2011年北师大版七年级下数学第五章三角形测试题

合集下载

(北师大版)七年级下数学第五章《三角形》测试题

(北师大版)七年级下数学第五章《三角形》测试题

图1ABCD1 2图2 A B CDE图4七年级下数学第三章《三角形》测试题一、细心选一选: 1、下列各组长度的线段为边,能构成三角形的是( )A 、7cm 、5cm 、12cmB 、6cm 、8 cm 、15cmC 、8cm 、4 cm 、3cmD 、4cm 、6 cm 、5cm 2、如图1,⊿AOB ≌⊿COD ,A 和C ,B 和D 是对应顶点,若BO=8,AO=10,AB=5,则CD 的长为( ) A 、10 B 、8 C 、5 D 、不能确定3、如图2,已知∠1=∠2,要说明⊿ABD ≌⊿ACD ,还需从下列条件中选一个,错误的选法是( ) A 、∠ADB=∠ADC B 、∠B=∠C C 、DB=DC D 、AB=AC4、生活中,我们经常会看到如图3所示的情况,在电线杆上拉两条钢筋,来加固电线杆,这是利用了三角形的( )A 、稳定性 B 、全等性 C 、灵活性 D 、对称性5、如图4所示,已知AB ∥CD ,AD ∥BC ,那么图中共有全等三角形( )A 、8对B 、4对C 、2对D 、1对6、下列语句:①面积相等的两个三角形全等; ②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同; ④边数相同的图形一定能互相重合。

其中错误的说法有( )A 、4个 B 、3个 C 、2个 D 、1个7、如果一个三角形三边上的高的交点在三角形的外部,那么这个三角形是( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、任意三角形8、图4中全等的三角形是 ( ) A 、Ⅰ和Ⅱ B 、Ⅱ和Ⅳ C 、Ⅱ和Ⅲ D 、Ⅰ和Ⅲ9、如图5,⊿ABC 中,∠ACB=900,把⊿ABC 沿AC 翻折180°,使点B 落在B ’的位置,则关于线段AC 的性质中,准确的说法是( )A 、是边BB ’上的中线 B 、是边BB ’上的高C 、是∠BAB ’的角平分线D 、以上三种性质都有 10、根据下列条件作三角形,不能唯一确定三角形的是( )A 、已知三个角B 、已知三条边C 、已知两角和夹边D 、已知两边和夹角 二、填空:11、在△ABC 中,若∠A :∠B :∠C=1:3:5,这个三角形为 三角形。

数学七年级下北师大版第5章三角形单元检测题 (B)

数学七年级下北师大版第5章三角形单元检测题 (B)

