室时接收者与送样者双方应在送样单上签名,送

样单及采样记录由双方各存一份备查。

④每次分析结束后,除必要保存外,样品瓶应及时清洗。

(6)质控样的采集

①全程序空白样

一般每批样品除色度、臭、浊度、pH、透明度、悬浮物、电

导率、溶解氧、溶解性总固体外,其余项目均需加采全程序

空白样。

②现场平行样

每批样品除悬浮物、溶解性总固体外,其余每个项目一般加采不少于5%的现场平行样,不足20个样品至少加采一个平行样。

(7)分析工作质量控制

A、校准曲线或标准检查点应符合相关规定

①应在每次分析样品的同时,同步制作校准曲线。

②校准曲线回归方程的相关系数、截距和斜率应符合方法中规定的要求。

③校准曲线只能在其线性范围内使用。

④校准曲线不得长期使用。

⑤气相色谱仪、原子吸收仪、ICP、离子色谱仪、原子荧光仪、液相色谱仪、色-质联用等大型仪器,在测试批量样品时,每20个样品或8小时增加一个中间浓度标准点的测试,所得峰面积或峰高与初始校正点的相对偏差应小于50%,与上次校正点的相对偏差应小于30%。

B、精密度控制

除色度、臭、悬浮物、油外的项目,每批样品随机抽取10% 的实验室平行样。

C、准确度控制

①水质监测中尽量采用有证标准物质作为准确度控制手段。除色度、溶解氧、大肠菌群等项目外,每批样品带质控样1-2个,对例行监测可定期带质控样(至少每两月一次)。

②当质控样超出允许误差时,应重新分析超差的质控样并随机抽取一定比例样品进行复查。

③如复查的质控样结果不合格,表明本批分析结果准确度失控。不论复查样品的精密度如何,原结果与复查结果均不得接受。

④加标回收试验除悬浮物、碱度、溶解性总固体、容量分析项目外的项目,每批样品随机抽取一定比例的样品做加标回收。

D、稀释操作

当样品浓度超过检测上限并需要稀释时,宜移取较大体积(有机污染物指标除外)的样品进行稀释,并尽可能一次完成。对于必须逐级稀释的高浓度样品,应在稀释前制定逐级稀释的操作方案。

(二)实施计划

1.基础资料的收集

扬州市位于长江北岸,总面积6.63平方千米,其中水面面积2.190平方千米,占国土总面积的近三分之一,境内高邮湖系江苏省第三大湖,有46条主要河流网络其中。由于城镇人口规模的迅速扩大和工农业生产的飞速发展,以及长期的污染物积累等原因,水体环境面临一系列不容忽视的问题,主要表现在几个方面:水体面积不断缩小和水体水质下降;水体环境中污染物的,非点源污染对水体的影响;城镇生活污水和工业废水污染等。

近年来,据调查,扬州大部分内河污染严重,不仅不能饮用,有些已经不能满足灌溉要求。对54条河流120个断面监测分析,各条河流污染指数超标现象比较普遍,且超标率高。养殖污染事故频发,并出现水体富营养化事件,2002年扬州市某些运河河段首次出现突然爆发大面积“绿藻”事件。研究表明,扬州市水体环境恶化的原因在于:绝大多数水体中输入的污染物总量大于输

出地总量。扬州市每年由工业、城镇居民生活、农田和水产养殖排入水中的COD总量达90.323t,由于化肥使用、水产养殖和畜禽养殖排入水体中得N52.863t,p15.265t,大大产国水体本身的自净能力,引起水质恶化。

扬州大学扬子津校区是扬州大学的第八个校区,位于扬州市邗江区华扬西路196号,西与扬大广陵学院连成一体,东至邗江路,新校区位于扬州南郊汊河镇,南邻开发区“扬子津科教园”,西近扬瓜公路和扬溧高速,北傍南绕城公路,是古城扬州跨长江、通苏南的重要门户。.

2.采样点的布设

根据校园景区水体的位置及污染情况,并结合相应水体湖泊的宽度布设相应的监测断面,在监测断面上布设监测垂线,再根据水体深度在垂线上取采样点。

第一天采样点布设如图一

第二天采样点布设如图二

3.配制试剂

(1)氨氮测定试剂的配制

①纳氏试剂:称取20g碘化钾溶于约100mi的水中,边搅拌边分次少量加入二氯化汞结晶粉末,至出现朱红色沉淀不易溶解时,改为滴加二氯化汞饱和溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时停止滴加二氯化汞饱和溶液;另称取60g 氢氧化钾溶于水,并稀释至250ml,冷却至室温后,将上述溶液

缓慢注入氢氧化钾溶液中,用水稀释至400ml,混匀,取上清液;

②酒石酸钾钠溶液:称取50g四水合酒石酸钾钠溶于100ml水中,加热煮沸以除去氨,放冷,定容至100ml;

③氨氮标准使用液:移取5.00ml氨氮标准贮备液于500ml 容量瓶中,用水稀释至标线。此溶液每毫升含0.01mg氨氮;

④氨氮标准贮备液:称取3.819g经100℃干燥过的优级纯氯化铵溶于水中,移入1000ml容量瓶中,稀释至标线。

(2)COD测定试剂的配制

①重铬酸钾标准溶液:称取预先在120℃烘干2h的基准或优级纯重铬酸钾12.258g溶于水中,移入1000ml容量瓶,稀释至标线,摇匀;

②试亚铁灵指示剂:称取1.485g一水合邻菲咯啉,0.695g 七水合硫酸亚铁溶于水中,稀释至100ml,贮于棕色瓶内;

③硫酸亚铁铵标准溶液:称取39.5g六水合硫酸亚铁铵溶于水中,边搅拌边缓慢加入20ml浓硫酸,冷却后移入1000ml 容量瓶中,加水稀释至标线,摇匀。

④硫酸-硫酸银溶液:于2500ml浓硫酸中加入25g硫酸银,放置1d后供使用。

4.采样技术和分析项目

(1)水温测定

①实验目的

根据水温项目的测定要求,准备好相应的保存剂和其他采样

器具;掌握采样器和水温测定仪的正确方法。 ② 实验步骤

水温应在采样现场进行测定。由于水不是很深故只进行表层水温的测定。表层水温的测定,用溶解氧测定仪进行测定。 ③ 实验结果

第一天各采样点水样温度 水样点 ①

② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ 温度

(T/℃) 4.

6 4.

0 5.

0 4.

6 4.

7 5.

7 6.

3 5.

4 5.

