6历年国家公考数量关系真题及解析汇总19p
历年国考行测之数量关系真题与详解

行测数量关系2013年国考行测真题及答案:数量关系61、某单位2011年招聘了65名毕业生,拟分配到该单位的7个不同部门。
假设行政部门分得的毕业生人数比其他部门都多,问行政部分得的毕业生人数至少为多少名?A.10B.11C.12D.13参考答案:B本题解析:每个部门分9人还剩2人,则把这两人给行政部门则行。
62、阳光下,电线杆的影子投射在墙面及地面上,其中墙面部分的高度为1米,地面部分的长度为7米。
甲某身高1.8米,同一时刻在地面形成的影子长0.9米。
则该电线杆的高度为:A.12米B.14米C.15米D.16米参考答案:C本题解析:几何问题。
由题意,真实长度与影子长度为2:1,墙上的影子长度投影到地上才是真实的影子长度,即影子总长为7×2=14米,墙上的影子是电线杆的实际高度,电线杆高度为15米。
63、甲与乙进行打靶比赛,各打两发子弹,中靶数量多的人获胜。
甲每发子弹中靶的概率是60%,而乙每发子弹中靶的概率是30%。
则比赛中乙战胜甲的可能性:A.小于5%B.在5%~12%之之间C.在10%~15%之间D.大于15%参考答案:C本题解析:概率问题。
分类思想:(全概率公式)乙战胜甲的概率=乙中2×(甲中0+甲中1)+乙中1×(甲中0)=0.3×0.3×(0.4×0.4+2×0.6×0.4)+2×0.3×0.7×0.4×0.4=12.48%。
64、某汽车厂商生产甲、乙、丙三种车型,其中乙型产量的3倍与丙型产量的6倍之与等于甲型产量的4倍,甲型产量与乙型产量的2部之与等于丙型产量7倍。
则甲、乙、丙三型产量之比为:A.5∶4∶3B.4∶3∶2C.4∶2∶1D.3∶2∶1参考答案:D本题解析:数字特性思想,由3乙+6丙=4甲,得甲应为3的倍数。
观察选项只有D项满足。
整除是解题的一个方法。
65、某种汉堡包每个成本4.5元,售价10.5元,当天卖不完的汉堡包即不再出售。
国家公务员行测数量关系(数学运算)历年真题试卷汇编1(题后含答

国家公务员行测数量关系(数学运算)历年真题试卷汇编1(题后含答案及解析)全部题型 4. 数量关系数量关系数学运算在这部分试题中,每道试题呈现一道算术式或是表述数字关系的一段文字,要求你迅速、准确地计算出答案。
1.一个四位数“口口口口”分别能被15、12和10整除,且被这三个数整除时所得的三个商的和为1365,问四位数“口口口口”中四个数字的和是多少?A.17B.16C.15D.14正确答案:C解析:以题末“数字之和”为突破口,联想到“能被3或9整除的数”的判定方法。
这个四位数能被15整除,15能被3整除,则这个数一定能被3整除,它的各位数字之和能被3整除,选项中只有15能被3整除,直接锁定答案C。
2.设有三个自然数,分别是一位数、两位数和三位数,这三个数的乘积为2004,则三数之和是多少?A.100B.180C.179D.178正确答案:B解析:将2004进行质因数分解,2004=2×2×3×167。
由于乘数中有一个是两位数,所以只能是2×2×3=12,则一位数和三位数就分别是1和167,即2004=1×12×167。
1+12+167=180,选B。
3.有两种中药分别重25千克和15千克.将这两种中药分别平均分成若干份,并且两种药每份的重量也相等,那么请问至少分成多少份?A.3B.5C.8D.19正确答案:C解析:依题意,每一份的重量应既是25的约数,也是15的约数。
要想分成的份数尽可能地少,每一份的重量应尽可能地大。
即每一份的重量应是25和15的最大公约数,是5。
总份数是(25+15)÷5=8。
4.甲、乙、丙、丁四个人去图书馆借书,甲每隔5天去一次,乙每隔11天去一次,丙每隔17天去一次,丁每隔29天去一次。
如果5月18日他们四个人在图书馆相遇,问下一次四个人在图书馆相遇是几月几号?A.10月18日B.10月14日C.11月18日D.11月14日正确答案:D解析:每隔5、11、17、29天去一次,即每(5+1)、(11+1)、(17+1)、(29+1)天去一次,再次相遇经过的天数为6、12、18、30的最小公倍数。
2019年公务员考试行测《数量关系》试题及答案(卷二)