第五章 三角形 单元检测题 (B)1.一定在△ABC 内部的线段是〔 〕A .锐角三角形的三条高、三条角平分线、三条中线B .钝角三角形的三条高、三条中线、一条角平分线C .任意三角形的一条中线、二条角平分线、三条高D .直角三角形的三条高、三条角平分线、三条中线 2.以下说法中,正确的选项是〔 〕A .一个钝角三角形一定不是等腰三角形,也不是等边三角形B .一个等腰三角形一定是锐角三角形,或直角三角形C .一个直角三角形一定不是等腰三角形,也不是等边三角形D .一个等边三角形一定不是钝角三角形,也不是直角三角形3.如图,在△ABC 中,D 、E 分别为BC 上两点,且BD =DE =EC ,则图中面积相等的三角形有〔 〕 A .4对 B .5对 C .6对 D .7对 〔注意考虑完全,不要漏掉某些情况〕4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是〔 〕 A .锐角三角形 B .钝角三角形 C .直角三角形 D .无法确定 5.以下各题中给出的三条线段不能组成三角形的是〔 〕A .a +1,a +2,a +3〔a >0〕B .三条线段的比为4∶6∶10C .3cm ,8cm ,10cmD .3a ,5a ,2a +1〔a >0〕 6.假设等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是〔 〕 A .18 B .15 C .18或15 D .无法确定7.两根木棒分别为5cm 和7cm ,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有〔 〕种 A .3 B .4 C .5 D .68.△ABC 的三边a 、b 、c 都是正整数,且满足a ≤b ≤c ,如果b =4,那么这样的三角形共有〔 〕个 A .4 B .6 C .8 D .10 9.各边长均为整数的不等边三角形的周长小于13,这样的三角形有〔 〕 A .1个 B .2个 C .3个 D .4个 10.三角形所有外角的和是〔 〕A .180°B .360°C .720°D .540° 11.锐角三角形中,最大角α的取值范围是〔 〕A .0°<α<90°;B .60°<α<180°;C .60°<α<90°;D .60°≤α<90° 12.如果三角形的一个外角不大于和它相邻的内角,那么这个三角形为〔 〕A .锐角或直角三角形;B .钝角或锐角三角形;C .直角三角形;D .钝角或直角三角形 13.已知△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,则∠BOC 一定〔 〕 A .小于直角; B .等于直角; C .大于直角; D .大于或等于直角14.如图:〔1〕AD ⊥BC ,垂足为D ,则AD 是________的高, ∠________=∠________=90°;〔2〕AE 平分∠BAC ,交BC 于点E ,则AE 叫________, ∠________=∠________=21∠________,AH 叫________; 〔3〕假设AF =FC ,则△ABC 的中线是________;〔4〕假设BG=GH=HF,则AG是________的中线,AH是________的中线.15.如图,∠ABC=∠ADC=∠FEC=90°.〔1〕在△ABC中,BC边上的高是________;〔2〕在△AEC中,AE边上的高是________;〔3〕在△FEC中,EC边上的高是________;〔4〕假设AB=CD=3,AE=5,则△AEC的面积为________.16.在等腰△ABC中,如果两边长分别为6cm、10cm,则这个等腰三角形的周长为________.17.五段线段长分别为1cm、2cm、3cm、4cm、5cm,以其中三条线段为边长共可以组成________个三角形.18.已知三角形的两边长分别为3和10,周长恰好是6的倍数,那么第三边长为________.19.一个等腰三角形的周长为5cm,如果它的三边长都是整数,那么它的腰长为________cm.20.在△ABC中,假设∠A∶∠B∶∠C=5∶2∶3,则∠A=______;∠B=______;∠C=______.21.如图,△ABC中,∠ABC、∠ACB的平分线相交于点I.〔1〕假设∠ABC=70°,∠ACB=50°,则∠BIC=________;〔2〕假设∠ABC+∠ACB=120°,则∠BIC=________;〔3〕假设∠A=60°,则∠BIC=________;〔4〕假设∠A=100°,则∠BIC=________;〔5〕假设∠A=n°,则∠BIC=________.22.如图,在△ABC中,∠BAC是钝角.画出:〔1〕∠ABC的平分线;〔2〕边AC上的中线;〔3〕边AC上的高.23.△ABC的周长为16cm,AB=AC,BC边上的中线AD把△ABC分成周长相等的两个三角形.假设BD=3cm,求AB的长.24.如图,AB∥CD,BC⊥AB,假设AB=4cm,2S,求△ABD中AB边上的高.=12cm∆ABC25.学校有一块菜地,如以下图.现计划从点D表示的位置〔BD∶DC=2∶1〕开始挖一条小水沟,希望小水沟两边的菜地面积相等.有人说:如果D是BC的中点的话,由此点D笔直地挖至点A 就可以了.现在D 不是BC 的中点,问题就无法解决了.但有人认为如果认真研究的话一定能办到.你认为上面两种意见哪一种正确,为什么?26.在直角△ABC 中,∠BAC =90°,如以下图所示.作BC 边上的高,图中出现三个直角三角形〔3=2×1+1〕;又作△ABD 中AB 边上的高1DD ,这时图中便出现五个不同的直角三角形〔5=2×2+1〕;按照同样的方法作21D D 、32D D 、……、k k D D 1-.当作出k k D D 1-时,图中共有多少个不同的直角三角形?27.一块三角形优良品种试验田,现引进四个良种进行比照实验,需将这块土地分成面积相等的四块.请你制订出两种以上的划分方案.28.一个三角形的周长为36cm ,三边之比为a ∶b ∶c =2∶3∶4,求a 、b 、c .11.已知△ABC 的周长为48cm ,最大边与最小边之差为14cm ,另一边与最小边之和为25cm ,求△ABC 各边的长.29.已知三角形三边的长分别为:5、10、a-2,求a的取值范围.30.已知等腰三角形中,AB=AC,一腰上的中线BD把这个三角形的周长分成15cm和6cm 两部分,求这个等腰三角形的底边的长.31.如图,已知△ABC中,AB=AC,D在AC的延长线上.求证:BD-BC<AD-AB.32.如图,△ABC中,D是AB上一点.求证:〔1〕AB+BC+CA>2CD;〔2〕AB+2CD>AC+BC.33.如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G,〔1〕完成下面的证明:∵ MG平分∠BMN〔〕,∴ ∠GMN =21∠BMN 〔 〕, 同理∠GNM =21∠DNM . ∵ AB ∥CD 〔 〕,∴ ∠BMN +∠DNM =________〔 〕. ∴ ∠GMN +∠GNM =________.∵ ∠GMN +∠GNM +∠G =________〔 〕, ∴ ∠G = ________.∴ MG 与NG 的位置关系是________.〔2〕把上面的题设和结论,用文字语言概括为一个命题:_______________________________________________________________. 34.已知,如图D 是△ABC 中BC 边延长线上一点,DF ⊥AB 交AB 于F ,交AC 于E ,∠A =46°,∠D =50°.求∠ACB 的度数.35.已知,如图△ABC 中,三条高AD 、BE 、CF 相交于点O .假设∠BAC =60°, 求∠BOC 的度数.36.已知,如图△ABC 中,∠B =65°,∠C =45°,AD 是BC 边上的高,AE 是∠BAC 的平分线.求∠DAE 的度数.37.已知,如图CE是△ABC的外角∠ACD的平分线,BE是∠ABC内任一射线,交CE于E.求证:∠EBC<∠ACE.38.画出图形,并完成证明:已知:AD是△ABC的外角∠EAC的平分线,且AD∥BC.求证:∠B=∠C.参考答案:1.A; 2.D; 3.A; 4.C;5.B; 6.C; 7.B; 8.D;9.C〔提示:边长分别为3、4、5;2、4、5;2、3、4.〕10.C; 11.D; 12.D; 13.C;14.〔1〕BC 边上,ADB ,ADC ;〔2〕∠BAC 的角平分线,BAE ,CAE ,BAC ,∠BAF 的角平分线; 〔3〕BF ;〔4〕△ABH ,△AGF ; 15.〔1〕AB ; 〔2〕CD ; 〔3〕EF ; 〔4〕7.5; 16.22cm 或26cm ; 17.3; 18.11; 19.2;5.90°,36°,54°;20.〔1〕120°; 〔2〕120°; 〔3〕120°; 〔4〕140°; 〔5〕290︒+︒n ; 21.略;22.解法1:AB +BD +DA =DA +AC +CD ,∴ BD =CD ,∵ BD =3cm ,∴ CD =3cm ,BC =6cm ,∵ AB =AC ,∴ AB =5cm . 解法2:△ABD 与△ACD 的周长相等,而AB =AC ,∴ BD =CD , ∴ BC =2BD =6cm ,∴ AB =〔16-6〕÷2=5cm . 23.212cm =∆ABC S ,∴21AB ·BC =12,AB =4,∴ BC =6, ∵ AB ∥CD ,∴ △ABD 中AB 边上的高=BC =6cm . 24.后一种意见正确.25.不作垂线,一个直角三角形,即:1=2×0+1,作一条垂线,三个直角三角形,即:3=2×1+1,同理,5=2×2+1,找出相应的规律,当作出k k D D 1-时,图中共有2×k +1,即2k +1个直角三角形.26.第一种方案:在BC 上取E 、D 、F ,使BE =ED =DF =FC ,连结AE 、AD 、AF ,则△ABE 、△AED 、△ADF 、△AFC 面积相等;第二种方案:取AB 、BC 、CA 的中点D 、E 、F ,连结DE 、EF 、FD ,则△ADF 、△BDE 、△CEF 、△DEF 面积相等.27.设三边长a =2k ,b =3k ,c =4k ,∵ 三角形周长为36,∴ 2k +3k +4k =36,k =4, ∴ a =8cm ,b =12cm ,c =16cm .28.设三角形中最大边为a ,最小边为c ,由已知,a -c =14,b +c =25,a +b +c =48, ∴ a =23cm ,b =16cm ,c =9cm .29.10-5<a -2<10+5,∴ 7<a <17. 30.设AB =AC =2x ,则AD =CD =x ,〔1〕当AB +AD =15,BC +CD =6时,2x +x =15,∴ x =5,2x =10,∴ BC =6-5=1cm ;〔2〕当AB +AD =6,BC +CD =15时,2x +x =6,∴ x =2,2x =4,∴ BC =13cm ;经检验,第二种情况不符合三角形的条件,故舍去. 31.AD -AB =AC +CD -AB =CD ,∵ BD -BC <CD , ∴ BD -BC <AD -AB .32.〔1〕AC +AD >CD ,BC +BD >CD , 两式相加:AB +BC +CA >2CD . 〔2〕AD +CD >AC ,BD +CD >BC , 两式相加:AB +2CD >AC +BC .33.〔1〕已知,角平分线定义,已知,180°,两直线平行同旁内角互补,90°,180°,三角形内角和定理,90°,互相垂直.〔2〕两平行直线被第三条直线所截,它们的同旁内角的角平分线互相垂直.34.94°; 35.120°; 36.10°;37.∠EBC<∠DCE,而∠DCE=∠ACE,∴∠EBC<∠ACE.38.略.。