3 5.2

第二天各采样点水样温度 水样点 1 2 3 4 5 6 7 温度(T/℃) 5.3

5.8

5.2

6.5

6.6

5.9

6.0

数据分析:扬子津校区景观水体温度大致保持在5—7℃范围内。

(2)水样PH测定

①实验原理

用PH计进行水样的PH测定。电池通常由饱和甘汞电极为参比电极,玻璃电极为指示电极所组成。在25℃,溶液中每变化1个pH单位,电位差改变为59.16毫伏,据此在仪器上直接以pH的读数表示。温度差异在仪器上有补偿装置。

②实验步骤

测定样品时,先用蒸馏水认真冲洗电极,再用水样冲洗,然后将电极浸入样品中,小心摇动或进行搅拌使其均匀,静置,待读数稳定时记下pH值。

③实验结果

第一天各采样点水样水样PH 水样点

⑩ pH 值 6.84

6.86

6.87

6.88

6.88

6.93

6.93

6.93

6.89

6.9

第二天各采样点水样水样PH

水样点 1 2 3 4 5 6 7 PH 6.93

6.92

6.92

6.94

6.93

6.92

6.92

数据分析:校园景区水体的PH大体保持在小于7的范围内,而且变化范围不大,水体显极弱的酸性。

(3)溶解氧的测定

①实验原理

空气中的氧溶解在水中成为溶解氧。水中的溶解氧的含量与空气中氧的分压、水的温度都有密切关系。在自然情况下,空气中的含氧量变动不大,故水温是主要的因素,水温愈低,水中溶解氧的含量愈高。

溶氧仪是指溶解在水里氧的量的仪器,DO用每升水里氧气的毫克数表示。水中溶解氧的多少是衡量水体自净能力的一个指标。它跟空气里氧的分压、大气压、水温和水质有密切的关系。在20℃、100kPa下,纯水里大约溶解氧9mg/L。有些有机化合物在喜氧菌作用下发生生物降解,要消耗水里的溶解氧。水里的溶解氧由于空气里氧气的溶入及绿色水生植物的光合作用会不断得到补充。但当水体受到有机物污染,耗氧严重,溶解氧得

不到及时补充,水体中的厌氧菌就会很快繁殖,有机物因腐败而使水体变黑、发臭。

②实验步骤

调零:将电极插入插口内,同时将拨至仪器到“测量”档,“溶氧”档,盐度调节旋钮向左旋至底(0g/l),将电极放入5%新鲜配制的Na2SO3溶液,待读数稳定后,调节“调零”,使仪器显示为零。由于电极的残余电流极小,如果没有亚硫酸钠溶液,只要将仪器电源开关置于调零档,调节“调零”,使仪器显示为零即可。

取出电极,冲净吸干,放入空气中待读数稳定后,调节“校准”,使读数指示值为纯水在此温度下饱和溶解氧值。

将电极置入水下0.5m处,待数值稳定后,读数。

③实验结果

第一天各采样点水样DO含量

水样点①②③④⑤⑥⑦⑧⑨⑩

溶解氧Do(mg/L) 7.2

7.9

5

9.7

9.5

3

8.9

4

0.1

2

0.1

9

1.2

2

10.

04

10.

10

第二天各采样点水样DO含量

水样点 1 2 3 4 5 6 7 DO(mg/L) 12.31 6.88 9.88 0.70 4.28 6.35 10.60

数据分析:根据水体污染程度所测出的溶解氧含量不同,从两天测出的DO变化曲线可以看出,4号点即追月桥水体污染最为严重,溶解氧含量达到最低点,水体富营养化严重,导致水生生物大量死亡,并散发恶臭味;而1号、7号水体相对清澈度较高,

水体污染程度轻,溶氧含量高。

(4)电导率的测定

①实验原理

电导率测定仪的测量原理是将两块平行的极板,放到被测溶液中,在极板的两端加上一定的电势(通常为正弦波电压),然后测量极板间流过的电流。根据欧姆定律,电导率(G)--电阻(R)的倒数,由导体本身决定的。在一定条件下,水样的电导随着离子含量的增加而增高,而电阻则降低。因此,电导率K就是电流通过单位面积(A)为1cm2,距离(L)为1cm的两铂墨电极的电导能力。

②实验步骤

打开开关按钮,一段时间后,将测试棒放入水体中,按下读数按钮,代数据稳定后读取测定值,并做好记录;测量完后,取出电极,用纯水冲洗,干燥保存。

③实验结果

第一天各采样点水样电导率

水样点①②③④⑤⑥⑦⑧⑨⑩

电导率(μs/cm) 30

8

28

5

25

2

25

5

25

2

51

52

6

47

6

16

8.5

17

5

第二天各采样点水样电导率

水样点 1 2 3 4 5 6 7

电导率

215 177.6 178.1 346 349 116.4 122.1 (μs/cm)

数据分析:水体污染程度影响水体的电导率,污染程度越高,水

体电导率上升,从图中得出,第一天所测采样点水样中6、7、8

号点水体电导率较高,水体污染较为严重;第二天所测采样点水

全县生态环境监测网络建设实施方案

全县生态环境监测网络建设实施方案 为贯彻落实《XX市人民政府办公室关于印发XX市生态环境监测网络建设实施方案的通知》(XX府办函〔XX〕108号)精神,加快推进我县生态环境监测网络建设,结合我县实际,制定本方案。 一、总体要求 以准确掌握全县生态环境质量状况及变化趋势、污染源排放状况、潜在的生态环境风险为核心,以“全面设点、全县联网、自动预警、依法追责”为要求,坚持“部门合作、资源共享、测管协同、分工责任”的原则,以“完善网络、信息共享、风险防范、精准服务、强化保障”为主要任务,逐步形成政府主导、部门协同、社会参与的生态环境监测新格局,及时提供客观准确、统一完整、科学权威的生态环境监测数据和信息,不断提升生态环境质量风险监测评估与预报预警能力,为服务污染防治“三大战役”,推进绿色发展、建设美丽XX提供基础保障。 二、建设目标 到XX年,全县生态环境监测网络基本实现环境质量、污染源、生态状况监测全覆盖,各级各类生态环境监测数据互联共享,监测预报预警、信息化能力和保障水平明显提升,监测与监管有效联动,初步建成标准统一、责任清晰、各方协同、信息共享的生态环境监测网络,基本适应生态文明建设的要求。 三、主要任务

(一)建设完善生态环境监测网络。 1.空气环境质量监测。进一步优化完善气象要素监测点位,在XX主城区新建市控环境空气质量监测点位1个,全县环境空气质量监测网络更加完善。(县环境保护局牵头,县气象局配合) 2.水环境质量监测。落实“河长制”有关要求,进一步优化、完善监测断面布设。在渠江、长滩寺河等重点流域科学布设水质监控断面,及时掌控水质变化情况;在县城集中饮用水水源地布设水质监测点位2个;乡镇集中式饮用水源地布设水质监测点位18个。根据水污染防治要求,适时扩大水质监测网络。(县环境保护局牵头,县水务局及各乡镇人民政府、园区管委会配合) 3.土壤环境质量监测。在耕地、林地、工业园区、工业企业、固废集中处理场及周边、饮用水源地、天然气开采、交通干线等区域布设土壤环境质量监测点位。全县布设土壤环境质量监测点位12个,基本形成能够反映我县土壤环境质量的监测网络。根据土壤污染防治需要,适时调整和补充土壤监测点位。(县农业局牵头,县环境保护局、县国土资源局、县林业局配合) 4.声环境质量监测。建设覆盖城市建成区的区域声环境、声功能区、道路交通声环境质量监测点。加强对城市敏感点的监测。(县环境保护局牵头,县住房城乡规划建设局、县城管局、县交通运输局、县公安局配合) 5.污染源监测。定期发布重点排污单位名单。严格落实重点排污单位自行监测及信息公开制度,按照监测技术规范和质量控制规定开

