离散单元法隧洞施工全过程仿真技术研究_陈寿根

离散单元法隧洞施工全过程仿真技术研究_陈寿根
离散单元法隧洞施工全过程仿真技术研究_陈寿根

新奥法施工的原理和技术要点

新奥法施工的原理和技术要点 新奥法施工的原理和技术要点 2011年09月22日 新奥法施工的原理和技术要点 赣龙项目部 摘要:以隧道新奥法的概念和设计原理为参量,推导出新奥法的施工原理和技术要点;然后根据现场的实际情况以及施工经验的总结,对新奥法施工中的难点、要点、和易错的部位予以说明,给出了自己的见解。 关键词:新奥法的概念设计原理技术要点喷射混凝土锚杆 一、概述 新奥法即新奥地利隧道施工方法的简称,原文是New Austrian Tunnelling Method,简写为NATM;新奥法概念是奥地利学者拉布西维兹(L.V.Rabcewicz)教授于1963年提出的一种新型施工“方法”(注:新奥法不单纯是一种施工方法,它的实质是一种现代先进的隧道设计与施工一体化方法)。 以往人们都认为在地下工程施工中必然要引起围岩坍塌掉块,开挖面积越大,坍塌的范围越大;因此,传统的隧道结构设计方法是将围岩看成是必然要松弛塌落,而作用于支护结构上的荷载。传统的隧道施工方法则是将隧道断面分割成若干个小块进行开挖,随开挖随用刚才或木材支护,然后,从上到下,或者从下到上砌筑刚性衬砌;但是随着岩石锚杆、喷射混凝土的机械和岩体力学方面的发展,人们对开挖隧道过程中所出现的围岩变形、松弛、坍塌等现象有了更深入的认识;因此才有了我们熟知而又常新施工方法“新奥法”。 新奥法的定义:新奥法是应用岩体力学理论,以维护和充分利用围岩的自身承载力为基点,采用锚杆和喷射混凝土为主要手段,必要时架设格栅钢

架,及时的进行支护,控制围岩的变形和松弛,使围岩成为支护体系的组成部分,并通过对围岩支护的量测、监控来指导隧道施工和地下工程设计施工的方法和原则。 从新奥法的定义中我们不难看出: ⑴围岩是隧道结构中的主要承载单元,所以我们要充分发挥围岩的自身承载力,应允许并控制岩体的松弛变形;一方面允许形变,是围岩中能形成自身的承载环,即就是自然拱的形成;另一方面又必须限制它的形变,是围岩不致过度松弛而丧失或大大降低自身的承载能力;所以在施工中,支护时间的迟早必然大大的影响围岩压力的数值,因此,一般宜尽快的施作初期支护,封闭围岩。 ⑵为了改善支护结构的受力性能,在施工中应尽快的使之闭合,而形成封闭的环形结构;另外,隧道断面要尽可能的圆顺,以避免棱角处的应力集中。 ⑶在施工的各个阶段,应进行现场围岩量测,提出准确可靠的测量信息,如隧道拱顶的下沉,周边的收敛等,并且要及时反馈用来指导地下工程的施工。 上述新奥法的定义中我们可以把新奥法的基本原则扼要的概括为:“少扰动、早喷锚、勤测量、紧封闭”。 二、新奥法要点 首先,我们要认识到新奥法不单纯是一种施工方法,也不能笼统的认为喷锚支护就是新奥法;这是极其错误的概念。新奥法是一种现代先进的隧道设计与施工一体化的方法,只有喷锚结构按照规定的方法程序进行设计与施工一体化的,我们才能认为符合新奥法。 1、施工与设计相结合 ⑴作为一名合格的地下工程技术人员我们要充分理解并掌握新奥法的设计理念,以及设计者的设计意图。新奥法的设计应以工程类比法为主,结合

基于离散单元法的颗粒物质静动力学行为研究

基于离散单元法的颗粒物质静动力学行为研究颗粒物质是地球上存在最多且与人们的生活密不可分的物质类型之一,其表现出的复杂静动态力学行为,使其成为目前科学研究的热点和难点问题之一。颗粒系统内粒子的离散性和粒子间作用的非线性耗散性,使得颗粒物质的许多宏观特性都与系统内部的微观力学行为有着密切联系,因此要揭示颗粒系统物质系统表现的宏观静动态性质的机理,就必须对颗粒物质系统内部粒子的组构特征、接触力网的分布特征以及颗粒的运动特征进行深入的分析。 本文基于颗粒离散单元模型,对颗粒物质系统常见的几种宏观的静动力学现象进行了数值模拟,通过分析微观尺度下颗粒间的力学行为,研究并揭示了细观参数和外部激励对颗粒系统在宏观尺度下的静动态行为的影响。主要工作如下:首先,研究了静态颗粒堆体中常见的“压力凹陷”现象。 介绍了数值模拟中团颗粒表征不同长宽比颗粒的方法以及采用固定点源法生成颗粒堆体的过程。采用移动平均的统计方法,得到了堆体底部垂向压力凹陷现象以及底部水平切向力的倒“S”型分布特征。 在此基础上详细分析了堆体内颗粒方向、接触方向以及接触力分布的各向异性特征。数值结果表明:在堆体内部易形成能够屏蔽上部颗粒部分重力的拱结构,导致堆体底部产生压力凹陷现象。 长宽比较大的颗粒组成的堆体易形成倾角比较大的拱结构,并且拱结构力链上的接触力也比较大,拱结构相对坚固,更容易使堆体底部产生明显的压力凹陷现象。其次,通过采用不同接触模型进行双轴压缩数值试验,探讨了细观参数对颗粒样本宏观结果的影响。 给出了用于数值模拟中的颗粒样本的生成方法以及应力应变边界条件的实