2019年公务员考试行测《数量关系》试题及答案(卷二)1. 张警官一年内参与破获的各类案件有100多件,是王警官的5倍,李警官的五分之三,赵警官的八分之七,问李警官一年内参与破获了多少案件?( )A. 175B. 105C. 120D. 不好估算2. 甲、乙、丙共同编制一标书,前三天3人一起完成了全部工作量的1/5,第四天丙没参加,甲、乙完成了全部工作量的1/18,第五天甲、丙没参加,乙完成了全部工作量的1/90,从第六天起三人一起工作直到结束,问这份标书的编制一共用了多少天?( )A. 13B. 14C. 15D. 163. 某汽车商销售A、B两种汽车,A种汽车的销售价是每辆20万,B种汽车的销售价是每辆5万,A种汽车销售金额的一半和B种汽车销售金额的三分之一合计5000万元,B种汽车销售金额的一半和A种汽车销售金额的三分之一合计3500万元,问A、B两种汽车各销售多少辆?( )A. 500100C. 300360D. 4801204. ½+(½)2+(½)3+(½)4的值是( )。
A.1/6B.7/8C.15/16D. 15.999×778+333×666的值是( )。
A. 99000B. 9990000C. 999000D. 9900006.某移动通信公司在周一到周五的晚上八点到早上八点以及周六、周日全天,实行长途通话的半价收费,一周内有( )小时长话是半价收费。
A. 98B. 108C. 112D. 1187.某市一条大街长10080米,从起点到终点共设有9个公交车站,那么每两个车站之间的平均距离是( )米。
B. 1210C. 1260D. 13208. 在一次测验中,5个学生得了95分,9个学生得了85分,4个学生得了80分,2个学生得了70分,这20个学生的平均分是( )。
A. 80B. 84C. 85D. 869. 某地的房产税率为8%,如果一套两居室从220000元升值到275000元,那么房产税需要增加( )。
00-10年国考真题数量关系整理及解析

2000年中央(共15题,参考时限10分钟)21.2,1,4,3,(),5。
A.1B.2C.3D.622.22,35,56,90,(),234。
A.162B.156C.148D.14523.1,2,2,4,(),32。
A.4B.6C.8D.1624.-2,-1,1,5,(),29。
A.17B.15C.13D.1125.1,8,9,4,(),1/6。
A.3B.2C.1D.1/326.大于4/5且小于5/6的数是()。
A.6/7B.21/30C.49/60D.47/6127.最大的四位数比最大的两位数大的倍数是()。
A.99B.100C.101D.10228.19881989+19891988的个位数是()。
A.9B.7C.5D.329.一块金与银的合金重250克,放在水中减轻16克。
现知金在水中重量减轻1/9,银在水中重量减轻1/10,则这块合金中金、银各占的克数为()。
A.100克,150克B.150克,100克C.170克,80克D.190克,60克30.某时刻钟表时针在10点到11点之间,此时刻再过6分钟后分针和此时刻3分钟前的时针正好方向相反且在一条直线上,则此时刻为()。
A.10点15分B.10点19分C.10点20分D.10点25分31.今年父亲年龄是儿子年龄的10倍,6年后父亲年龄是儿子年龄的4倍,则今年父亲、儿子的年龄分别是()。
A.60岁,6岁B.50岁,5岁C.40岁,4岁D.30岁,3岁32.某人用4 410元买了一台电脑,其价格是原来定价相继折扣了10%和2%后的价格,则电脑原来定价是()。
A.4 950元B.4 990元C.5 000元D.5 010元33.某机关共有干部、职工350人,其中55岁以上共有70人。
现拟进行机构改革,总体规模压缩为180人,并规定55岁以上的人裁减比例为70%。
请问55岁以下的人裁减比例约是多少?()。
A.51%B.43%C.40%D.34%34.某储户于1999年1月1日存入银行60 000元,年利率为2.00%,存款到期日即2000年1月1日将存款全部取出,国家规定凡1999年11月1日后孳生的利息收入应缴纳利息税,税率为20%,则该储户实际提取本金合计为()。
国考数量关系题目及答案

国考数量关系题目及答案文章开始:国考数量关系题目是国家公务员考试中常见的一种题型,它主要考察考生在数量关系方面的逻辑推理和计算能力。
解决这类题目需要灵活运用数学和逻辑思维,下面将给大家介绍一些常见的国考数量关系题目及答案。
1. 题目:甲、乙、丙三位工人共同生产一批货物,甲工人单独工作需要10天完成,乙工人单独工作需要15天完成,丙工人单独工作需要20天完成。
如果三位工人一起工作,他们能在几天内完成任务?答案:根据工作总量与每个工人的工作效率之间的关系,可以得到甲工人的效率是乙的1.5倍,乙的效率是丙的1.33倍。
那么甲、乙、丙三位工人一起工作的完成时间应该是三者工作时间的倒数之和。
即:1/10 + 1/15 + 1/20 = 37/300。
倒数相加得到大约为8.108,即三个人一起工作大约需要8天。
2. 题目:一辆汽车以每小时60千米的速度行驶,已经行驶了2个小时,这辆车靠近终点还有多少千米?答案:根据题目所给的速度,可以得知每小时行驶60千米。
已经行驶了2小时,所以这辆车已经行驶了2 * 60 = 120 千米。
因此,离终点还有0千米。
3. 题目:甲、乙两家店的商品价格比是5:6,如果在甲店买10件商品需要600元,那么在乙店买8件商品需要多少钱?答案:根据题目所给的比例关系,可以得知甲店的商品价格是乙店的5/6。
已知在甲店买10件商品需要600元,所以在乙店买同样数量的商品需要的钱数是600 * (5/6)= 500元。
4. 题目:甲、乙、丙三位工人共同工作,如果甲工人的工作效率是乙的一半,丙的两倍,那么他们一起完成一批货物需要多少时间?答案:根据题目所给的效率关系,可以得知甲工人的效率是乙的1/2,丙的2倍。
那么三位工人一起工作的完成时间应该是三者工作时间的倒数之和。
即:1/x + 2/x + 1/(2*x) = 1,解方程可以得到x = 4。
所以他们一起完成一批货物需要4天。
通过以上几个例题,我们可以看出国考数量关系题目是需要考生进行逻辑推理和计算的。
公务员考试数量关系真题及答案讲解