环境监测实验报告

分数 环境监测实验报告 姓名:陈志杰 班级:10级环工一班 院系:水建院 任课教师:杜丹 2012年12 月16 日

内蒙古农业大学西区宿舍楼生活饮用水水质检测分析报告一、西区宿舍楼生活饮用水水质监测目的 1掌握水质现状及其变化趋势。 2为开展水环境质量评价和预测、预报及进行环境科学研究 提供基础数据和技术手段。 3为国家政府部门制定水环境保护标准、法规和规划提供有关 数据和资料。 4对环境污染纠纷进行仲裁监测,为判断纠纷原因提供科学依据。 二、水质监测项目指标 物理指标:水温,臭和味,色度,浊度,透明度,固体物(总固体物,溶解固体物,悬浮物),矿化度,电导率,氧化还原电位。 金属化合物:铝,汞,镉,铅,铜,锌,铬,砷,其他金属化合物如镍、铁、锰、钙、镁、铀。 非金属无机化合物:酸度和碱度,pH,溶解氧(DO),氰化物(简单氰化物,络合氰化物,有机氰化物),氟化物,含氮化合物(氨氮,亚硝酸盐氮,硝酸盐氮,凯氏氮,总氮),硫化物,含磷化合物,其他非金属无机化合物,如氯化物、碘化物、硫酸盐、余氯、硼、二氧化硅。 有机污染物:综合指标和类别指标化学需氧量(COD),高锰酸盐指数,生化需氧量(BOD),总有机碳(TOC),挥发酚,油类。 特定有机污染物:挥发性卤代烃,挥发性有机物(VOCs),多

环芳烃(PAHs)。 底质和活性污泥(污泥沉降比,污泥浓度,污泥容积指数) 二、水质检测方法 实验一pH值的测定 pH值是水中氢离子活度的负对数。pH=-log10αH+。 pH值是环境监测中常用的和最重要的检验项目之一。饮用水标准的pH值的范围是6.5~8.5。由于pH值受水温影响而变化,测定时应在规定的温度下进行,或者校正温度。通常采用玻璃电极法和比色法测定pH值。比色法简便,但受色度、浊度、胶体物质、氧化剂、还原剂及盐度的干扰。玻璃电极法基本不受上述因素的干扰。然而,pH在10以上时,产生“钠差”,读数偏低,需选用特制的“低钠差”,玻璃电极,或使用与水样的pH值相近的标准缓冲溶液对仪器进行校正。 本实验采用玻璃电极法测定pH值。 (一)实验目的 掌握玻璃电极法测定pH的方法及原理 (二)实验原理 以玻璃电极为指示电极,与参比电极组成电池。在25℃理想条件下,氢离子活度变化10倍,使电动势偏移59.16mv,根据电动势的变化测量出pH值。两种电极结合在一起能组成复合电极。pH计测量出玻璃复合电极的电压,电压转换成pH值,其结果被显示出来。(三)实验仪器 pH计(PB-21) (四)实验试剂 1.pH=4.003缓冲液(邻苯二甲酸氢钾) 2.pH=6.864缓冲液(混合磷酸盐) 3.pH=9.182缓冲液(硼砂) (五)实验步骤 1.将电极浸入到缓冲溶液中,搅拌均匀,直至达到稳定。 2.按mode(转换)键,直至显示出所需要的pH值测量方式。

环境监测云平台系统产品解决方案

环境监测云平台系统产品 解决方案

目录 一、引言 (3) 二、产品系统概述 (4) 三、方案特点 (5) 1. 数据精准、监控图像清晰度 (5) 2. 网络适应性强、带宽要求低,支持多种有线或无线网络接入方式. 5 3. 可集成性 (6) 4. 高传输可靠性 (6) 5. 系统建设成本低 (6) 四、系统组成及架构 (7) 五、平台服务端操作及功能介绍 (9) 六、相关硬件产品介绍 (20)

一、引言 防治扬尘污染,保护和改善城市生活环境空气质量,保障人民群众身体健康,一直是国家各级环境保护部门的重要工作内容之一。在所有的扬尘污染中,工程施工扬尘,如房屋建设施工、道路与管线施工、房屋拆除等为主要污染源。为此,在国家各级城市出台的扬尘污染防治管理办法中,都对建设工程施工提出了明确的防尘要求和相应的处罚条款。 目前,我国正处于城市建设的快速发展期,工程施工每天都在众多的、分散的地点同时进行着。而环保部门人员数量有限,不可能每天都到各个施工地点去巡查,因此,对众多分散的工程施工现场进行远程监控,及时发现违反防尘要求、出现扬尘污染的施工地点并及时处理,无疑是监管工程施工扬尘污染的有效途径。然而,传统的视频监控一方面呈现的图像分辨率极为有限,不利于对现场情况的准确辨别;另一方面,远程视频监控需要较高的通信网络带宽做支持,往往需要铺设专门的光纤或电缆、租用昂贵的通信信道;可是工程

施工地点数量众多、地理分布复杂,且对于扬尘监控只是阶段性的需求,为此部署大量的视频监控点无疑会给环保部门带来庞大的资金压力,为国家带来不必要的资金消耗。有没有成本更低、部署更方便的监控手段,来实现对工程施工扬尘污染进行远程监控的目的呢? 二、产品系统概述 成都远控科技有限公司开发的“环境监控云平台系统”即是以安装在远程的终端设备通过3G/4G网络实时向云平台服务端上传相关环境监测数据以及监控画面的一种新的监控应用方式。工作人员亦可通过有线或无线网络登陆“环境监控云平台系统”,对远端现场环境作时实监控,提取相关环境污染数据;当环境污染达到上峰值时,安装在施工现场的环境探测感应器或摄像头,将自动记录下相关环境数据并抓拍下现场的高清晰数字图片,并通过有线或无线通信网络自动传输回来,即时呈现在环保机关的各种显示终端上(PC、PDA),让环保工作人员通过高清晰的数字图片,即时了解施工现场的防尘措施实施情况和工地现状,达到对众多分散的工程施工地点进行远程联网监控的目的。

国务院办公厅关于印发生态环境监测网络建设方案的通知企业安全生产规范化台账制度方案预案专案交底计划措施

国务院办公厅关于印发生态环境监测网络建设方案的通知 国办发〔2015〕56号 各省、自治区、直辖市人民政府,国务院各部委、各直属机构: 《生态环境监测网络建设方案》已经党中央、国务院同意,现印发给你们,请认真贯彻执行。   国务院办公厅 2015年7月26日 (此件公开发布) 生态环境监测网络建设方案 生态环境监测是生态环境保护的基础,是生态文明建设的重要支撑。目前,我国生态环境监测网络存在范围和要素覆盖不全,建设规划、标准规范与信息发布不统一,信息化水平和共享程度不高,监测与监管结合不紧密,监测数据质量有待提高等突出问题,难以满足生态文明建设需要,影响了监测的科学性、权威性和政府公信力,必须加快推进生态环境监测网络建设。 一、总体要求   (一)指导思想。全面贯彻落实党的十八大和十八届二中、三中、四中全会精神,按照党中央、国务院决策部署,落实《中华人民共和国环境保护法》和《中共

中央国务院关于加快推进生态文明建设的意见》要求,坚持全面设点、全国联网、自动预警、依法追责,形成政府主导、部门协同、社会参与、公众监督的生态环境监测新格局,为加快推进生态文明建设提供有力保障。 (二)基本原则。   明晰事权、落实责任。依法明确各方生态环境监测事权,推进部门分工合作,强化监测质量监管,落实政府、企业、社会责任和权利。 健全制度、统筹规划。健全生态环境监测法律法规、标准和技术规范体系,统一规划布局监测网络。   科学监测、创新驱动。依靠科技创新与技术进步,加强监测科研和综合分析,强化卫星遥感等高新技术、先进装备与系统的应用,提高生态环境监测立体化、自动化、智能化水平。 综合集成、测管协同。推进全国生态环境监测数据联网和共享,开展监测大数据分析,实现生态环境监测与监管有效联动。   (三)主要目标。到2020年,全国生态环境监测网络基本实现环境质量、重点污染源、生态状况监测全覆盖,各级各类监测数据系统互联共享,监测预报预警、信息化能力和保障水平明显提升,监测与监管协同联动,初步建成陆海统筹