现过程。在此基础上研究了传统离散单元法、改进离散单元法以及团颗粒方法中常用细观参数对宏观性质的影响,并统计和分析了接触方向以及接触力大小的分布特征。 数值结果表明:在颗粒间摩擦系数较小时,偏应力-轴应变曲线呈现出理想的弹塑性关系,摩擦系数较大时表现出软化现象;样本的内摩擦角与形状参数近似于线性关系;类长条形颗粒的偏应力峰值、变形模量以及剪缩和剪胀效应相对其它形状颗粒较大;内摩擦角与摩擦系数均服从幂数关系,形状参数会使内摩擦角显著增大,类长条形颗粒的内摩擦角较圆形颗粒显著提高。本文结果为数值模拟中细观参数的调节提供了基础。 最后,研究了单层球形颗粒在水平平动振动条件下的运动特征。通过与已有实验和数值结果的比较,验证了程序的可靠性。 接着介绍了在振动条件下颗粒团的液固相变以及与填充密度的关系,分析了物理参数对液固相变临界填充密度的影响。临界填充密度随着振幅的增大先增大后减小。 随着填充密度增大,颗粒速率分布由高斯分布逐渐转变为指数分布。对颗粒分离现象的研究表明,颗粒分离需要合适的填充密度区间,大颗粒向内分离运动的区间略大于向外分离的区间。 当在圆盘中设置障碍物时,障碍物对大颗粒分离运动的相图影响不大,但对分离速度和分离的填充密度区间影响较大。本文结果可为化工以及医药等领域的颗粒物质的混合与分离过程提供理论参考。 总之,本文通过对不同形状颗粒组成的颗粒堆体内部接触方向、接触力方向以及底部压力分布特征的研究,对细观参数在双轴压缩试验中对颗粒系统宏观力

实验3 连续系统离散相似法的数字仿真实验

实验3 连续系统离散相似法的数字仿真实验 (1) 掌握以系统结构图形式描述的连续系时域离散相似法的数字仿真方法和步骤。 (2) 学会利用时域离散相似法分析线性和非线性控制系统的动态性能以及典型非线性环节对控制系统动态性能的影响。 【实验内容】 含死区环节的非线性控制系统的结构图如图A.2所示 (1)按实验目的、要求和已知条件,建立系统的Simulink模型,并且用RK4法,求 出c=0,0.1,0.5,1.0情况下(c=0相当于IV环节为1,即没有加入死去环节)系统的单位阶跃响应作为标准解。 (2)求出图A.2中传递函数对应的状态空间模型,并在该模型前加入虚拟的采样开关和零阶保持器,得到离散化状态空间模型。 (3)在c=0,0.1,0.5,1.0情况下,利用时域离散相似法编程完成对该系统的仿真研究。

(1)搭建simulink模型 编写脚本文件: c=0; h1=plot(tout,y,'k'); set(h1,'LineWidth',1) hold on ; sim('lab3'); c=0.1; h2=plot(tout,y,'r'); set(h2,'LineWidth',1) hold on ; sim('lab3'); c=0.5; h3=plot(tout,y,'b'); set(h3,'LineWidth',1) hold on ; sim('lab3') c=1; h4=plot(tout,y,'m'); set(h4,'LineWidth',1) hold on; sim('lab3'); grid 绘制出单位阶跃相应图像:

(2)输入程序求出状态空间模型 (3)编程实现离散相似算法 clc; clear; G=tf([8 10],[0.1 1 0 0]); G1=ss(G); T=0.01; sysd=c2d(G1,T); Ad=sysd.a; Bd=sysd.b; Cd=sysd.c; Dd=sysd.d; X=[0;0;0]; yt=0;tt=0; R=1; c=0; M=10/T;

公路隧道新奥法施工技术培训(附简图)

公路隧道新奥法施工技术培训(附简图) 2017.11.15 一、新奥法的基本概念 新奥法是应用岩体力学理论,以维护和利用围岩的自承能力为基点,采用锚杆和喷射混凝土为主要支护手段,及时进行支护,控制围岩的变形和松弛,使围岩成为支护体系的组成部分,并通过对围岩和支护的量测、监控来指导隧道施工和地下工程设计施工的方法和原则。 新奥法施工方法包括全断面法、台阶法、环形开挖留核心土法、中隔墙法(简称CD法)和交叉中隔墙法(简称CRD法)、双侧壁导坑法。 二、新奥法施工的要点 (一)在隧道的整个支护体系中,围岩是承载结构的一部分,施工中要合理利用围岩的自承能力,保持围岩的稳定; (二)隧道开挖时,应尽可能减轻对隧道围岩的扰动或尽可能不破坏围岩的强度。 (三)允许围岩有一定的变形,初期支护应尽量做成柔性的,以便与围岩紧密接触,共同变形和共同承载,充分围岩的自身承载作用。 (四)洞室开挖后及时施作初期支护,封闭围岩表面,抑制围岩体的早期变形,待围岩稳定后,再进行二次衬砌,但遇软弱围岩特别是洞口段衬砌要紧跟。 (五)隧道的几何形状必须满足在静力学上作为圆筒结构的计算条件,因此,要尽可能使结构做得圆顺(如做成圆形或椭圆形的),不产生突出的拐角,避免产生应力集中现象。同时,尽早使衬砌结构闭合(封底),以形成承载环; (六)对隧道周边进行位移收敛量测是施工过程中必不可少的一

个重要环节,从现场量测反馈信息及时修改设计和施工方案。 (七)对外层衬砌周围岩体的渗水,要通过足够的“排堵措施”予以解决,如在两层衬砌之间设置中间防水层等。 三、新奥法施工方法 全断面法 (一)全断面法的概念及适用条件 全断面法全称为“全断面一次开挖法”,即按隧道设计断面轮廓一次开挖成型的方法,如图1所示。 全断面法常适用于Ⅰ~Ⅲ级硬岩的石质隧道,可采用深孔爆破施工。 图1 全断面施工方法 1-全断面开挖;2-锚喷支护;3-模筑混凝土 (二)全断面法的优缺点 优点:较大的作业空间,有利于采用大型配套机械化作业,提高施工速度,工序少,干扰少,便于施工组织与管理,采用深孔爆破时,可加快掘进速度,对围岩的震动次数较少,有利于围岩稳定。 缺点:由于开挖面较大,围岩相对稳定性降低,且每循环工作量相对较大,要求施工单位有较强的开挖、出渣与运输及支护能力,采用深孔爆破时,产生的爆破震动较大,对钻爆设计和控制爆破作业要求较高。