北师大版七年级数学认识三角形练习题

北师大版七年级数学认识三角形练习题

北师大数学七年级下册课堂达标测试题一、填空(每空3分,共60分)1.三角形的三边关系:①三角形任意两边之和 第三边;②三角形任意两边之差 第三边.2.下列每组分别是三根小木棒的长度,用它们能摆成三角形吗(填“能”或“不能”):(1)3㎝,4㎝,5㎝( ) (2)8㎝,7㎝,15㎝ ( )(3)13㎝,12㎝,20㎝( ) (4)5㎝,5㎝,11㎝ ( )(5)6cm, 8cm, 10cm ( )(6)7cm, 7cm, 14cm ( ) 3.在△ABC 中,∠A =10°,∠B =30°,则∠C =.在△ABC 中,∠A =90°,∠B =∠C ,则∠B =_________.5.(1)一个等腰三角形的一边是2cm ,另一边是9cm ,则这个三角形的周长是 _____________cm.(2)一个等腰三角形的一边是5cm ,另一边是7cm ,则这个三角形的周长是_____________cm.…6.如果∠B +∠C =∠A ,那么△ABC 是 三角形. 7.在△ABC 中,AB =6 cm ,AC =8 cm 那么BC 长的取值范围是 .8.ABC ∆中,AD 是ABC ∆的中线,且cm BC 10=,则BD= cm. 9.在ABC ∆中,︒=∠80A ,AD 为A ∠的平分线,则BAD ∠=10.如果一个三角形两边上的高的交点,恰好是三角形的一个顶点,则此三角形是 _____________三角形.11.判断具备下面条件的三角形是直角三角形、锐角三角形还是钝角三角形:(1)如果4:3:1::=∠∠∠C B A ,那么ABC ∆是 三角形;(2)如果B A ∠=∠,︒=∠30C ,那么ABC ∆是 三角形;(3)如果C B A ∠=∠=∠51,那么ABC ∆是 三角形.二、选择(每题3分,共27 分)1.在△ABC 中,∠A 是锐角,那么△ABC 是( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形D 、不能确定2.△ABC 中,若∠A ∶∠B ∶∠C =1∶2∶3,则△ABC 的形状是( )¥A 、锐角三角形B 、直角三角形C 、钝角三角形D 、不确定3.以下是由四位同学描述三角形的三种不同的说法,正确的是( ) A 、由三个角组成的图形叫三角形 B 、由三条线段组成的图形叫三角形 C 、由三条直线组成的图形叫三角形 D 、由不在同一直线上的三条线段首尾顺次相接所组成的图形叫三角形 4.△AB C 中,已知a =8, b =5,则c 为( ) A 、c =3 B 、c =13C 、c 可以是任意正整数D 、c 可以是大于3小于13的任意数值5. 下面说法中正确的是:( )A 、三角形的角平分线,中线,高都在三角形内 B 、直角三角形的高只有一条C 、钝角三角形的三条高都在三角形外 D 、三角形至少有一条高在三角形内 6. 如果一个三角形的三条高线的交点恰好是三角形的一个顶点,那么这个三角形是( ) A 、直角三角形 B 、锐角三角形 C 、钝角三角形 D 、不能确定;7.在一个三角形,若︒=∠=∠40B A ,则ABC ∆是( )A 、直角三角形B 、锐角三角形C 、钝角三角形D 、以上都不对8.三角形的高线是 ( ) A 、线段 B 、垂线 C 、射线 D 、直线 9.在Rt △中,两个锐角关系是( )A 、互余 B 、互补 C 、相等 D 、以上都不对 三、解答题1.如图,在△ABC 中,∠BAC=60°,∠B=45°,AD 是△ABC 的一条角平分线求∠ADB 的度数. (7分)—2.在下列图中,分别画出三角形的三条高。

北师大版七年级数学下册第五单元三角形测试题及答案

北师大版七年级数学下册第五单元三角形测试题及答案

北师大版七年级数学下册第五单元三角形测试题及答案一、填空题:(每题2分,共24分)1.等边三角形的每个内角都等于º2.已知直角三角形的一个锐角的度数为50º,则其另一个锐角的度数为度3.如图在建筑工地上,工人师傅砌门时,常用木条EF固定长方形门框,使其不变形,这种做法的根据是4.如图,△ABC中,DE∥BC,若∠A=80º,∠B=40º,则∠AED=º5.如图,△ABC中,∠A=40º,∠B=80º,CD平分∠ACB,则∠ACD=º6.已知△ABC≌△DEF,且△ABC的三边长分别为3,4,5,则△DEF的周长为cm7.在直角三角形、钝角三角形和锐角三角形这三种三角形中,有两条高在三角形外部的是三角形8.如图,已知AB=AC,EB=EC,则图中共有全等三角形对9.如图所示的两个三角形全等吗?10.如图,已知AD为△ABC的中线,请添加一个条件,使得∠1=∠2,你添加的条件是11.用直尺和圆规作一个角等于已知角的示意图如下,则要说明∠A′O′B′=∠AOB,需要证明△A′O′B′≌△AOB,则这两个三角形全等的依据是(写出全等的简写)12.把一副三角板按如图所示放置,已知∠A=45º,∠E=30º,则两条斜边相交所成的钝角∠AOE的度数为度二、选择题(每题3分,共30分)13.如图,三角形被遮住的两个角不可能是A.一个锐角,一个钝角B.两个锐角C.一个锐角,一个直角D.两个钝角14.有下列长度的三条线段,能组成三角形的是()A、1cm,2cm,3cmB、1cm,4cm,2cmC、2cm,3cm,4cmD、6cm,2cm,3cm15.下列条件中,能判断两个直角三角形全等的是()A、一个锐角对应相等B、两个锐角对应相等C、一条边对应相等D、两条边对应相等16.两根木条的长分别是10cm和20cm,要钉成一个三角形的木架,则第三根木条的长度可以是()A、10cmB、5cmC、25cmD、35cm17.小明不慎将一块三角形的玻璃摔碎成如图所示的四块哪一些块带去,就能配一块与原来一样大小的三角形。

北师大版数学七年级下册数学同步测试卷:第五章 生活中的轴对称(含答案)

北师大版数学七年级下册数学同步测试卷:第五章 生活中的轴对称(含答案)