环境监测实施方案

XX 县作为本项目监测点,鉴于本次监测任务顺利进行,特绘制XX 县环境监测总体方案图,如下图1所示: 图1 XX 县环境监测总体方案图 1监测内容 XX 县地表水水质、县政府所在地空气质量、重点污染源(水、气)、城区及交通干线噪声质量等监测工作。具体内容如下: 1.1地表水水质监测 严格执行《地表水环境质量标准》(GB3838-2002)、《地表水和污水监测技术规范》(HJ/T91—2002)、《环境水质监测质量保证手册(第二版)》及《水和废水监测分析方法》(第四版)等相关标准和规范。 1.1.1 监测断面 哈尔腾河红崖子断面。 1.1.2 监测指标及方法依据(见表1-1) 采用《地表水环境质量标准》(GB3838—2002)表1中除粪大肠 编制监测方案确定监测项目及类别 现场样品采集 检测室样品分析 检测 数据处理及结果分析上报 出具监测报告 接受委托 后期服务

菌群以外的23项指标。

具体监测项目见下表: 表1-1 地表水监测因子及检测方法依据

此外还可根据XX当地污染实际情况,适当增加区域污染物监测。1.1.3 监测网点布置(见表1-2) 表1-2 地表水监测网点布置 1.1.4 样品采集方法及设备(见表1-3) 表1-3 样品采集方法及设备 1.1.4监测时间及频次(见表1-4) 每季度至少监测1次,全面至少监测4次,且需在各监测月份的上旬(1-10日)完成水质监测的采样及实验室分析。具体监测时段按下表执行(特殊情况除外) 表1-4 监测时间及频次

1.2 环境空气质量监测 严格执行《环境空气质量标准》(GB3095—1996)、《环境空气质量手工监测技术规范》(HJ/T193—2005)及《空气和废气监测分析方法》(第四版)等相关标准和规范,应加强监测过程的质量控制。 1.2.1 监测地点 XX县政府广场。 1.2.2 监测指标及方法依据(见表1-5) 表1-5 环境空气监测指标及检测方法依据 1.2.3 监测网点布置(见表1-6) 表1-6 环境空气监测网点布置

(完整版)环境监测系统解决方案

环境监测系统解决方案 一、系统概要 本综合管控云平台是一套基于云计算的物联网综合管控云服务平台。平台可适配于各种物联网应用系统,实时监控管理接入设备的状态与运行情况,并对设备进行远程操作,通过云平台对接物联网设备做到精确感知、精准操作、精细管理,提供稳定、可靠、低成本维护的一站式云端物联网平台。环境监测系统通过对现场温度、湿度、光照、风向、风速、PM2.5、气压等参数的数据采集,将参数数据远传至物联网云平台,实现现场各个设备的数据实时监测,用户可以通过电脑网页或是手机app实时查看,可以自由设置各个参数的标准值上下限,如果数据超限可以给相关的工作人员发送短信或是微信报警提醒,做到提前预警,避免造成不必要的损失,实现在远程就能值守现场设备。 二、拓扑图 现场传感器数据通过物联网中继器上传云平台,客户通过电脑网页或是手机app可以实时监控现场设备数据。

三、系统构成 3.1系统登陆 ①PC端登陆: 本系统采用B/S架构,PC端用户只需打开浏览器通过IP地址进入管理系统,凭管理员分配的用户名密码进行登陆管理。(登陆界面可定制企业logo及信息)如下图: ②手机端登陆: 用户可在任何有本地局域网信号的地方,通过IOS或Android版本APP登陆系统,登陆账号与PC端账号相同。IOS 版本APP请在Apple Store搜索“易云系统”进行下载,安卓版本请在“易云物联网系统”公众号或PC端系统中扫描二维码进行下载。 3.2数据监控 能够便捷监控实时数据,并且可通过数据变化自动启停其他设备,各项数据可用数值、图片、文字分别展示,并通过短信等功能向用户发送报警信息。另外,可设定不同的监控点,更直观的监测每个测温点实时情况,模拟真实的设备位置分布。如下图:

第三方环境监测机构实验室建设指南

第三方环境监测机构实验室建设指南 为贯彻落实党的十八大关于全面深化改革的战略部署,培育壮大环境监测服务市场,推进政府购买环境监测服务,引导社会力量参与环境监测,第三方环境监测机构的建设逐渐成为当前实验室建设的热点。现针对第三方环境监测机构必要的场所、技术人员及监测仪器设备提出以下建议。 1.明确拟开展的检测项目 为避免盲目投资造成采购来的仪器闲置浪费,现以最常规和检测仪器不太贵的检测项目为例,建议通过认证开展的检测项目分别是: 1.1水和废水检测项目 水温、pH、电导率、透明度、色度、流量、悬浮物、全盐量(总残渣或溶解性残渣)、游离氯和总氯、硫化物、氰化物、氟化物、氨氮、溶解氧、高锰酸盐指数、化学需氧量、五日生化需氧量、总磷、总氮、铜、铅、锌、镉、总砷、总汞、总硒、总铬(六价铬)、挥发酚、石油类(或动植物油)、阴离子表面活性剂、氯化物、硝酸盐、硫酸盐、铁、锰、嗅和味、浊度、总硬度、粪大肠菌群、亚硝酸盐。上述项目除包含《地表水环境质量标准》(GB3838-2002)表1和表2规定的必测项目,还包括了其它常见的和测试方法较为简单的指标。 1.2空气和废气 总悬浮颗粒物、可吸入颗粒物、二氧化硫、氮氧化物(含二氧化氮和一氧化氮)、烟(粉)尘、烟气参数、烟气黑度、一氧化碳、氟化物、恶臭、氨、铅、砷、硫化氢、铬酸雾、硫酸雾、和甲醛等。 1.3土壤和水系沉积物 水分、pH、镉、汞、砷、铅、铬(含六价铬)、铜、锌、镍、全磷、全氮、钾、阳离子交换量和有机质含量等。 1.4固体废物 铜、锌、镉、铅、总铬、铬(六价)、汞、铍、钡、镍、总银、砷、氟化物和氰化物等。 1.5噪声和振动 环境噪声、工业企业厂界噪声、建筑施工场界噪声、社会生活噪声、、铁路边界噪声、噪声源(设备噪声)、机动车噪声振动和环境振动等。

生态环境监测网络建设实施方案

生态环境监测网络建设实施方案 为贯彻落实《国务院办公厅关于印发生态环境监测网络建设方案的通知》(国办发〔X〕56号)和《X省人民政府办公厅关于印发生态环境监测网络建设工作方案的通知》(X政办〔X〕156号)精神,建设完善我市生态环境监测网络,结合我市实际,特制定本方案。 一、工作目标 全面贯彻落实党中央、国务院关于加快推进生态文明建设的决策部署,紧紧围绕“健全点位、共享信息、自动预警、严格考核”的建设要求,建立政府主导、部门协同、社会参与、公众监督的生态环境监测新格局。到X年,全市生态环境监测网络基本实现环境质量、重点污染源、生态状况监测全覆盖;省、市、县(区)三级生态环境监测数据系统互联共享,监测信息统一发布;健全监测与监管协同联动、部门会商工作机制;监测自动预警、信息化能力和保障水平明显提升;初步建成统一监测、信息共享的生态环境监测网络,为加快生态文明和美丽X建设提供有力保障。 二、重点任务 (一)健全点位、完善网络。 1.建设科学全面的环境质量监测网络。统一规划、整合优化环境质量监测点位,建设涵盖大气、水、土壤、噪声、辐射、生态等要素,布局合理、功能完善的全市环境质量监测网络,建立完善的环境质量评价体系,客观、准确、真实地反映环境质量状况。