浅述新奥法施工

浅述新奥法施工 [ 06-03-21 15:15:00 ] 作者:孙毅刚 摘要:本文简要叙述了新奥法特点、理论及施工要点,支护手段与施工顺序以及新奥法的适用范围。最后指出了新奥法施工的缺点,并对新奥法施工作了简要的展望。 关键词:新奥法施工 新奥法即新奥地利隧道施工方法的简称, 原文是 New Austrian Tunnelling Method 简称 NATM , 新奥法概念是奥地利学者拉布西维兹 (L. V. RABCEW ICZ) 教授于 50 年代提出的, 它是以隧道工程经验和岩体力学的理论为基础, 将锚杆和喷射混凝土组合在一起作为主要支护手段的一种施工方法,经过一些国家的许多实践和理论研究, 于60年代取得专利权并正式命名。之后这个方法在西欧、北欧、美国和日本等许多地下工程中获得极为迅速发展, 已成为现代隧道工程新技术标志之一。六十年代NATM 被介绍到我国, 七十年代末八十年代初得到迅速发展。至今,可以说在所有重点难点的地下工程中都离不开NATM。新奥法几乎成为在软弱破碎围岩地段修筑隧道的一种基本方法。 下面仅对新奥法施工作一简要叙述。 1 新奥法施工特点 1.1及时性 新奥法施工采用喷锚支护为主要手段,可以最大限度地紧跟开挖作业面施工,因此可以利用开挖施工面的时空效应,以限制支护前的变形发展,阻止围岩进入松动的状态,在必要的情况下可以进行超前支护,加之喷射混凝土的早强和全面粘结性因而保证了支护的及时性和有效性。 在巷道爆破后立即施工以喷射混凝土支护能有效地制止岩层变形的发展,并控制应力降低区的伸展而减轻支护的承载,增强了岩层的稳定性。 1.2封闭性 由于喷锚支护能及时施工,而且是全面密粘的支护,因此能及时有效地防止因水和风化作用造成围岩的破坏和剥落,制止膨胀岩体的潮解和膨胀,保护原有岩体强度。

基于离散元方法的碎磨工艺过程模拟

基于离散元方法的碎磨工艺过程模拟——EDEM在磨机、破碎机仿真领域的应用 2011年06月07日

应用背景 碎磨工艺是矿物加工工程技术中的重点之一。主要设备为各种类型的破碎机和磨机。破碎机主要包括颚式破碎机、反击式破碎机,冲击式破碎机,复合式破碎机,单段锤式破碎机,立式破碎机,旋回破碎机、圆锥式破碎机、辊式破碎机;磨机根据磨矿介质和研磨物料的不同,可分为球磨机、棒磨机,管磨机,自磨机,旋臼式辊磨机等。磨机主要近20 年来发展最快的碎磨工艺是半自磨-球磨工艺,目前,有很多大中型选矿厂采用此种碎磨工艺。 球磨机是利用钢球作为磨矿介质进行磨矿的设备,其结构简单、性能稳定、破碎比大(3~100),既可湿磨又可干磨,可用于处理各种矿物原料,适应性强,易于实现自动化控制。所以,在选矿、建材、化工、冶金及材料等工业部门中,球磨机都是最普遍、最通用的粉磨设备,在矿物粉碎和超细粉碎加工中占有重要地位,倍受人们青睐。 碎磨设备通常尺寸庞大,造价十分昂贵,要求其设计方案具有足够的准确性和可靠性,以在制造过程中减少成本损失。磨矿过程的模拟研究是磨矿过程优化控制的基础,也是磨矿从实验研究走向理论研究的关键步骤。自1990 年Mishra 和Rajamani 创造性地将离散单元法用于此领域的研究后,其就在此应用领域中发挥了其它数值算法不可替代的作用。 离散元方法简介 传统的力学研究都是建立在连续性介质假设的基础上的,即认为研究对象是由相互连接没有间隙的大量微团构成。然而,这种假设在有些领域并不适用,如:岩土力学。1971年,CUNDALL提出的一种处理非连续介质问题的数值模拟方法,离散元方法(Discrete Element Method,简称DEM),理论基础是结合不同本构关系(应力-应变关系)的牛顿第二定律。随后,这种方法被越来越广泛的应用于涉及颗粒系统地各个领域。通过求解系统中每个颗粒的运动学和动力学方程(碰撞力及场力),不断地更新位置和速度信息,从而描述颗粒系统行为。

时域离散相似法

第三章 时域离散相似法 用数字计算机对一个连续系统进行仿真时,必须将这个系统看作一个时间离散系统。也就是说,我们只能计算到各状态量在各计算步距点上的数值,它们是一些时间离散点的数值。在第二章中主要是从数值积分法的角度来讨论数字仿真问题,没有显式地涉及到“离散”这个概念。史密斯从控制和工程的概念出发提出离散相似问题[1],并导出离散相似法。 所谓“离散相似法”就是将一个连续系统进行离散化处理,然后求得与它等价的离散模型。由于连续系统的模型可以用传递函数来表示,也可以用状态空间模型来表示,因此,与连续系统等价的离散模型可以通过两个途径获得,其一是对传递函数作离散化处理得离散传递函数(或脉冲传递函数),称为频域离散相似模型。其二是基于状态方程离散化,得到时域离散相似模型。本章介绍时域离散相似法,第四章介绍频域离散相似法。 3.1 时域离散相似法基本原理 3.1.1基本方法 假设有一个连续系统,它由以下状态方程描述: x Ax B =+u (3.1) 对于(3.1)式描述的连续系统进行离散化处理,如图3.1所示。 在系统的输入端加上虚拟采样开关和虚拟信号重构器,输出端加一个虚拟采样开关。虚拟采样周期为T 且同步。其中,u (t )是系统输入;u (k )是加虚拟采样开关后,在kT 时刻系 统输入;x (k )是加虚拟采样开关后在kT 时刻系统输出;~()u t 、~()x t 是等价的连续信号。只要~()u t 能足够精确地表示u (t ),那么~()x t 也就能足够精确地表示x t (),这样,就能获得与连续系统等价的时域离散相似模型。 对该连续系统进行离散化处理后可以得到系统离散相似模型如式3.2所示: x [(k +1)T )]=)(T Φ x (kT )+)(T m Φ u (kT )+ Φ m (T) ()u kT (3.2) 其中:T 是采样时间间隔(或称采样周期);u (k )、x (k )为系统kT 时刻的输入及状态量; )(?)()(T T T m m ΦΦΦ、、为离散化后与系统模型有关的系数。下面将讨论怎样从(3.1)式经离散化处理获得(3.2)式所示的时域离散相似模型。 将方程两边取拉氏变换,经整理得到: x (s )=(s I -A )-1x (0)+(S I -A )-1x (0)+(s I -A )-1B u (s ) (3.3) 设 Φ(t)=L -1[(s I -A )-1 ] (3.4) 则Φ(t)=e At 称作状态转移矩阵。将(3.4)式代入(3.3),可得到: x (s )=L [Φ(t )]x (0)+L [Φ(t)]B u (s ) (3.5) 由卷积公式:L f g t d F s G s t [ ()()]()()τττ0?-=称作f 和g 的卷积,可以写作f *g ,其 中,Lf (t) =F (s),Lg (t) = G (s ).(3.5)式取反拉氏变换,运用卷积公式得到: x t e x e At A t t ()()()=+ -? 00 τB ~()u d ττ (3.6) 图3.1连续系统的离散化处理