第五章生活中的轴对称(满分100分)一、选择题(30分)1.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标是轴对称图形的是()A B C D2.下列图形:线段、等边三角形、平行四边形、圆、正六边形.其中是轴对称图形的有() A.2个B.3个C.4个D.5个3.将一张长方形的纸片对折,然后用笔尖在上面扎出字母“B”,再把它展开铺平后,你可以看到的图形是()A B C D4.如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置O,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是()A.①B.②C.⑤D.⑥5.下列各图中,OP是∠MON的平分线,点E,F,G分别在射线OM,ON,OP上,则可以解释定理“角平分线上的点到角的两边的距离相等”的图形是()A B C D6.如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E,那么∠EDC等于()A.60°B.40°C.20°D.无法确定7.如图,在锐角三角形ABC中,直线l为BC的中垂线,射线m为∠ABC的平分线,l与m相交于点P.若∠A=60°,∠ACP=24°,则∠ABP的度数为()A.24°B.30°C.32°D.36°8.如图,△ABC的三边AB,BC,CA的长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO∶S△BCO∶S△CAO等于()A.1∶1∶1 B.1∶2∶3 C.2∶3∶4 D.3∶4∶59.如图,等边△ABC的边长为1 cm,D,E分别是AB,AC上的点,将△ABC沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分的周长为()A.3.5 cm B.3 cmC.2.5 cm D.2 cm10.如图,在△ABC中,AB=AC,AD,CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CEC.AD D.AC二、填空题(24分)11.等腰三角形的两边长分别为13 cm,6 cm,那么第三边长为________.12.下列缩写符号:①SOS,②CCTV,③BBC,④WWW,⑤TNT,是轴对称图形的是________.(填写序号)13.如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有________种.第13题第14题第15题第16题第17题14.如图,在△ABC中,AB=AC=3 cm,AB的垂直平分线交AC于点N,△BCN的周长是5 cm,则BC的长等于________cm.15.如图,在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A=________.16.如图是用一张长方形纸条折成的.如果∠1=110°,那么∠2=________.17.如图,在△ABC中,BC=8 cm,BP,CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC,则△PDE的周长是________cm.18.如图是一组按照某种规律摆放成的图案,则第2019个图案________轴对称图形.(填“是”或“不是”)三、简答题(46分)19.(6分)如图,△ABC与△DEF关于直线l对称,请仅用无刻度的直尺,在下面两个图中分别作出直线l.20.(10分)用圆规、直尺作图,不写作法,但要保留作图痕迹.如图所示,某汽车探险队要从A城穿越沙漠到B城,途中需要到河l边为汽车加水,则汽车在河边哪一点加水,才能使行驶的总路程最短?请你在图上画出这一点.21.(10分)瓦工师傅盖房时,看房梁是否水平,有时就用一块等腰三角板放在梁上(如图),从顶点系一重物.如果系重物的线恰好经过三角板底边的中点,则瓦工师傅就判断此房梁是水平的.这种方法是否合理?请阐述你的理由.22.(10分)(2018·无锡期末)如图,在△ABC中,AB=AC,AD是角平分线,点E在AD上,请写出图中的两对全等三角形,并选择其中的一对说明理由.23.(10分)如图,已知BD平分∠ABC,AB=AD,DE⊥AB,垂足为E.(1)AD∥BC吗?请说明理由;(2)①若DE=6 cm,求点D到BC的距离;②当∠ABD=35°,∠DAC=2∠ABD时,求∠BAC的度数.参考答案1~10:ACCAD CCCBB11.13cm12.③④13.314.215.87°16.5517.818.是19.20.解:如答图所示,作点A关于直线l的对称点A1,连接A1B,则A1B与直线l的交点C即为所求的点.21.解:合理.理由:根据等腰三角形三线合一的性质,系重物的线过底边的中点,此线也为底边上的高.因为线是铅直的,所以底边即房梁就是水平的.22.解:答案不唯一,如△ABE≌△ACE,△EBD≌△ECD.以△ABE≌△ACE为例,理由如下:因为AD平分∠BAC,所以∠BAE=∠CAE.在△ABE和△ACE中,⎩⎪⎨⎪⎧AB=AC,∠BAE=∠CAE,AE=AE,所以△ABE≌△ACE(SAS).23(1)解:AD∥BC.理由:因为BD平分∠ABC,所以∠ABD=∠DBC.又因为AB=AD,所以∠ABD=∠ADB,所以∠ADB=∠DBC,所以AD∥BC.(2)①解:如答图,①作DF⊥BC交BC的延长线于点F.因为BD平分∠ABC,DE⊥AB,DF⊥BC,所以DF=DE=6 cm.②因为BD平分∠ABC,所以∠ABC=2∠ABD=∠DAC=70°.因为AD∥BC,所以∠ACB=∠DAC=70°,所以∠BAC=180°-∠ABC-∠ACB=180°-70°-70°=40°.北师大版。

七年级数学下册-第五章综合检测试卷5-北师大版(含答案)

七年级数学下册-第五章综合检测试卷5-北师大版(含答案)