在全市主要大气输送通道等区域布设大气环境质量监测点位。建成国、省控环境空气质量监测点位7个,主要大气输送通道监测点位1个;各县(市)区所有建制区均建有能够实现《环境空气质量标准(GB3095—X)》六项因子监测的环境空气质量自动监测点位(以下简称环境空气质量自动监测点位);每个县建成3个环境空气质量自动监测点位(其中2个在县城建制区、1个在大气污染防治重点区域),基本形成我市环境空气质量监测网络,并积极优化完善气象要素监测点位。(责任单位:市环保局、气象局) 在全市主要河流、集中式饮用水源地、重要湖泊水库、重要城市河流、重点水源保护区、地下水污染高风险区布设水环境质量监测点位。在X流域及X流域的9条河流上布设地表水水质监测断面(点位)12个,其中水质自动监测站9个;在集中式饮用水水源地布设水质监测点位10个;在城市主要河流布设水质监测点位3个;各县(市)区在本辖区布设完善市控地表水水质监测断面(点位),基本形成我市地表水环境质量监测网络。(责任单位:市环保局) 优化完善地下水、重点流域、重要湖泊水库、重点水源保护区水质监测点位。(责任单位:市国土资源局、水利局) 在耕地、林草地、敏感区域、污染典型场地等区域布设土壤环境质量监测点位。全市布设土壤环境质量监测点位61个,基本形成能够反映我省土壤环境质量的监测网络。(责任单位:市环保局) 在辐射环境质量重点控制区域开展放射性环境质量监测和电磁辐射环境质量监测。全市共建设电离辐射自动监测站3座,电磁辐射

地表水环境监测方案

地表水水质监测方案 ——广州大学内水质监测一、监测目的 (1)对校园教学区,主要是实验楼区域的校园景观的用水及水样进行监测,了解学校实验楼区域的水质现状。 (2)学习水质监测的步骤,进一步将课堂所学知识运用到实践中,学会制定水质监测方案并按步实施。 (3)进一步熟练常用的水质监测中的实验操作技术,掌握地表各种指标与污染物的测定方法。 (4)熟悉环境质量标准评价的各项标准,并学会运用其来评价水质,提出改善校园水质的意见和建议。 二、基础资料的收集 本次监测选取了校园网主场至生化实验楼区域水域进行监测。根据相关的文档和网上搜寻的资料可知,该河段属于珠江水系广州段,水域的有关资料如下: 1.地形地貌 广州大学城位于中国东南沿海,紧靠珠江两岸地,地处珠江三角洲腹地,是三角洲平原与低山丘陵区的过渡地带。小岛总体地形是东北高、西南低。东北部是由花岗岩与变质岩组成的低山丘陵区,地形高差250m左右,坡度15°~35°。广州大学位于岛的西部,坐落于河流堆积组成的冲积平原,地势平缓,其中分布零星的残丘和苔地,

有着树枝状般的水系。 2.气象 广州大学城地处南亚热带,属海洋性季风气候,有着温暖多雨、光热充足、雨量充沛的特点。其年平均气温约为21.8℃,一年中7月、8月的温度最高,1月最低,绝对最高气温约38.7℃。平均年降雨量为1699.8毫米,集中在梅雨季、台风季两个季节,占全年的82.1%,在七、八、九月份常遭受六级以上的大风袭击或影响,台风最大风力在9级以上,并带来暴雨,破坏力极大,年评卷蒸发量160315,mm。 3.水文 广州大学城位于珠江、冻僵溪流的交汇区上,该区域河段属于不规则半日潮。冲积平原和三角洲平原,地势低平,地表水体类别有:库唐、涌溪、干流河道,全区水域面积16011k㎡,占广州市区面积的10.8%。据黄埔潮汐站资料,珠江平均高潮水位为0.72m,平均低潮水位为-0.88m,涨潮最大潮差2.56m,落潮最大潮差3.00m。潮汐周期为半个月,即15天。每年的1~3月份平均潮位较低,6~9月份较高。各月均值之间差值一般只有0.2米左右,变化较小。 4.监测河段概况 经实地考察,此河段是珠江至校园图书馆中心湖之间的河段,全长约400m,平均宽约4.5m,平均水深1.5m,流经生化实验楼和工程实验楼,水质主要受到这两处污染源的影响。此河段是人工河段,包括河流的河床、两岸的植被、河流的流水量以及河流的污染等,都是有人

新田县环境监测标准三级实验室建设方案(精)

新田县环境监测标准三级实验室建设方案.txt爱一个人很难,恨一个人更难,又爱又恨的人最难。爱情永远不可能是天平,想在爱情里幸福就要舍得伤心!有些烦恼是我们凭空虚构的,而我们却把它当成真实去承受。新田县三级监测站标准化实施方案 一、建设目标 为提高新田县环境监测质量管理水平,规范环境监测质量管理工作,确保监测数据和信息的准确可靠,为环境管理和政府决策提供科学、准确的依据,根据《环境监测管理办法》(国家环保总局令第 39 号、《xx 省环境保护与生态建设“十一五”》 xx 府办〔200 7〕44号、《xx 省环境监测质量管理规定(试行》xx 环〔2008〕101 号、《全国环境监测站建设标准》(环发〔2007〕56 号及有关法律法规的要求,紧紧围绕减排工作,加大环境综合整治力度,加强对重点污染源的监督性监测工作、为我县减排任务顺利完成提供充分、有效的技术支持,逐步改善我县环境质量。在“十二五”期间将我县环境监测站建设成为能掌握环境质量、污染物排放总量、环境容量和污染物状况,满足以“工业富县、旅游旺县、农业稳县”的发展战略的三级环境监测服务机构。 二、背景及现状 2.1 建设背景 新田县地处湖南省南部,毗邻两广,隶属永州市,面积1022Km2,东接嘉禾县、桂阳县,南临蓝山县,西抵宁远县,北邻祁阳县、芝山区。 县环境监测站始建于 1984年5月,于 2006 年通过计量认证复审,是从事环境监测的服务性全民事业单位,隶属新田县环境保护局,业务上受永州市环境监测中心站的指导,属全国环境监测三级站。承担着新田县境内饮用水水源、地表水常规监测任务及县内所用污染源的监测监督任务。建站已有二十七年,虽然近几年在上级部门和环保局的大力支持下,对实验室的分析操作环境进行完善建设,购买了烟气自动监测仪器、可见光分光光度计、消解通风柜、万分之一分析天平等一批仪器,环境监测能力得到一定提升。但是由于受人员、仪器装备和工作场所的限制,监测监

2020年芜湖市生态环境监测实施方案【模板】

2020年**市生态环境监测实施方案 2020年六月

目录 一、环境空气质量监测................................................ .. 3 (一)城市空气质量监测 (3) (二)酸雨监测 (4) (三)大气颗粒物组分网手工监测 (5) (四)环境空气降尘量监测 (6) (五)环境空气质量预报 (7) (六)环境空气挥发性有机物监测………………………………………………………… 8 二、水环境质量监测................................................ .. 10 (七)地表水水质监测 (10) (八)地表水水质自动监测 (11) (九)集中式生活饮用水水源地水质监 (13) (十)水功能区专项监测 (15) (十一)市(县、区)水环境生态补偿及考核断面监测 (16) (十二)长江及重要支流水生态环境质量专项监测 (17) (十三)重点湖泊水质监测 (18) 三、土壤环境监测................................................ ..20 (十四)土壤环境质量监测 (20) 四、生态监测及其他专项监测...................................... ..22 (十五)农村环境质量监测 (22) (十六)农村千吨万人饮用水水源地水质监测 (23) (十七)农田灌溉水质监测 (25) (十八)农村生活污水处理设施出水水质监测 (25)