隧道施工方法之新奥法

新奥法施工原理及特点 新奥法是在利用围岩本身所具有的承载效能的前提下,采用毫秒爆破和光面爆破技术,进行全断面开挖施工,并了以形成复合式内外两层衬砌来修建隧道的洞身,即以喷混凝土、锚杆、钢筋网、钢支撑等为外层支护形式,称为初次柔性支护,系在洞身开挖之后必须立即进行的支护工作。因为蕴藏在山体中的地应力由于开挖成洞而产生再分配,隧道空间靠空洞效应而得以保持稳定,也就是说,承载地应力的主要是围岩体本身,而采用初次喷锚柔性支护的作用,是使围岩体自身的承载能力得到最大限度的发挥,第二次衬砌主要是起安全储备和装饰美化作用。 新奥法的适用性很广,中国已在亚粘土和黄土隧道施工中取得成功。但在下列情况下,一般都应采取适当的辅助措施才能施工:①涌水量大的地层;②因涌水产生流沙现象的地层;③围岩破碎使锚杆钻孔和插入都极为困难场合;④开挖面不能自稳的围岩。新奥法是以喷射混凝土、锚杆支护为主要支护手段,因锚杆

喷射混凝土支护能够形成柔性薄层,与围岩紧密粘结的可缩性支护结构,允许围岩又一定的协调变形,而不使支护结构承受过大的压力。 新奥法适用范围: 具有较长自稳时间的中等岩体;②弱胶结的砂和石砾以及不稳定的砾岩; ③强风化的岩石;④刚塑性的粘土泥质灰岩和泥质灰岩;⑤坚硬粘土,也有带坚硬夹层的粘土;⑥微裂隙的,但很少粘土的岩体;⑦在很高的初应力场条件下,坚硬的和可变坚硬的岩石;在下述条件下应用新奥法必须与一些辅助方法相配合①有强烈地压显现的岩体;②膨胀性岩体(要与仰拱与底部锚杆相配合);③在一些松散岩体中,要与钢背板与之配合;④在蠕动性岩体中,要与冻结法或预加固法等配合;在下列场合中应用应慎重①大量涌水的岩体;②由于涌水会产生流砂现象的围岩;③极为破碎,锚杆钻孔、安装都极为困难的岩体;④开挖面完全不能自稳的岩体等。 新奥法的缺点: ①实施不仅要求有良好的施工组织和管理,也要求技术人员和量测人员都十分熟练,没有这一点就易于发生错误;作业质量都与每一个人的仔细操作有关。 ②开挖暴露出的地质会立即改变其状态,因此要求施工地质人员要亲临现场,以便发现问题; ③用能控制的施工量测,往往给施工带来不便;

用颗粒离散元法模拟料仓卸料过程

农业工程学报 TRANSACTIONS OF THE CHINESE SOCIETY OF AGRICULTURAL ENGINEERING 1999年 第15卷 第3期 Vol.15 No.3 1999 用颗粒离散元法模拟料仓卸料过程 徐 泳 K.D.Kafui C.Thornton 摘 要:采用颗粒离散元法模拟了无粘软颗粒和粘连性硬颗粒在平底仓卸料全过程,并与已完成的无粘硬颗粒结果比较。发现颗粒的材料模量对卸料特性影响甚小,而颗粒表面粘连性对卸料流率有显著的迟滞作用。在大出口情况,结拱不易形成,并出现颗粒自由下落现象。 关键词:离散元法;颗粒;散体;粘连性;料仓 Silo Discharge Simulations With Different Particulate Properties Using the Distinct Element Method (XU Yong) (China Agricultural University,Beijing 100083) (K D Kafui C Thornton) ( Aston University, UK B4 7ET) Abstract:Simulations of particulate discharge for a flat-bottomed silo with 60 % width of orifice, filled with inadhesive soft and adhesive hard particles, were done using the Distinct Element Method for particle system. The results were compared with the case of inadhesive hard particles. It was observed that there were no significant differences with the different modulus but adhesion can affect discharge rate with a significant delay. It was observed that, with a wider orifice, kinematic arching effect vanishes and even free gravity-fall arises. Key words: distinct element method; particle granular; materials; adhesive; silo 离散元法(Distinct Element Method 或DEM)是计算散体介质系统的力学行为的数值方法,最先由Cundall提出[1]。离散元法把散体看作有限个基本离散元件的组合,对颗粒系统,单个颗粒(圆盘或球)为一个单元,对块体系统,单个块体为一个单元,根据单元间力的相互作用和牛顿运动定律描述散体群行为。颗粒离散元的基础是颗粒接触力学,Thornton等[2,4]在Cundall等研究的基础上,引入前人[5~9]对球体弹塑性接触研究成果发展和形成了新的接触模型,并对Cundall的三维球体程序TRUBAL进行大幅改动形成Aston版。王泳嘉[10]最先把离散元法引入我国,以后散体元法(块体元为主)研究及应用的论文相继出现[11,12,15]。