第五章综合检测试卷(满分:120分)一、选择题(每小题3分,共30分)1.下列图形中,不是轴对称图形的是(A)2.如图,在△ABC中,∠B=40°,AC的垂直平分线交AC于D,交BC于E,且∠EAB∶∠CAE=3∶1,则∠C等于(A)A.28°B.25°C.22.5°D.20°3.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E、D两点,EC=4,△ABC 的周长为23,则△ABD的周长为(B)A.13 B.15C.17 D.194.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,CD∶BD=1∶2,BC=2.7 cm,则点D到AB的距离DE为(A)A.0.9 cm B.1.8 cmC.2.7 cm D.3.6 cm5.已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画(B) A.3条B.4条C.5条D.6条6.如图,△ABC与△A′B′C′关于直线MN对称,P为MN上任一点(A、P、A′不共线),下列结论中,错误的是(D)A.△AA′P是等腰三角形B.MN垂直平分AA′、CC′C.△ABC与△A′B′C′面积相等D.直线AB、A′B′的交点不一定在直线MN上7.如图,阴影部分是由5个小正方形组成的一个直角图形,再将方格内空白的两个小正方形涂上阴影,得到新的图形(阴影部分)是轴对称图形,其中涂法有(D)A.6种B.7种C.8种D.9种8.如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′恰好落在CD上,若∠BAD=100°,则∠ACB的度数为(A)A.40°B.45°C.60°D.80°9.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC、AB边于E、F点.若D为BC边的中点,M为线段EF上一动点,则△CDM周长的最小值为(C)A.6 B.8C.10 D.1210.学剪五角星:如图,先将一张长方形纸片按图1的虚线对折得到图2,然后将图2沿虚线折叠得到图3,再将图3沿虚线BC剪下△ABC,展开即可得到一个五角星.如果想得到一个正五角星(如图4),那么在图3中剪下△ABC时,应使∠ABC的度数为(A)A.126°B.108°C.100°D.90°二、填空题(每小题4分,共28分)11.在平面镜里看到背后墙上电子钟显示的时间如图所示,这时的实际时间应该是21:05.第11题12.如图,在等腰△ABC中,AB=AC,∠BAC=124°,AD是BC边上的中线,且BD =BE,则∠ADE=14°.13.如图,D、E分别为△ABC两边AB、AC的中点,将△ABC沿DE折叠,使点A落在BC上的点F处,若∠B=55°,则∠BDF=70°.14.如图,在△ABC中,AB=AC=10,AB的垂直平分线交AC于点D.若△ADB的周长为24,则CD的长为3.15.如图,在2×2的正方形网格纸中,有一个以格点为顶点的△ABC,请你找出网格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有5个.16.如图,△ABC 和△CDE 均为等边三角形,∠EBD =62°,则∠AEB 的度数为 122° .17.如图,在△ABC 中,AB =AC ,AD 是角平分线,DE ⊥AB ,DF ⊥AC ,E 、F 为垂足,以下结论:①DE =DF ;②BD =CD ;③AD 上任一点到AB 、AC 的距离相等;④AD 上任一点到B 、C 两点的距离相等.其中正确的结论有 ①②③④ .(填序号)三、解答题(一)(每小题6分,共18分)18.如图,在8×12的正方形网格中,已知四边形ABCD 是轴对称图形.(1)画出四边形ABCD 的对称轴EF ;(2)画出四边形ABCD 关于直线HG 成轴对称的四边形A 1B 1C 1D 1.解:(1)(2)如图所示:19.如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,AE ⊥BE 于点E ,且BE =12BC .求证:AB 平分∠EAD .证明:因为AB =AC ,AD 是BC 边上的中线,所以BD =12BC ,AD ⊥BC .因为BE =12BC ,所以BD =BE .又因为AE ⊥BE ,AD ⊥BC ,所以AB 平分∠EAD .20.如图,在△ABC 中,点O 是∠ABC 和∠ACB 平分线的交点,AB +BC +AC =20,过点O 作OD ⊥BC 于点D ,且OD =3,求△ABC 的面积.解:过点O 作OE ⊥AB 于点E ,OF ⊥AC 于点F ,连接OA .因为点O 是∠ABC 、∠ACB 平分线的交点,所以OE =OD ,OF =OD ,即OE =OF =OD =3,所以S △ABC =S △ABO +S △BCO+S △ACO =12AB ·OE +12BC ·OD +12AC ·OF =12·OD ·(AB +BC +AC )=12×3×20=30. 四、解答题(二)(每小题8分,共24分)21.如图,点P 关于OA 、OB 的对称点分别为点C 、D ,连接CD ,交OA 于点M ,交OB 于点N .(1)若CD 的长为18 cm ,求△PMN 的周长;(2)若∠AOB =48°,求∠MPN .解:(1)因为点P 关于OA 、OB 的对称点分别为点C 、D ,所以PM =CM ,ND =NP .因为△PMN 的周长=PN +PM +MN =ND +CM +MN =CD =18 cm ,所以△PMN 的周长=18 cm.(2)因为点P 关于OA 、OB 的对称点分别为点C 、D ,所以CM =PM ,PN =DN ,所以∠PMN =2∠C ,∠PNM =2∠D .令PC 与AO 相交的点为R ,PD 与OB 相交的点为T .因为∠PRM =∠PTN =90°,所以在四边形OTPR 中,∠RPT +∠O =180°,所以∠RPT =180°-48°=132°,所以∠C +∠D =48°,所以∠MPN =180°-48°×2=84°.22.如图,在△ABC 中,AB >AC ,AF 是∠BAC 的平分线,D 是AB 上一点,且AD =AC ,DE ∥BC 交AC 于点E ,连接CD 、DF .(1)△ADF 与△ACF 全等吗?为什么?(2)盈盈认为CD 平分∠FDE ,你认为她说得对吗?请说明理由.解:(1)全等.理由:因为AF 是∠BAC 的平分线,所以∠DAF =∠CAF .因为AD =AC ,AF =AF ,所以△ADF ≌△ACF .(2)对.理由:因为△ADF ≌△ACF ,所以DF =CF ,所以∠FDC =∠FCD .因为DE ∥BC ,所以∠EDC =∠DCF ,所以∠FDC =∠EDC ,即CD 平分∠FDE .23.如图,已知等腰△ABC 中,AB =AC ,点D 、E 分别在边AB 、AC 上,且AD =AE ,连接BE 、CD ,交于点F .(1)判断∠ABE 与∠ACD 的数量关系,并说明理由;(2)求证:过点A 、F 的直线垂直平分线段BC .(1)解:∠ABE =∠ACD .理由:在△ABE 和△ACD 中,⎩⎪⎨⎪⎧ AB =AC ,∠A =∠A ,AE =AD ,所以△ABE ≌△ACD (SAS),所以∠ABE =∠ACD .(2)证明:因为AB =AC ,所以∠ABC =∠ACB .由(1)可知∠ABE =∠ACD ,所以∠ABC -∠ABE =∠ACB -∠ACD ,即∠FBC =∠FCB ,所以FB =FC .因为AB =AC ,所以点A 、F 均在线段BC 的垂直平分线上,即直线AF 垂直平分线段BC .五、解答题(三)(每小题10分,共20分)24.如图,在等边△ABC 中,点D 在BC 边上,点E 在AC 的延长线上,DE =D A .(1)求证:∠BAD =∠EDC ;(2)作出点E 关于直线BC 的对称点M ,连接DM 、AM ,猜想DM 与AM 的数量关系,并说明理由.(1)证明:因为△ABC是等边三角形,所以∠BAC=∠ACB=60°.又因为∠BAD+∠DAC=∠BAC,∠EDC+∠E=∠ACB,所以∠BAD+∠DAC=∠EDC+∠E.因为DE=DA,所以∠DAC =∠E,所以∠BAD=∠EDC.(2)解:DM=AM.理由:如图,连接CM.因为点M、E关于直线BC对称,所以∠MDC =∠EDC,DE=DM.由(1)知∠BAD=∠EDC,所以∠MDC=∠BAD.因为∠ADC=∠BAD+∠B,即∠ADM+∠MDC=∠BAD+∠B,所以∠ADM=∠B=60°.又因为DA=DE=DM,所以∠DAM =∠AMD=60°=∠ADM,所以DM=AM.25.如图,某供电部门准备在输电主干线l上连接一个分支路线,分支点为M,同时向新落成的A、B两个居民小区送电,已知居民小区A、B分别到主干线距离AA1=2千米,BB1=1千米,且A1B1=4千米.(1)如果居民小区A、B在主干线l的两旁,如图1所示,那么分支点M在什么地方时总线路最短?(2)如果居民小区A、B在主干线l的同侧,如图2所示,那么分支点M在什么地方时总线路最短?(3) 比较(1)、(2)小题的两种情况,哪种情况所用总线路较短?解:(1)如图1,连接AB交直线l于点M,则M为分支点.(2)如图2,作点B关于直线l的对称点D,连接AD交直线l于M,则M为分支点.(3)两种情况所用的总线路长相等.如图1,过点B作AA1延长线的垂线,垂足为C;如图2,过点D作AA1延长线的垂线,垂足为C,易证图1中的△ACB与图2中的△ACD全等,则图1中AB等于图2中AD,所以上述两种情况下所用总线路长相等.。

北师大版七年级数学下册 第5章生活中的轴对称 单元测试试题(有答案)

北师大版七年级数学下册 第5章生活中的轴对称 单元测试试题(有答案)