(十九)声环境质量监测 (26) (二十)应急监测 (28) 五、污染源监测 (29) (二十一)重点污染源执法监测 (29) (二十二)排污单位自行监测专项检查 (30) (二十三)入河排污口监测 (31) (二十四)长江入河排污口汇入断面监测 (32) (二十五)黑臭水体监测 (33) (二十六)土壤环境质量监督性监测 (34) 六、其它监测 (35) (二十七)环境监测人员持证上岗考核 (35) (二十八)环境监测网外部质量监督与核查 (35) (二十九)实验室能力考核和检查 (37) 七、环境监测质量核查与核查 (38) (三十)年度生态环境质量报告书 (38) (三十一)其他环境质量报告 (38)

环境监测采样方案

渭河水质采样方案 一、采样目的 为了加强分析人员的的实验操作能力,提高人员综合素质。根据《水质采样技术指导》(HJ 494-2009)的要求,在渭河草滩八路湿地公园段采样进行检测。 二、适用范围 适用于渭河草潭段。 三、检测内容和方法 (1)检测点位确定 根据及《地表水和污水检测技术规范》的要求,在渭河进入草滩段设置一个控制断面,一个点位进行取样详细见表1、表2。 表1采样垂线数的设置 表2采样垂线上的采样点数的设置

(2)采样方法 根据《水质湖泊和水库采样技术指导》(GB/14581-93)的要求进行采样。 (3)测定项目 检测项目为:水温、流量、PH、电导率、溶解氧、透明度、BOD5、COD、细菌总数、粪大肠菌群、总大肠杆菌、高锰酸盐指数、磷酸盐、硫化物、氨氮、悬浮物、碱度、钙、钙和镁、酸度、亚硝酸盐、硝酸盐、动植物和石油类、硫酸盐、水质苯系物、挥发酚、苯胺类化合物、六价铬、总磷、氯化物、总氮、水质甲醛、总残渣、矿化度、全盐量、氟化物、总铬、游离氯和总氯、阴离子表面活性剂、臭氧、氰化物、钴、镍、汞、砷、硒、铋、锑、铁、锰、铜、铅、锌、镉。 四水样采集 (1)采样工具 采样器材主要是采样器和水样容器。关于水样保存及容器洗涤方法见表3。 表3水样保存和容器的洗涤(部分)

注:(1) *表示应尽量作现场测定; **低温(0~4℃)避光保存。 (2)G为硬质玻璃瓶;P为聚乙烯瓶(桶)。 (3)①为单项样品的最少采样量; ②如用溶出伏安法测定,可改用1L水样中加19ml浓HCl04。 (4)I,Ⅱ,Ⅲ,Ⅳ表示四种洗涤方法,如下: I:洗涤剂洗一次,自来水三次,蒸馏水一次; Ⅱ:洗涤剂洗一次,自来水洗二次,1+3 HN03荡洗一次,

第三方环境监测机构实验室建设指南

第三方环境检测机构实验室建设指南 (老兵) 为贯彻落实党的十八大关于全面深化改革的战略部署,培育壮大环境监测服务市场,推进政府购买环境监测服务,引导社会力量参与环境监测,第三方环境监测机构的建设逐渐成为当前实验室建设的热点。现针对第三方环境监测机构必要的场所、技术人员及监测仪器设备提出以下建议。 1.明确拟开展的检测项目 为避免盲目投资造成采购来的仪器闲置浪费,现以最常规和检测仪器不太贵的检测项目为例,建议通过认证开展的检测项目分别是: 1.1水和废水检测项目 水温、pH、电导率、透明度、色度、流量、悬浮物、全盐量(总残渣或溶解性残渣)、游离氯和总氯、硫化物、氰化物、氟化物、氨氮、溶解氧、高锰酸盐指数、化学需氧量、五日生化需氧量、总磷、总氮、铜、铅、锌、镉、总砷、总汞、总硒、总铬(六价铬)、挥发酚、石油类(或动植物油)、阴离子表面活性剂、氯化物、硝酸盐、硫酸盐、铁、锰、嗅和味、浊度、总硬度、粪大肠菌群、亚硝酸盐。上述项目除包含《地表水环境质量标准》(GB3838-2002)表1和表2规定的必测项目,还包括了其它常见的和测试方法较为简单的指标。 1.2空气和废气 总悬浮颗粒物、可吸入颗粒物、二氧化硫、氮氧化物(含二氧化氮和一氧化氮)、烟(粉)尘、烟气参数、烟气黑度、一氧化碳、氟化物、恶臭、氨、铅、砷、硫化氢、铬酸雾、硫酸雾、和甲醛等。 1.3土壤和水系沉积物 水分、pH、镉、汞、砷、铅、铬(含六价铬)、铜、锌、镍、全磷、全氮、钾、阳离子交换量和有机质含量等。 1.4 固体废物 铜、锌、镉、铅、总铬、铬(六价)、汞、铍、钡、镍、总银、砷、氟化物和氰化物等。 1.5噪声和振动 环境噪声、工业企业厂界噪声、建筑施工场界噪声、社会生活噪声、、铁路边界噪声、噪声源(设备噪声)、机动车噪声振动

智慧环保在线监测系统解决方案

( 环保在线监测系统设计1总体设计 系统由污染排放在线监测系统、污染净化设施运行监测系统、预警预告系统、初级控制执行系统、紧急控制执行系统五大系统组成。 对排污数据和环境治理设备运行状况同时进行监测,综合分析两方面的数据,确保排污单位排污状况真实可靠,污染净化设施有效运行。 对企业污染物超标排放或者环保设备偷停不运转的情况,系统会启动生产控制执行程序,远程下达命令,分层断电,及时制止排污行为,改变了传统设备“只监不控”的方式。 对突发性污染事故隐患和污染物泄露事故,系统会立即执行重大事故应急预案,启动排污单位的紧急ESD系统,紧急规避危险,预防灾难性污染事故的发生。 如果企业排污超标,系统会在排污单位和环保部门同时报警,并将报警信息通过短信息在第一时间发送到相关单位负责人和管理者的手机上,督促管理者及时处理问题。 系统监控设备监控一体化功能,使排污单位必须自觉维护好系统,因为一旦运行不好,上传数据不正确,没有数据上传视同违法,系统仍然会报警,有效遏止人为破坏,保证系统运行正常。

} 2功能设计 方便的污染源管理 本模块利用GIS技术把环境污染源应用软件构筑于污染源数据库管理系统和图形库管理系统之上,提供具备空间信息管理、信息处理和直观表达能力的应用。能综合分析环境情况,实现污染源信息的综合查询,为计划决策提供信息支持,为有关的评价、预测、规划、决策等服务。其检索查询功能,可对行政区划、年份等进行条件统计汇总,统计结果可用表格、统计图、文字等多种方式表示。 动态数据成图 系统可根据测量得到的数据,自动对区域环境状况进行直观表现,提供描绘全场平面、立体等值线图,各种数据可生成饼图、柱状图、线状图等多种表现形式,能动态外挂图、文、声、像等多媒体数据。 环境质量监测 系统分为对大气、水、噪声、固体废弃物、土壤及农作物等方面的监测,其主要功能:专题的监测点位图的显示、点位查询、区域查询、信息查询、全区环境分布、全区或个别点环境平均状况随时间的变化情况等。并实现了数据地图化功能,可自动生成交通线上的噪声