连续系统仿真的方法

第3章 连续系统仿真的方法 3.1 数值积分法 连续系统数值积分法,就是利用数值积分方法对广微分方程建立离散化形式的数学模型——差分方程,并求其数值解。可以想象在数学计算机上构造若干个数字积分器,利用这些数字积分器进行积分运算。在数字计算机上构造数字积分器的方法就是数值积分法,因而数字机的硬件特点决定了这种积分运算必须是离散和串行的。 把被仿真系统表示成一阶微分方程组或状态方程的形式。一阶向量微分方程及初值为 () (),00t Y Y t Y ???? ?????? Y =F = (3-1) 其中,Y 为n 维状态向量,F (t ,Y )为n 维向量函数。 设方程(3-1)在011,,,,n n t t t t t +=…处的形式上的连续解为 ()()()()n+1n+1 t t n+10t t t =Y t +,(),n Y F t Y dt Y t F t Y dt =+ ?? (3-2) 设 n =() n Y Y t ,令 1n n n Y Y Q +=+ (3-3) 则有: ()1n+1t n Y Y += 也就是说, 1 (,)n n t n t Q F t Y dt +≈ ? (3-4) 如果n Y 准确解()n Y t 为近似值,n Q 是准确积分值的近似值,则式(3-4)

就是式(3-2)的近似公式。换句话说,连续系统的数值解就转化为相邻两个时间点上的数值积分问题。 因此,所谓数值解法,就是寻求初值问题(3-1)的真解在一系列离散点12n t t t <…<…上的近似解12,,,n Y Y Y ……,相邻两个时间离散点的间隔 1n n n t t +=-h ,称为计算步距或步长,通常取n =h h 为定值。可见,数值积分法的主要问题归结为对函数(,)F t y 的数值积分问题,即如何求出该函数定积分的近似解。为此,首先要把连续变量问题用数值积分方法转化成离散的差分方程的初值问题,然后根据已知的初值条件0y ,逐步地递推计算后续时刻的数值解(1,2,)i y i =…。所以,解初值问题的数值方法的共同特点是步进式的,采用不同的递推算法,就出现各种不同的数值积分方法。 3.2 替换法 基于数值积分的连续系统仿真方法具有成熟、计算精度比较高的优点,但算法公式比较复杂、计算量比较大,通常只有在对速度要求不高的纯数字仿真时使用。当进行实时仿真或在计算机控制系统中实现数字控制器的算法时,要求计算速度快,以便能在一个采样周期内完成全部计算任务,这就需要一些快速计算方法。 用数值积分方法在数字机上对一个连续系统进行仿真时,实际上已经进行了离散化处理,只不过在离散化过程中每一步都用到连续系统的模型,离散一步计算一步。那么,能否先对连续的模型进行离散化处理,得到一个“等效”的离散化模型,以后的每一步计算都直接在这个离散化模型基础上进行,而原来的连续数学模型不再参与计算呢?回答是肯定的。这些结构上比较简单的离散化模型,便于在计算机上求解,不仅用于连续系统数字仿真,而且也可用于数字控制器在计算机上实现。 替换法的基本思想是:对于给定的函数G (s ),设法找到s 域到z 域的的某种映射关系,它将S 域的变量s 映射到z 平面上,由此得到与连续系统传递函数G (s )相对应的离散传函G (z )。进而再根据G (z )由z 反变换求的系统的时域离散模型——差分方程,据此便可以进行快速求解。

有限差分法、边界元法和离散元法

有限差分法 已经发展的一些近似数值分析方法中,最初常用的是有限差分法,它可以处理一些相当困难的问题。但对于几何形状复杂的边界条件,其解的精度受到限制,甚至发生困难。作为60年代最重要的科技成就之一的有单元法。在理论和工程应用上都_得到迅速发展,几乎所有用经典力学解析方法难以解决的工程力学问题郁可以用有限元方法求解。它将连续的求解域离散为一组有限个单元的组合体,解析地模拟或逼近求解区域。由于单元能按各种不同的联结方式组合在一起,且单元本身又可有不同的几何形状,因此可以适应几何形状复杂的求解域。相限元的另一特点是利用每一单元内假设的近似函数来表示全求解区域上待求的未知场函数。单元内的近似函数由未知场函数在各个单元结点上数值以及插值函数表达,这就使未知场函数的结点值成为新的未知量,把一个连续的无限自由度问题变成离散的有限自由度问题,只要结点来知量解出,便可以确定单元组合体上的场函数。随着单元数目的增加,近似解收敛于精确解。但是有限元方法常常需要很大的存贮容量,甚至大得无法计算;由于相邻界面上只能位移协调,对于奇异性问题(应力出现间断)的处理比较麻烦。这是有限单元法的不足之处。 边界元法 边界元法是在有限元法之后发展起来的一种较精确有效的工程数值分析方法。与有限元法在连续体域内划分单元的基本思想不同,边界元法是在定义域的边界上划分单元,用满足控制方程的函数去逼近边界条件,通过对边界分元插值离散,化为代数方程组求解。降低了问题的维数,可用较简单的单元准确地模拟边界形状,利用微分算子的解析的基本解作为边界积分方程的核函数,而具有解析与数值相结合的特点,通常具有较高的精度。边界元法的主要缺点是它的应用范围以存在相应微分算子的基本解为前提,对于非均匀介质等问题难以应用,故其适用范围远不如有限元法广泛,而且通常由它建立的求解代数方程组的系数阵是非对称满阵,对解题规模产生较大限制。 上述两种数值方法的主要区别在于,边界元法是“边界”方法,而有限元法是“区域”方法,但都是针对连续介质而言,只能获得某一荷载或边界条件下的