北师大版七年级数学下册第5章生活中的轴对称单元测试题一.选择题(共10小题)1.将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A.B.C.D.2.如图,△ABC是等边三角形,DE∥BC,若AB=5,BD=3,则△ADE的周长为()A.2B.6C.9D.153.如图所示,△ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为()A.15°B.30°C.45°D.60°4.下列语句:①全等三角形的周长相等;②面积相等的三角形是全等三角形;③成轴对称的两个图形全等;④角是轴对称图形,角平分线是角的对称轴.其中正确的有()A.1个B.2个C.3个D.4个5.如图,A、B是两个居民小区,快递公司准备在公路l上选取点P处建一个服务中心,使PA+PB 最短.下面四种选址方案符合要求的是()A.B.C.D.6.如图,在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF的周长为()A.2a B.2.5a C.3a D.4a7.如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=5,则DF的长度是()A.6B.5C.4D.38.“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动、C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°9.如图,在△ABC中,BD平分∠ABC,ED∥BC,若AB=4,AD=2,则△AED的周长是()A.6B.7C.8D.1010.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10B.6C.3D.2二.填空题(共8小题)11.如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC=cm.12.在△ABC中,∠A=60°,要使是等边三角形,则需要添加一条件是.13.如图,在△ABC中,AB=AC,D、E两点分别在AC、BC上,BD是∠ABC的平分线,DE∥AB,若BE=5cm,CE=3cm,则△CDE的周长是.14.如图所示,AOB是一钢架,设∠AOB=α,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH…,添加的钢管长度都与OE相等,若最多能添加这样的钢管4根,则α的取值范围是.15.如图,已知P是∠ACB平分线CD上一点,PM⊥CA,PN⊥CB,垂足分别是M、N,如果PM =4,那么PN=.16.如图,已知△ABC中,∠ABC=50°,P为△ABC内一点,过点P的直线MN分別交AB、BC 于点M、N.若M在PA的中垂线上,N在PC的中垂线上,则∠APC的度数为17.在△ABC中,∠ABC=∠ACB,把这个三角形折叠,使得点B与点A重合,折痕分别交直线AB,AC于点M,N,若∠ANM=50°,则∠B的度数为.18.常见的汉字中,列举三个是轴对称图形的字:.三.解答题(共9小题)19.如图,在△ABC中,∠ABC、∠ACB的平分线交于点E,过点E作EF∥BC,交AB于点M,交AC于点N.求证:MN=MB+NC.20.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,点F在AC上,BE=FC.求证:BD=DF.21.在△ABC中,AB=AC.D为△ABC外一点,且∠ABD=∠ACD=60°.求证:CD=AB﹣BD.22.如图,在长方形纸片ABCD中,AD=4,AB=8,按如图方式折叠,使点B与点D重合,折痕为EF,求DE的长.23.如图,AC=AB,DC=DB,AD与BC相交于O.求证:AD垂直平分BC.24.下面的方格图是由边长为1的42个小正方形拼成的,△ABC的顶点A、B、C均在小正方形的顶点上.(1)作出△ABC关于直线m对称的△A′B′C′;(2)求△ABC的面积.25.在△ABC中,AB=AC,点D在边BC上,点E在边AC上,且AD=AE.(1)如图1,当AD是边BC上的高,且∠BAD=30°时,求∠EDC的度数;(2)如图2,当AD不是边BC上的高时,请判断∠BAD与∠EDC之间的关系,并加以证明.26.如图,已知△ABC中,∠A的平分线与△ABC的外角∠EBC的平分线交于点P.(1)在AB的延长线上截取BE=BC,连结CE、BF相交于点H,求证:BP⊥CE;(2)作PG∥AD,交BC于F,交AE于点G,则线段GF、FC和GA三条线段之间有什么等量关系?并证明你的结论.参考答案与试题解析一.选择题(共10小题)1.解:观察选项可得:只有C是轴对称图形.故选:C.2.解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,∵DE∥BC,∴∠ADE=∠AED=∠B=∠C=60°,∴△ADE为等边三角形,∵AB=5,BD=3,∴AD=AB﹣BD=2,∴△ADE的周长为6,故选:B.3.解:在△ABD和△BCE中,,∴△ABD≌△BCE,∴∠1=∠CBE,∵∠2=∠1+∠ABE,∴∠2=∠CBE+∠ABE=∠ABC=60°.故选:D.4.解:①全等三角形的周长相等,故正确;②面积相等的三角形不一定是全等三角形,故错误;③成轴对称的两个图形全等,故正确;④角平分线是角的对称轴所在的直线,故错误,故选:B.5.解:根据题意得,在公路l上选取点P,使PA+PB最短.则选项A符合要求,故选:A.6.解:∵折叠∴∠B=∠EDB=30°,∠FDC=∠C=90°,∴∠FED=60°,∠EFD=60°,∴△DEF是等边三角形,∴DE=EF=DF=a,∴△DEF的周长为3a,故选:C.7.解:∵BG是∠ABC的平分线,DE⊥AB,DF⊥BC,∴DF=DE=5,故选:B.8.解:∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,∴∠DCE=∠O+∠ODC=2∠ODC,∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°,∵∠CDE+∠ODC=180°﹣∠BDE=105°,∴∠CDE=105°﹣∠ODC=80°.故选:D.9.解:∵ED∥BC,∴∠EDB=∠CBD,∵BD平分∠ABC,∴∠CBD=∠ABD,∴∠EDB=∠ABD,∴DE=BE,∴AE+ED+AD=AE+BE+AD=AB+AD=4+2=6,即△AED的周长为6,故选:A.10.解:如图所示,n的最小值为3,故选:C.二.填空题(共8小题)11.解:延长ED交BC于M,延长AD交BC于N,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=CN,∵∠EBC=∠E=60°,∴△BEM为等边三角形,∵BE=6,DE=2,∴DM=4,∵△BEM为等边三角形,∴∠EMB=60°,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=30°,∴NM=2,∴BN=4,∴BC=2BN=8,故答案为8.12.解:∵在△ABC中,∠A=60°,∴要使是等边三角形,则需要添加一条件是:AB=AC或AB=BC或AC=BC.故答案为:此题答案不唯一,如AB=AC或AB=BC或AC=BC.13.解:∵DE∥AB,BD平分∠ABC,∴∠EBD=∠ABD=∠EDB,∴DE=BE=5cm,∵AB=AC,DE∥AB,∴∠C=∠ABE=∠DEC,∴DC=DE=5cm,且CE=3cm,∴DE+EC+CD=5cm+3cm+5cm=13cm,即△CDE的周长为13cm,故答案为:13cm.14.解:∵OE=EF,∴∠EOF=∠EFO=α,∴∠GEF=∠EOF+∠EFO=2α,同理可得∠GFH=3α,∠HGB=4α,∵最多能添加这样的钢管4根,∴4α<90°,5α≥90°,∴18°≤α<22.5°,故答案为18°≤α<22.5°.15.解:∵P是∠ACB平分线CD上一点,PM⊥CA,PN⊥CB,∴PN=PM=4,故答案为4.16.解:∵∠B+∠BMN+∠BNM=180°,∴∠BMN+∠BNM=180°﹣50°=130°,∵M在PA的中垂线上,∴MA=MP,∴∠MAP=∠MPA,同理,∠NCP=∠NPC,∵∠BMN=∠MAP+∠MPA,∠BNM=∠NPC+∠NCP,∴∠MPA+∠NPC=×130°=65°,∴∠APC=180°﹣65°=115°,故答案为:115°.17.解:①如图1所示:由折叠可得MN⊥AB,则∠AMN=90°,∵∠ANM=50°,∴∠A=180°﹣90°﹣50°=40°,∴∠B=(180°﹣40°)÷2=70°;②如图2所示:由折叠可得MN⊥AB,则∠AMN=90°,∵∠ANM=50°,∴∠NAM=40°,∵∠B=∠C,∵∠B+∠C=∠NAM=40°,∴∠B=20°,故答案为:70°或20°.18.解:列举三个是轴对称图形的字:日、中、工等.故答案为:日、中、工等.三.解答题(共9小题)19.证明:∵∠ABC、∠ACB的平分线相交于点E,∴∠MBE=∠EBC,∠ECN=∠ECB,∵MN∥BC,∴∠EBC=∠MEB,∠NEC=∠ECB,∴∠MBE=∠MEB,∠NEC=∠ECN,∴BM=ME,EN=CN,∵MN=ME+EN,∴MN=BM+CN.20.证明:∵AD平分∠BAC,DE⊥AB,∠C=90°,∴DC=DE,在△DCF和△DEB中,,∴△DCF≌△DEB,(SAS),∴BD=DF.21.证明:延长BD到E,使BE=BA,连接AE,CE.∵∠ABD=60°,∴△ABE为等边三角形.∴AE=AB=AC=BE,∠ACE=∠AEC;∠AEB=60°;又∵∠ACD=60°,则∠AEB=∠ACD;∴∠DEC=∠DCE,DC=DE.∴BD+DC=BD+DE=BE=AB,∴DC=AB﹣BD.22.解:根据折叠可知:DE=BE,长方形纸片ABCD中,AD=4,AB=8,所以AE=8﹣DE,在Rt△ADE中,根据勾股定理,得DE2=AE2+AD2,DE2=(8﹣DE)2+42,解得:DE=5.答:DE的长为5.23.证明:∵AB=AC,∴点A在BC的垂直平分线上,∵DC=DB,∴点D在BC的垂直平分线上,∴AD垂直平分BC.24.解:(1)如图,△A′B′C′为所作;(2)△ABC的面积=3×3﹣×1×3﹣×2×1﹣×2×3=3.5.25.解:(1)∵AD是边BC上的高,∴∠ADC=90°,∵AB=AC,∴AD是∠BAC的角平分线,∴∠BAD=∠CAD,∵∠BAD=30°,∴∠CAD=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°;(2)∠BAD=2∠EDC,理由:∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED,∵∠ADC=∠B+∠BAD,∠AED=∠C+∠EDC,∴∠B+∠BAD=∠ADC=∠ADE+∠EDC=∠AED+∠∠EDC=∠C+2∠EDC,∴∠BAD=2∠EDC.26.证明:(1)∵BE=BC,PB是∠EBC的平分线,∴BP⊥CE;(2)GA=GF+FC;理由:连接PC,作PM⊥AE于M,PN⊥BC于N,PK⊥AD于K,∵PA是∠A的平分线,PB是∠EBC的平分线,∴PM=PN=PK,∴PC是∠DCE的平分线,∴∠DCP=∠PCB,∵PG∥AD,∴∠CAP=∠APG,∠DCP=∠CPG,∵∠PAC=∠PAG,∴∠PAG=∠APG,∠CPG=∠PCB,∴AG=GP,CF=FP,∴GA=GF+FP=GF+FC;。