环境监测站实验室设计

环境监测站实验室设计 环境监测站实验室设计环境系统实验室要素环境系统实验室要素环境监测是以环境为对象,运用物理的、化学的和生物的技术手段,对其中的污染物及其有关的组成成分进行定性、定量和系统的综合分析,以探索研究环境质量的变化规律。其任务是要对环境样品中的污染物的组成进行鉴定和测试,并研究在一定历史时期和一定空间内的环境质量的性质、组成和结构,主要内容包括:大气环境监测、水环境监测、土壤环境监测、固体废弃物监测、环境生物监测、环境放射性监测和环境噪声监测等。通过对环境的监测能够准确、及时、全面地反映环境质量现状及发展趋势,为环境管理、污染源控制、环境规划等提供科学依据。环境监测的目的具体可归纳为: 1. 根据环境质量标准,评价环境质量。 2. 根据污染分布情况,追踪寻找污染源,为实现监督管理、控制污染提供依据。 3. 收集本底数据,积累长期监测资料,为研究环境容量、实施总量控制、目标管理、预测预报环境质量提供数据。 4. 为保护人类健康、保护环境、合理使用自然资源、制订环境法规、标准、规划等服务。一环境监测技术监测技术包括采样技术、测试技术和数据处理技术。这里以污染物的测试技术为重点作一概述。1) 化学、物理技术目前,对环境样品中污染物的成分分析及其状态与结构的分析多采用化学分析方法和仪器分析方法。如重量法常用作残渣、降尘、油类、硫酸盐等的测定,容量分析被广泛用于水中酸度、碱度、化学需氧量、溶解氧、硫化物、氰化物的测定。仪器分析是以物理和物理化学方法为基础的分析方法。它包括光谱分析法(可见分光光度法、紫外分光光度法、红外光谱法、原子吸收光谱法、原子发射光谱法、X- 荧光射线分析法、荧火分析法、化学发光分析法等);色谱分析法(气相色谱法、高效液相色谱法、薄层色谱法、色谱-质谱联用技术);电化学分析法(极谱法、溶出伏安法、电导分析法、电位分析法、离子选择电极法、库仑分析法);放射分析法(同位素稀释法、中子活化分析法)和流动注射分析法等。当前,仪器分析方法被广泛用于环境物进行定性和定量的测量。如分光光度法常用于大部分金属、无机非金属的测定;气相色谱法常用于有机物的测定;对于污染物状态和结构的分析常用紫外光谱、红外光谱、质谱及核磁共振等技术。2) 生物技术这是利用植物和动物在污染环境中所产生的各种反映信息来判断环境质量的方法,这是一种最直接也是一种综合的方法。生物监测包括生物体内污染物含量的测定;观察生物在环境中受伤害症状;生物的生理生化反应,生物群落结构和种类变化等手段来判断环境质量。例如:利用某些对特定污染物敏感的植物或动物(指示生物)在环境中受伤害的症状,可以对空气或水的污染作出定性和定量的判断。二监测技术的发展目前监测技术的发展较快,许多新技术在监测过程中已得到应用。如GC-AAS(气相色谱-原子吸收光谱)联用仪,使两项技术互促互补,扬长避短,在研究有机汞、有机铅、有机砷方面表现了优异性能。再如,利用遥测技术对整条河流的污染分布情况进行监测,是以往监测方法很难完成的。对于区域甚至全球范围的监测和管理,其监测网络及点位的研究、监测分析方法的标准化、连续自动监测系统、数据传送和处理的计算机化的研究、应用也是发展很快。在发展大型、自动、连续监测系统的同时,研究小型便携式、简易快速的监测技术也十分重要。例如,在污染突发事故的现场、瞬时造成很大的伤害,但由于空气扩散和水体流动,污染物浓度的变化十分迅速,这时大型仪器无法使用,而便携式和快速测定技术就显得十分重要,在野外也同样如此。三环境监测站实验室设计环境监测就其对象、手段、时间和空间的多变性、污染组分的复杂性等,其特点可归纳为:1) 环境监测的综合性环境监测的综合性表现在以下几个方面:¢监测手段包括化学、物理、生物、物理化学、生物化学及生物物理等一切可以表征环境质量的方法。¢监测对象包括空气、气体(江、河、湖、海及地下水)、土壤、固体废物、生物等客体,只有对这些客体进行综合分析,才能确切描述环境质量状况。¢对监测数据进统计处理、综合分析时,需涉及该地区的自然和社会各个方面情况,因此,必须综合考虑才能正确阐明数据的内涵。2) 环境监测的连续性由于环境污染具有时空性等特点,因此,只有坚持长期测定,才能从大量的数据中揭示其变化规律,预测其变化趋势,数据越多,预测的准确度就越高。因此,监测网络、监测点位的选择一定要有科学性,而且一旦监测点位的代表性得到确认,必须长期坚持监测。3) 环境监测的追踪性环境监测包括监测目的的确定、监测计划的制订、采样、样品运送和保存、实验室测定到数据整理等过程,是一个复杂而又有联系的系统,任何一步的差错都将影响最终数据的质量。特别是区域性的大型监测,由于参加人员众多、实验室和仪器

生态环境综合监测系统方案说明

生态环境综合监测系统 设 计 方 案

目录 1 概述 (1) 1.1 项目背景及意义 (1) 1.2 项目内容及目标 (1) 1.2.1 项目内容 (1) 1.2.2 项目目标 (2) 1.3 开发原则 (2) 1.4 开发依据 (3) 2总体设计 (5) 3 山洪灾害监测预警系统 (7) 3.1 技术项目背景 (7) 3.2 系统总体架构 (9) 3.3 系统主要特点 (10) 3.3.1 无需土建的一体化雨量站 (10) 3.3.2 支持系统分步式建设 (11) 3.3.3 充分利用雨水情自动监测系统资源的自动灾情预警报系统 (11) 3.3.4 引入先进的宽带无线接入技术和产品拓宽通信网络,提出应急通信解决方案 (19) 4泥石流监测预警系统 (22) 4.1 技术项目背景 (22) 4.2 系统框架总体 (22) 4.3 无线传感网络法泥石流监测 (23)

5 滑坡监测预警子系统 (29) 5.1 技术背景 (29) 5.2 国内外地质灾害监测现状 (29) 5.3 无人值守的山体滑坡监测预警系统技术框架 (30) 5.4 地质灾害的安全监测 (32) 5.5 观测仪器选择 (33) 5.6 自动化采集系统 (36) 6 桥梁和隧道监测预警子系统 (40) 6.1 技术背景 (40) 6.2 监测方案 (41) 7 水质监测子系统 (44) 7.1 技术背景 (44) 7.2 系统框架 (45) 7.3 系统配置 (46) 8 土壤墒情监测系统 (47) 8.1 技术背景 (47) 8.2 系统框架 (47) 8.3 系统配置 (48) 9 气象监测系统 (49) 9.1 技术背景 (49) 9.2 系统框架 (49)

(完整版)环境监测系统解决方案

环境监测系统解决方案 一、系统概要本综合管控云平台是一套基于云计算的物联网综合管控云服务平台。平台可适配于各种物联网应用系统,实时监控管理接入设备的状态与运行情况, 并对设备进行远程操作,通过云平台对接物联网设备做到精确感知、精准操作、精细管理,提供稳定、可靠、低成本维护的一站式云端物联网平台。环境监测系统通过对现场温度、湿度、光照、风向、风速、PM2.5、气压等参数的数据采集,将参数数据远传至物联网云平台,实现现场各个设备的数据实时监测,用户可以通过电脑网页或是手机app 实时查看,可以自由设置各个参数的标准值上下限,如果数据超限可以给相关的工作人员发送短信或是微信报警提醒,做到提前预警, 避免造成不必要的损失,实现在远程就能值守现场设备。 二、拓扑图 现场传感器数据通过物联网中继器上传云平台,客户通过电脑网页或是手机app 可以实时监控现场设备数据。