隧道工程 新奥法施工技术方案

隧道工程新奥法施工技术方案 一、新奥法介绍 20世纪60年代由于岩石锚杆、喷射混凝土机械和岩石力学方面技术的进展,人们对开挖隧道过程中所出现的围岩变形、松弛、崩塌等现象有了深入的认识。1963年奥地利学者L。腊布兹维奇教授命名的“新奥地利隧道施工法”(NATM)正式出台,它是以控制爆破或机械开挖为主要掘进手段,以锚杆、喷射混凝土为主要的支护方法,理论量测和经验相结合的一种施工方法,同时也是一系列指导隧道设计和施工的原则。新奥法的基本原则可简要的概括为“少扰动、早喷锚、勤量测、早封闭”,我国的隧道工作者将其总结为“光面爆破, 喷锚支护、监控量测”三要素。 二、某隧道的新奥法施工 某隧道根据设计图纸和现场调查,隧道所处围岩是Ⅲ类围岩,属于浅埋和偏压隧道,自承能力较差。施工时根据不同的围岩结构,分别采用或综合使用超前锚杆预加固、喷锚体系及格栅式钢构架作为初期支护方案。开挖采用短台阶光面爆破法;弃碴采用人工配合装载机或机动翻斗车清理,即时施工临时支护体系。洞门施工先期进行,并与不少于5m的洞内二次衬砌同时施工以保证结构的连续性和稳定性,避免影响洞内施工;仰拱和铺底分段进行,与二次衬砌及时闭合;防水层在初期支护完毕二次衬砌之前施工;避车洞、排水沟、电气化接触网支架、洞口挡墙等最后施工并抓好隧桥、隧路的施工关系,避免相互干扰,确保工期。 2.1钻爆开挖作业线

根据围岩性质及施工设备选取正台阶开挖法(台阶长度小于5倍但大于1~1.5倍洞跨),上下断面采用平行作业,上台阶开挖要留取核心土。该法因为可缩短支护结构的受力条件,有利于控制隧道收敛速度和量值,适用范围很广。 钻爆开挖工序流程图见下页 为减少隧道施工所引起的对围岩和山体稳定,施工中贯彻“早进(洞)、晚出(洞)、少刷少挖”的思想。隧道进洞前首先清理坡面危岩,用砂浆锚杆对仰坡进行加固,然后用超前小导管对洞口进行预加固。 白家河Ⅱ号隧道进口仰坡加固时先清除仰坡危石,拆除洞顶水渠,在洞顶20m×40m(高×宽)范围内的采用喷锚挂网联合防护方案:超前锚杆采用ZW—II型全长粘接型早强砂浆锚杆(Φ22),长3-5m,间距1.2m×1.2m,表面挂网Φ6×Φ8,网格间距20cm×20cm,喷砼厚10cm。 进口洞口土石方采用明挖法进行,自上而下逐段开挖,分层高度2m,纵向按设计长度5m一次成型,挖掘机作业,挖不动的岩石地段采用弱爆破进行开挖,装载机装碴、出碴。 隧道出口土石方采用人工利用风镐配合光面爆破短台阶法开挖,上台阶长取洞跨的2~4倍。弃碴利用装载机配合自卸汽车装运。 在对隧道洞口土石方施工完毕后,洞口边坡由人工按设计坡度进行刷坡,刷坡后,喷射10cm砼以稳定边坡,防止坍塌。 由现场实际观察,白家河Ⅱ号隧道出口仰坡较陡,曾是山民的采石场,弃用后形成的高大边仰坡。左侧坡脚为堆积虚碴,隧道中线右

新奥法在隧道施工中应用

浅谈新奥法在隧道施工中的应用 【摘要】新奥法是目前隧道施工中应用范围最广的先进施工技术,其使用效果在不断的进行完善。隧道施工过程中必须切实领会、掌握新奥法施工技术的核心,并结合工程实际加以应用,才能最大程度地确保隧道工程的安全质量。本文首先说明了新奥法的原理,然后分析了隧道施工中新奥法的主要施工技术,最后结合工程案例阐述了新奥法在隧道施工中的应用。 一、新奥法的原理 新奥法是新奥地利隧道施工方法(New Austrian TunnelingMethod,简写 NATM)的简称。它是奥地利土木工程师L.V.Rab-cewicz 等在长期从事隧道施工实践中,于 20 世纪 60 年代从岩石力学的观点出发并在总结隧道建设实践经验的基础上创立的。早在 1934 年 Rabcewicz 就提出了在隧道中应用“喷浆”的技术。 新奥法是要充分利用岩体自身的承载力,岩体在自然状态下本身是平衡的,在开挖隧道后,岩体应力重新分配,而圆形孔洞可以更好的分散岩石的应力,当开挖面作为一个整体,应力重新平衡后,就可以很好的支撑起隧道结构。如何使开挖面成为一个整体,新奥法提出了在开挖隧道后,在开挖面通过拱架、锚杆、钢筋网和喷射混凝土等柔性材料与岩石表面紧贴,从而使它成为一个整体,重新分配应力,然后通过监控量测,围岩地质观测对隧道施工工艺进行微调,在完成初期支护围岩重新分配,应力趋于平衡后施作二次衬砌,二次衬砌并

不是作为隧道的直接承载物,而是起到部分受力及美观的作用。 二、隧道施工中新奥法的主要施工技术 (一)应用新奥法进行隧道围岩的支护 通常情况下,若围岩情况较好,应把喷射混凝土作为支护的主要方式,并利用锚杆进行辅助加固;但当围岩情况较差时,则应将锚杆作为支护的主要方式,并将其与喷射混凝土、钢筋网喷混凝土等进行配合使用。在隧道支护过程中应用 新奥法的锚喷支护技术,主要是将围岩作为承载结构的重要组成部分。因而在二次衬砌支护过程中,主要是将其作为后期围岩的饰面和压力的承载体,因而在进行二次衬砌支护之前必须对围岩的变形和初期支护以及隧道周边情况等进行综合性评估。但无论是初期支护还是永久支护,都应选用薄壳型的柔性结构,从而在减少衬砌受弯变形的同时减少挠曲断裂。 在应用新奥法进行隧道围岩支护时,应注意隧道岩石的软硬度,因为在软岩隧道和硬岩隧道中应用新奥法有着本质上的区别。在软岩地层中,隧道处于近地表的地下薄层,因而难以承受来自应力再次分布的荷载,再加上覆盖土具有较大的重力作用,故难以有效地控制变形。因此在软岩隧道中采用柔性支护就有可能带来风险,一旦过度释放就会导致坍塌事故。对于软弱破碎的围岩中浅埋的隧道而言,与硬岩隧道中的新奥法原则施工工艺有所不同,即不仅应严格控制围岩的变形,还严禁采取一次性的柔性支护,而是应在地层进行预加固,并采取具有较大刚强度的方法进行预支护,从而确保其具有良好的自承