精编北师大版七年级数学下册第五章《生活中的轴对称》单元测试卷(5套试题)含答案

精编北师大版七年级数学下册第五章《生活中的轴对称》单元测试卷(5套试题)含答案

第五章《生活中的轴对称》单元测试卷1一、选择题1.下列说法中,不正确的是 ( )A.等腰三角形底边上的中线就是它的顶角平分线B.等腰三角形底边上的高就是底边的垂直平分线的一部分C.一条线段可看作以它的垂直平分线为对称轴的轴对称图形D.两个三角形能够重合,它们一定是轴对称的2.下列推理中,错误的是 ( )A.∵∠A=∠B=∠C,∴△ABC是等边三角形B.∵AB=AC,且∠B=∠C,∴△ABC是等边三角形C.∵∠A=60°,∠B=60°,∴△ABC是等边三角形D.∵AB=AC,∠B=60°,∴△ABC是等边三角形3.在等边三角形ABC中,CD是∠ACB的平分线,过D作DE∥BC交AC于E,若△ABC的边长为a,则△ADE的周长为 ( )4A.2a B.a3C.1.5a D.a4.等腰三角形两边的长分别为2cm和5cm,则这个三角形的周长是( )A.9cm B.12cmC.9cm和12cm D.在9cm与12cm之间5.观察图7—108中的汽车商标,其中是轴对称图形的个数为 ( )A.2B.3C.4D.56.对于下列命题:(1)关于某一直线成轴对称的两个三角形全等;(2)等腰三角形的对称轴是顶角的平分线;(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点;(4)如果两个三角形全等,那么它们关于某直线成轴对称.其中真命题的个数为 ( )A .0B .1C .2D .37.△ABC 中,AB =AC ,点D 与顶点A 在直线BC 同侧,且BD =AD .则BD 与CD 的大小关系为 ( )A .BD >CDB .BD =CDC .BD <CDD .BD 与CD 大小关系无法确定8.下列图形中,不是轴对称图形的是 ( ) A .互相垂直的两条直线构成的图形 B .一条直线和直线外一点构成的图形C .有一个内角为30°,另一个内角为120°的三角形D .有一个内角为60°的三角形9.在等腰△ABC 中,AB =AC ,O 为不同于A 的一点,且OB =OC ,则直线AO 与底边BC 的关系为 ( )A .平行B .垂直且平分C .斜交D .垂直不平分10.三角形的三个顶点的外角平分线所在的直线两两相交,所围成的三角形一定是 ( )A .锐角三角形B .钝角三角形C .等腰三角形D .直角三角形二、填空题1.正五角星形共有_______条对称轴. 2.黑板上写着在正对着黑板的镜子里的像是__________.3.已知等腰三角形的腰长是底边长的34,一边长为11cm ,则它的周长为________. 4.(1)等腰三角形,(2)正方形,(3)正七边形,(4)平行四边形,(5)梯形,(6)菱形中,一定是轴对称图形的是_____________.5.如果一个图形沿某一条直线折叠后,直线两旁的部分能够_______,那么这个图形叫做轴对称图形,这条直线叫做___________.6.如图7—109,在△ACD中,AD=BD=BC,若∠C=25°,则∠ADB=________.7.已知:如图7—110,△ABC中,AB=AC,BE∥AC,∠BDE=100°,∠BAD=70°,则∠E =_____________.8.如图7—111,在Rt△ABC中,B为直角,DE是AC的垂直平分线,E在BC上,∠BAE:∠BAC=1:5,则∠C=_________.9.如图7—112,∠BAC=30°,AM是∠BAC的平分线,过M作ME∥BA交AC于E,作MD⊥BA,垂足为D,ME=10cm,则MD=_________.10.如图7—113,OE是∠AOB的平分线,BD⊥OA于D,AC⊥BO于C,则关于直线OE对称的三角形有________对.三、解答题1.如图7—114,∠XOY内有一点P,在射线OX上找出一点M,在射线OY上找出一点N,使PM+MN+NP最短.2.如图7—115,图中的图形是轴对称图形吗?如果是轴对称图形,请作出它们的对称轴.3.已知∠AOB=30°,点P在OA上,且OP=2,点P关于直线OB的对称点是Q,求PQ之长.4.如图7—116,在△ABC中,C为直角,∠A=30°,CD⊥AB于D,若BD=1,求AB之长.5.如图7—117,在△ABC中,C为直角,AB上的高CD及中线CE恰好把∠ACB三等分,若AB=20,求△ABC的两锐角及AD、DE、EB各为多少?6.如图7—118,AD、BE分别是等边△ABC中BC、AC上的高.M、N分别在AD、BE的延长线上,∠CBM=∠ACN.求证:AM=BN.7.如图7—119,点G在CA的延长线上,AF=AG,∠ADC=∠GEC.求证:AD平分∠BAC.8.已知:如图7—120,等腰直角三角形ABC中,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且满足EA=CF.求证:DE=DF.参考答案一、1.D 2.B 3.C 4.B 5.C 6.C 7.D 8.D 9.B 10.A 二、1.5 2.3.cm 3121或cm 41214.等腰三角形,正方形,正七边形,菱形5.互相重合,对称轴 6.80° 7.50° 8.40° 9.5cm 10.4 三、1.分别以直线Ox ,Oy 为对称轴,作P 点的对应点P '和P '',连结P P '''交Ox 于M ,交Oy 于N 则PM +MN +NP 最短.如图所示.2.略 3.2 4.45.∠A=60°,∠B=30°,AD =5cm ,DE =5cm ,EB =10cm 6.先证△ENC≌△DMB(ASA ), ∴ DM=EN. 再加上AD =BE 即可.7.∵ AF=AG ,∴ ∠G=∠AFG.又∵ ∠ADC=∠GEC,∴ AD∥GE.∴ ∠G=∠CAD. ∴ ∠AFG=∠BAD.∴ ∠CAD=∠BAD. ∴ AD 平分∠BAC.8.连结AD.在△ADF 和△BDE 中,可证得: BD =AD ,BE =AF ,∠B=∠D AF. ∴ △ADF≌△BDE.∴ DE=DF.第五章《生活中的轴对称》单元测试卷2选择题(每题5分,共30分)1、下列图形中,不是轴对称图形的是()A.等腰三角形 B.线段 C.钝角 D.直角三角形2、下列图案中,有且只有三条对称轴的是()3、等腰三角形一腰上的高与底边所成的角等于()A.顶角B.顶角的一半C.顶角的两倍D.底角的一半4、等腰三角形两边的长分别是2cm和5cm,则这个三角形的周长是( )A.9cmB.12cmC.9cm或12cmD.在9cm和12cm之间5、下列图案中,不能用折叠剪纸方法得到的是()6、将写有字母F的纸条正对镜面,则镜中出现的会是()二、填空题(每题5分,共25分)1、把一张纸对折,任意剪成一个形状,把它打开后所得到的图形关于这条折痕成______图形.2、我国传统木结构房屋,窗子常用各种图案装饰,如右图所示是一种常见的图案,这个图案有______条对称轴.3、前后两辆车,从前一辆的反光镜里看到后一辆车的车牌号是则后面这辆车的实际车牌号是___________.4、等腰三角形的三个内角与顶角相邻的一个外角之和是310°,则底角度数为________.5、如图,在△ABC 中,∠BAC=110°,PM 和QN 分别垂直平分AB 和AC ,则∠PAQ=_________. 三、画图题(每题5分,共10分)把下列各图补成以直线l 为对称轴的轴对称图形. 1、 2、四、解答题(第1题5分,第2、3、4题10分,共35分) 1、如图是由一个等腰三角形(AB=AC )和一个圆(O 为圆心)所成的轴对称图形,则AO 与BC 有怎样的位置关系?试说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D C B A
21
O E D C A 22
80︒40︒60︒40︒
B ′
C ′
D ′O ′
A ′O D
C B A
七年级数学下学期三角形测试题2011.5.
一、填空题:(每题3分,共42分) 1.三角形的三个内角和等于 .
2.已知等腰角三角形有一边长为5,一边长为2,则周长为 .
3.如图在建筑工地上,工人师傅砌门时,常用木条 EF 固定长方形门框, 使其不变形,这种做法的根据是 .
4.△ABC 中,若∠A =80º,∠B =40º,则∠C = .
5.如图,△ABC 中,∠A =40º,∠B =80º,CD 平分∠ACB , 则∠ACD = .
6.已知△ABC ≌△DEF ,且△ABC 的三边长分别为3,4,5, 则△DEF 的周长为 cm.
7.三角形按角分类可分为 、 和 .
8.如图,已知AB =AC ,EB =EC ,则图中共有全等三角形 对 9.如下图所示的两个三角形 .(填全等或不全等)
10.如图,已知AD 为△ABC 的中线,请添加一个条件, 使得∠1=∠2,你添加的条件是 . 11.用直尺和圆规作一个角等于已知角的示意图如下,则要说明∠A′O′B′=∠
AOB ,需要 证明△A′O′B′≌△AOB ,则这两个三角形全等的依据是 (写出全等的简写即可)
第11小题图 第12小题图
12.把一副三角板按如图所示放置,已知∠A =45º,∠E =30º,则两条斜边相交所成的钝
角∠AOE 的度数为 度 二、选择题(每题2分,共20分)
13如图,三角形被遮住的两个角不可能是 A .一个锐角,一个钝角 B .两个锐角 C .一个锐角,一个直角 D .两个钝角
14.有下列长度的三条线段,能组成三角形的是( ) A 、1cm ,2cm ,3cm B 、1cm ,4cm ,2cm C 、2cm ,3cm ,4cm D 、6cm ,2cm ,3cm
15下列条件中,能判断两个直角三角形全等的是( ) A 、一个锐角对应相等 B 、两个锐角对应相等 C 、一条边对应相等 D 、两条边对应相等
16.两根木条的长分别是10cm 和20cm ,要钉成一个三角形的木架,则第三根木条的长度可以是 ( )A 、10cm B 、5cm C 、25cm D 、35cm 17小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),
你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形.
应该带( ).
A .第1块
B .第2 块
C .第3 块
D .第4块
18.如图,两根钢条AA ′、BB ′的中点 O 连在一起,使 AA ′、
BB ′可以绕着点 O 自由转动,就做成了一个测量工具, A ′B ′的长等于内槽宽 AB ,那么判定△OAB ≌△OA ′B ′ 的理由是( )
A .边角边
B .角边角
C .边边边
D .角角边
19.已知等腰三角形的两边长是5cm 和6cm ,则此三角形的周长是( ) A .16cm B .17cm C .11cm D .16cm 或17cm
20.下列说法:①两个面积相等的三角形全等;②一条边对应相等的两个等边三角形全等;③全等图形的面积相等;④所有的正方形都全等中,正确的有 ( ) A 、1个 B 、2个 C 、3个 D 、4个 21.如图,已知∠1=∠2,则下列条件中,不能使△ABC ≌△DBC 成立的是 ( ) A 、AB =CD B 、AC =BD
C 、∠A =∠
D D 、∠ABC =∠DBC 22.在下列条件中:①∠A+∠B=∠C ,②∠A ∶∠B ∶∠C=1∶5∶6,③∠A=900-∠B ,④∠A=∠B=1
2
∠C 中,能确定△ABC 是直角三角形的条件有 ( )
A 、1个
B 、2个
C 、3个
D 、4个
三、解答、说理题:
23如图,是一座大楼相邻两面墙,现需测量外墙根部两点
A 、
B 之间的距离(人不能进入墙内测量)。