875物联网中继器 传感器 PM 2.5 Pe 端 移动端 Padyf5 ??n ? ?f 光 照 度 二氧化碳

三、系统构成 3.1 系统登陆 ① PC 端登陆: 本系统采用B/S架构,PC端用户只需打开浏览器通过IP地址进入管理系统,凭管理员分配的用户名密码进行登陆管理。(登陆界面可定制企业logo 及信息)如下图: ② 手机端登陆:用户可在任何有本地局域网信号的地方,通过IOS或Android 版本APP登陆系统,登陆账号与PC端账号相同。IOS 版本APP请在Apple Store搜索“易云系统”进行下载,安卓版本请在“易云物联网系统”公众号或PC端系统中扫描二维码进行下载。 3.2 数据监控 能够便捷监控实时数据,并且可通过数据变化自动启停其他设备,各项数据可用数值、图片、文字分别展示,并通过短信等功能向用户发送报警信息。另外,可设定不同的监控点,更直观的监测每个测温点实时情况,模拟真实的设备位置分布。如下图:

生态环境监测

129科协论坛·2009年第1期 (下)资源环境与节能减灾 20世纪60年代以来,随着全球性环境问题的出现,环境 监测从一般意义上的环境污染因子监测开始向生态环境监 测过渡和拓宽。 1 生态监测的定义 生态监测是采用生态学的各种方法和手段,从不同尺度 上对各类生态系统结构和功能的时空格局的度量,主要通过 监测生态系统条件、条件变化、对环境压力的反映及其趋势 而获得。国内有学者提出“生态监测就是运用可比的方法,在 时间和空间上对特定区域范围内生态系统或生态系统组合 体的类型、结构和功能及其组合要素等进行系统地测定和观 察的过程,监测的结果则用于评价和预测人类活动对生态系 统的影响,为合理利用资源、改善生态环境和自然保护提供 决策依据,这一定义似乎从方法原理、目的、手段、意义等方 面作了较全面的阐述。 在监测对象上,生态监测既不同于城市环境质量监测, 也不同于工业污染源监测。从环境监测发展历程来看,目前 所指的生态监测主要侧重于宏观的、大区域的生态破坏问 题,它具有反映人类活动对我们所处的生态环境的全貌、有 机综合影响的优点。如近年来积极开展的福建省湿地生态环 境监测,河南省渔业生态环境监测,南极中山站近岸海域生 态环境监测,以及在我国开展生态环境监测较早,近几年又 做了大量工作的新疆荒漠生态环境监测。 生态监测的对象可分为农田、森林、草原、荒漠、湿地、湖泊、海洋、气象、物候、动植物等。应当看到,生态监测是环境监测的拓宽,除了新的理论、技术和方法外,环境监测的理论和实践必是生态监测得以发展和完善的基本保证。景观生态学、农业生态学、森林生态学、淡水生态学、海洋生态学、荒漠生态学、脆弱带生态学、地球化学、气象学、物候学、水文学、环境经济学、人文物理学等的理论和实践对生态监测更是大有裨益。2 生态监测的类型 国内对生态监测类型的划分有许多种,常见的是从不同生态系统的角度出发,可分为城市生态监测、农村生态监测、森林生态监测、草原生态监测及荒漠生态监测等。这类划分突出了生态监测对象的价值尺度,旨在通过生态监测获得关于各生态系统生态价值的现状资料、受干扰(特别指人类活动的干扰)程度、承受影响的能力、发展趋势等。根据生态监 测两个基本的空间尺度,生态监测可分为两大类: 2.1 宏观生态监测 研究对象的地域等级至少应在区域生态范围之内,最大 可扩展到全球。宏观生态监测以原有的自然本底图和专业数 据为基础,采用遥感技术和生态图技术,建立地理信息系统 (GIS )。其次也采取区域生态调查和生态统计的手段。 2.2 微观生态监测 研究对象的地域等级最大可包括由几个生态系统组成 的景观生态区,最小也应代表单一的生态类型。微观生态监 测以大量的生态监测站为工作基础,以物理、化学或生物学 的方法对生态系统各个组分提取属性信息。 宏观生态监测必须以微观生态监测为基础,微观生态监 测又必须以宏观生态监测为主导,二者相互独立,又相辅相成,一个完整的生态监测应包括宏观和微观监测两种尺度所形成的生态监测网。 3 生态监测的任务与特点 对生态系统现状以及因人类活动所引起的重要生态问题进行动态监测;对破坏的生态系统在人类的治理过程中生态平衡恢复过程的监测;通过监测数据的集积,研究上述各种生态问题的变化规律及发展趋势,建立数学模型,为预测预报和影响评价打下基础;支持国际上一些重要的生态研究及监测计划,如GEMS (全球环境监测系统),MAB (人与生物圈)等,加入国际生态监测网络。 生态监测的特点主要是:综合性、长期性、复杂性、分散性 。4 生态监测的技术方法 生态监测技术方法就是对生态系统中的指标进行具体测量和判断,从而获得生态系统中某一指标的特征数据,通过统计分析,以反映该指标的现状及变化趋势。在选择生态监测具体技术方法前,要根据现有条件,结合实际制定相应的技术路线,确定最佳监测方案。技术路线和方案的制定大体包含以下几点:生态问题的提出,生态监测台站的选址,监测的内容、方法及设备,生态系统要素及监测指标的确定,监测场地、监测频度及周期描述,数据的整理(观测数据、实验分析数据、统计数据、文字数据、图形及图象数据),建立数据 库,信息或数据输出,信息的利用(编制生态监测项目报表,针对提出的生态问题建立模型、预测预报、评价和规划、政策规定)。 在确定具体的生态监测技术方法时要遵循一个原则,即尽量采用国家标准方法,若干国家标准或相关的操作规范,尽量采用该学科较权威或大家公认的方法。一些特殊指标可按目前生态站常用的监测方法。 生态监测对于结构与功能复杂的宏观生态环境进行监 测,必须采用先进的技术手段。其中,生态监测平台是宏观监测的基础,它必须以三S 技术作支持,并要具备容量足够大的计算机和宇航信息处理装置。三S 技术 ,即地理信息技术(GIS )、遥感技术(RS )和全球卫星定位技术(GPS )。三项技术形成了对地球进行空间观测、空间定位及空间分析的完整 的技术体系。从国内已有工作来看,许多现代化的技术和手段,还没有在生态监测中发挥作用。多数工作尚属研究性质,环境监 测意义尚的常规生态监测工作尚在起步和酝酿中,急待开发和实施。生态监测是一项复杂的系统工程,它对环境监测工作者提出了更高的要求。环境监测的最终结果是对环境质量进行评价从而提出污染治理方案。生态监测将为更深层次的环境管理和决策部门服务,提出生态环境规划、生态设计方 案,最终目的是建立天地人和的生态环境。 总之,随着经济的发展,人口、资源、环境问题的日益严峻,单纯从理化、生物指标监测来了解环境质量已不能满足要求,生态监测是环境监测发展的必然趋势,它必将被广大环境监测工作者逐步认识和掌握。生态环境监测 □ 丁 琼 (奎屯环境保护监测站 新疆·奎屯 833200) 中图分类号:X22 文献标识码:A 文章编号:1007-3973(2009)01-129-01

相关文档
最新文档