浅谈新奥法隧道施工技术

浅谈新奥法隧道施工技术 摘要:新奥法对隧道和城市地下工程的开挖有着毋庸置疑的贡献,若能良好的 运用和推广能为整个地下工程带来安全、高效、经济的开展。但目前在实际工程 中受利用的诱惑加之监管力度的欠缺,往往无法良好的运用新奥法的理论正确的 指导施工。? 关键词:新奥法隧道施工技术? 引言:隧道工程在交通运输中占了举足轻重的地位。目前我国隧道施工技术 主要有以下几种:盾构法、矿山法、新奥法。新奥法即新奥地利隧道施工方法的 简称,新奥法是以隧道工程经验和岩体力学的理论为基础,将锚杆和喷射混凝土 组合在一起作为主要支护手段的一种施工方法,经过一些国家的许多实践和理论 研究,于60年代取得专利权并正式命名。六十年代此法被介绍到我国,七十年 代末八十年代初得到迅速发展。新奥法几乎成为在软弱破碎围岩地段修筑隧道的 一种基本方法。 一、新奥法的基本原理? ①隧道结构的主要承载是围岩。②在隧道围岩支护过程中,一方面允许围 岩有一定位置移动,进而产生受力区;另一方面,为避免围岩变形过大而产生严 重松弛卸载,必须限制围岩位移的程度。③为使围岩在开挖卸载后不失去原有的强度,开挖后需对围岩进行加固。④初次支护主要作用是避免围岩严重松弛和卸载,需要围岩的承受自身重量,不是用来承担隧道围岩所失去的承载力。⑤应适时的建造初次支护,在挖开围岩后间隔一定时间,使围岩发生形变进而形成承力 保护区,起到较好的支撑性能。⑥围岩自我稳定时间,一方面在建造过程中量测隧道周边的位移来评定;另一方面依靠对围岩地质条件的初步调查。⑦通常可视其整体的结构效应为薄壳,是因为喷射混泥土本身的强度高和轻度变形的特点决 定了它的可塑性和收缩的能力。⑧在没有被腐蚀破坏的情况下,就可把初次支护看作承重结构的一部分。⑨由于喷射混泥土具有结合围岩、填平洞壁不平整面等特点,因此喷射混泥土常作为初次支护,并且能使围岩不发生应力重分布以及使 用钢筋网、锚杆和钢拱架。⑩孔洞的施工方法决定了从开挖到封闭所需的时间。施工时通过测量控制和修改围岩的变化,通过前期的地质调查对施工资料进行估计。为规避施工时工程荷载对隧道受力的影响,限制围岩的二次应力重分布程度 以及松动圈的范围。通常利用对拱部减少开挖次数进行一次开挖方案。从物理静 力学的角度看,隧道横截面尽可能接近圆形或椭圆形。并且限制超挖和欠挖,开 挖后及时封闭结构,并建造仰拱。可建造薄层内衬砌,以提高隧道结构的安全性,最终达到密封的效果,内层与外层相互之间只传递压力,使结构内不产生过大的 弯曲应力。根据建造过程中的应力及变形状态的测量,对其安全性、整体结构系 统的稳定性和结构设计进行评价。一般不增加其厚度而增加钢筋含量(即钢拱),以提高衬砌的强度;可通过增加锚杆的根数或长度以形成围岩受力环区来实现增 大整个结构的刚度。可通过在外壳上安装软管及密封的排水设施来实现外源水压 和静水压力的控制。 二、新奥法施工技术? 2.1 双连拱隧道新奥法施工。采用单向掘进新奥法施工,由进口向出口方向 掘进。采用明挖法施工明洞段,采用“三导洞”法开挖正洞,即先行贯通中导洞,

仿真

实验三连续系统离散相似法的数字仿真实验姓名:田知伟学号:4121108015 班级:J自动化1201 一、实验目的 (1)掌握以系统结构图形式描述的连续系统时域离散相似的数字仿真方法和步骤。 (2)学会利用时域离散相似法分析线性和非线性控制系统的动态性能以及典型非线性环节对控制系统动态性能的影响。 二、实验内容 含死区环节的非线性控制系统的结构如图A.2所示。 (1)按实验目的、要求和已知条件,建立系统的Simulink模型,并且用RK4法,求出c=0,0.1,0.5,1.0情况下(c=0相当于IV环节为1,即没有加入死去环节) 系统的单位阶跃响应作为标准解。 (2)求出图A.2中传递函数对应的状态空间模型,并在该模型前加入虚拟的采样开关和零阶保持器,得到离散化状态空间模型。 (3)在c=0,0.1,0.5,1.0情况下,利用时域离散相似法编程完成对该系统的仿真研究。 三、实验结果 (1)Simulink模型

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0.5 0.60.70.80.911.11.21.31.41.5c=0c=0.1c=0.5c=1 (2)输入程序 clear num=[8 10]; den=[0.1 1 0 0]; [A,B,C,D]=tf2ss(num,den) [Ad,Bd,Cd,Dd]=c2dm(A,B,C,D,0.1) 结果为:A = -10 0 0 1 0 0 0 1 0 B = 1 0 0 C = 0 80 100 D = 0 Ad = 0.3679 0 0 0.0632 1.0000 0 0.0037 0.1000 1.0000 Bd = 0.0632 0.0037 0.0001 Cd = 0 80 100 Dd = 0 (3)算法程序 clear num=[8 10]; den=[0.1 1 0 0]; [A,B,C,D]=tf2ss(num,den) sysc=ss(A,B,C,D); T=0.05; sysd=c2d(sysc,T); Ad=sysd.a; Bd=sysd.b; Cd=sysd.c; Dd=sysd.d; X=[0;0;0];

隧道施工技术习题题目练习(最终版)