请你按以下要
求设计一个方案测量A 、B 的距离。

(9分) (1)画出测量图案;
(2)写出简要的方案步骤;
(3)说明理由 24.如图,△ABC 中,AD ⊥BC 于点D ,BE 是∠ABC 的平分线,已知∠ABC =40º,∠C =60º,求∠AOB 的度数(6分)
25.如图,两根钢绳一端固定在地面两个铁勾上,另一端固定在 电线杆上(电线杆垂直于地面),已知两根钢绳的长度相等,则
两个铁柱到电线杆底部的距离即BO 与CO 相等吗?为什么?(6分)
26.如图,已知A 、B 、C 、D 在一条直线上,AB =CD ,
AE ∥DF ,BF ∥EC ,那么∠E =∠F ,为什么?(6分)
D C B
A
A B C D E
12
34B A
21 C A
A
B O · · F
E D
C B A
O E D
C B A
图2 图1B C D O O D
C B O
D C B 21 七年级数学下学期三角形测试卷2011.5.
班次 姓名
一、填空题:(每题3分,共42分)
1. .
2. .
3. .
4. .
5. .
6. cm.
7. 、 和 .
8. 对
9. . 10. . 11. 12. 度 二、选择题(每题2分,共20分)
13 14. 15 16. 17 18.
21. 22. 三、解答、说理题: 23
(1)测量图案;
(2)简要的方案步骤;
(3)理由
24.解:
25.答:
26.答:
27.如图,已知OA =OC ,OB =OD ,∠1=∠2,那么∠B =∠D ,为什么?(8分)
28.(选做题不计入总分)
如图1、图2,△AOB ,△COD 均是等腰直角三角形,∠AOB =∠COD =90º, (1)在图1中,AC 与BD 相等吗?请说明理由(4分)
(2)若△COD 绕点O 顺时针旋转一定角度后,到达力2的位置,请问AC 与BD 还相等吗?为什么?(8分)
O C B A F
E D C B A
O E D C B A。

相关文档
最新文档