隧道施工技术复习题 一、选择题: *新奥法是( B ) A、一种施工方法 B、施工原则 C、矿山法 D、全断面施工法 *某隧道初期支护采用格栅钢支撑+双层钢筋网+系统锚杆支护体系,下列施工方法正确(B ) A.架立格栅钢支撑挂好双层钢筋网再喷射砼 B.架立格栅钢支撑挂第一层钢筋网喷射砼再挂第二层钢筋网喷射砼 C.不论喷射砼多厚,一次就喷射够厚度 D.喷射砼应分段、分部、分块,按先拱后墙,自上而下地进行喷射 *隧道通过松散地层施工,为了减少对围岩的扰动,施工时常用的手段(B )A.先挖后护 B.先护后挖,密闭支撑,边挖边封闭 C.强爆破,弱支护 D.全断面开挖 *明洞浇注拱圈混凝土的拆模强度低线为( A ) A、设计强度70% B、设计强度80% C、设计强度60% D、设计强度90% *岩石隧道开挖中辅助眼的爆破方式为( D ) A、预裂爆破 B、齐发爆破 C、光面爆破 D、微差爆破 *光面爆破中炮眼的起爆顺序为( B ) A、周边眼1,掏槽眼2,辅助眼3 B、掏槽眼1,辅助眼2,周边眼3 C、掏槽眼1,周边眼2,辅助眼3 D、周边眼、掏槽眼、辅助眼同时起爆*公路隧道围岩分类中的Ⅳ类围岩硬质岩石其饱和抗压极限强度为( B ) A、≥60、 B、≥30、 C、≈30、 D、 =5~30、 *模板放样时,为确保衬砌不侵入隧道建筑限界,允许将衬砌轮廓线扩大( A ) A、5 B、10 C、15 D、20 *公路隧道围岩分类标准是以( D ) A、岩石的综合物理指标为基础 B、岩体构造、岩性特征为基础 C、地质勘察手段相联系 D、坑道稳定状态为基础 *设置仰拱的隧道,路面下应回填以( C ) A、天然砂砾 B、粗砂 C、浆砌片石或贫砼 D、稳定土 *公路隧道洞门内行车道路面宜采用( A ) A、沥青混凝土 B、沥青碎石 C、水泥混凝土 D、沥青贯入式 *隧道新奥法施工的理论基础是( C ) A、充分发挥喷锚支护的作用 B、充分发挥二次衬砌的作用 C、充分发挥岩体的自承能力 D、岩体的平衡拱作用 *隧道施工是指修建( A )。 A.隧道及地下洞室的施工方法、施工技术和施工管理的总称; B.地下洞室及巷道; C.躲避洞; D.地下交通工程。 *下列叙述错误有(A ) A.断层构造方面与隧道轴线的组合关系只有正交和斜交 B.隧道施工遇到断层一般先探明断层地质情况后再选用合理的施工方法 C.隧道穿过断层地段,施工难度取决于断层的性质、破碎带的宽度、填充物、含水性和断层活动性等因素 D.通过断层带的各施工工序之间的距离宜尽量缩短,并尽快地使全断面衬砌封

一种离散单元法的弹性可变形颗粒模型

第32卷第7期重庆大学学报 Vol.32No.72009年7月 Journal of Chongqing University J ul.2009 文章编号:10002582X (2009)0720743204 一种离散单元法的弹性可变形颗粒模型 温 彤,雷 杰, 裴春雷 (重庆大学材料科学与工程学院,重庆400030) 摘 要:基于弹性变形的Hoo ke 定律,提出了一种考虑颗粒变形以及不同材料特性的离散单 元法(discrete element met hod ,D EM )的多边形颗粒模型,根据该模型开发了相应的DEM 程序。应用有限元方法和D EM 模拟了弹性颗粒的碰撞过程。通过与有限元计算结果比较,证明在处理颗粒的接触问题时,该弹性可变形颗粒模型比传统刚性模型能够准确地反映颗粒介质的实际变形和接触力的变化,从而能够提高DEM 分析的精度。 关键词:离散单元法;颗粒;变形;碰撞 中图分类号:TF124文献标志码:A E lastic deform able particle model in discrete element method WE N Tong ,LEI Jie ,PEI Chun 2lei (College of Material Science and Engineering ,Chongqing U niversity ,Chongqing 400030,P.R.China )Abstract :A polygon particle model wit h discrete element met hod (DEM )is developed based on t he Hooke ’s law ,in which t he geomet ry change caused by t he elastic deformation and feat ures of material can be taken into account.A DEM p rogramme is developed based on t he p roposed model and collision processes of elastic particles is st udied wit h finite element met hod (FEM )and https://www.360docs.net/doc/0d4313894.html,paring t he result of D EM wit h t hat of FEM.When dealing wit h t he problem of particles contact ,t he real deformation and t he contact force variation of t he particles can be presented more accurately wit h elastic deformable particle model ,compared wit h t hat f rom t raditional rigid particle model. K ey w ords :discrete element met hod ;particle ;deformation ;collision 离散单元法(discrete element met hod ,DEM )是由Cundall 等人在20世纪70年代提出的一种分析离散体力学问题的数值方法[1]。该方法通过跟踪每一个颗粒的运动以及颗粒与周围环境的相互作用来认识整个颗粒系统,可以提供每个时间步中颗粒的位置、位移增量、速度以及角速度等重要信息。该方法有效弥补了连续介质力学在处理离散颗粒系统方面的局限,经过30多年的发展,成为了模拟非连续体的代表性方法,近年来在岩土工程、粉末冶金以及粉体工程等领域的研究中越来越得到重视[227]。 但现有的DEM 分析中,大多把颗粒假设为刚 性体,不能直接考虑实际颗粒受到外力作用时产生的弹性甚至塑性变形,同时通过颗粒间的几何叠加来处理和近似计算颗粒的接触、体积变化等,与实际情况有较大出入。笔者对传统的刚性模型进行了改进,提出了一种考虑颗粒弹性变形引起几何形状改变的颗粒模型,并开发了相应的DEM 程序。 1 离散单元法简介 常用的DEM 颗粒模型有圆形颗粒、椭圆形颗

相关文档
最新文档