第一章 解题方法第一节 代入排除法 2 2 第二节 数字特性法 第三节 方程法 3 4 第四节 赋值法 5 第二章 比例问题67 67 62 63 64 64 65 22 28 28 24 29 2: ;6第一节 工程问题 第二节 经济利润问题 第三节 行程问题第三章 计数问题、几何问题第一节 容斥原理第二节 排列组合与概率 第三节 几何问题 第四章 其他问题第一节 最不利构造 第二节 数列构造 第三节 时间相关问题 第四节 植树、方阵问题 第五节 牛吃草问题数量关系第一章解题方法第一节代入排除法代入排除适合题型:(1)选项信息充分的题目(选项数据比较多,两个及两个以上,优先代入排除);(2)多位数问题、余数问题、年龄问题等;(3)从正面无法入手的题目,一般问题是“可能”或是“不可能”考虑代入排除。
【例 1】孙儿孙女的平均年龄是 10 岁,孙儿年龄的平方减去孙女年龄的平方所得的数值,正好是爷爷出生年份的后两位,爷爷生于上个世纪 40 年代。
问孙儿孙女的年龄差是多少岁?(A. 2)B. 4D. 8C. 6【例 2】三位运动员跨台阶,台阶总数在 100-150 级之间,第一位运动员每次跨 3 级台阶,最后一步还剩 2 级台阶。
第二位运动员每次跨 4 级台阶,最后一步还剩 3 级台阶。
第三位运动员每次跨 5 级台阶,最后一步还剩 4 级台阶。
则这些台阶总共有()级。
A.119 C.129B.121 D.131【例 3】某工厂有甲、乙、丙 3 条生产线,每小时均生产整数件产品。
其中甲生产线的效率是乙生产线的 3 倍,且每小时比丙生产线多生产 9 件产品。
已知 3 条生产线每小时生产的产品之和不到 100 件且为质数,则乙生产线每小时最多可能生产多少件产品?A.14 C.11B.12 D.8【例 4】有 A、B 两瓶混合液,A 瓶中水、油、醋的比例为 3:8:5,B 瓶中水、油、醋的比例为 1:2:3,将 A、B 两瓶混合液倒在一起后,得到的混合液中水、油、醋的比例可能为:A.4:5:2 C.3:7:7B.2:3:5 D.1:3:1第二节数字特性法奇偶特性:【基础】奇数±奇数=偶数;偶数±偶数=偶数;奇数±偶数=奇数;奇数×奇数=奇数;奇数×偶数=偶数;偶数×偶数=偶数。
国家公务员行测数量关系(容斥原理、概率问题)历年真题试卷汇编

国家公务员行测数量关系(容斥原理、概率问题)历年真题试卷汇编1(题后含答案及解析)全部题型 4. 数量关系数量关系数学运算在这部分试题中,每道试题呈现一道算术式或是表述数字关系的一段文字,要求你迅速、准确地计算出答案。
1.(上海2012A—61)某班有50位同学参加期末考试,结果英文不及格的有15人,数学不及格的有19人,英文和数学都及格的有21人。
那么英文和数学都不及格的有( )人。
A.4B.5C.13D.17正确答案:B解析:设都不及格的为x人,代入公式:15+19-x=50—21→x=5,选择B。
知识模块:容斥原理2.(河北2011—49)某科研单位共有68名科研人员,其中45人具有硕士以上学历,30人具有高级职称,12人兼而有之。
没有高级职称也没有硕士以上学历的科研人员是多少人?( )A.13B.10C.8D.5正确答案:D解析:设所求为x,根据公式有45+30-12=68-x→x=5,选择D。
知识模块:容斥原理3.(天津事业单位2011—19)现有50名学生做物理、化学实验,如果物理实验正确的有40人,化学实验做对的有31人,两种实验都做错的有4人,两种实验都做对的有多少人?( )A.10B.19C.23D.25正确答案:D解析:设两个实验都做对的有x人,代入公式:40+31-x=50—4→x=25,选择D。
知识模块:容斥原理4.(北京2012-80)运动会上100名运动员排成一列,从左向右依次编号为1—100,选出编号为3的倍数的运动员参加开幕式队列,而编号为5的倍数的运动员参加闭幕式队列。
问既不参加开幕式又不参加闭幕式队列的运动员有多少人?( )A.46B.47C.53D.54正确答案:C解析:编号为3的倍数运动员有33位,编号为5的倍数的运动员有20位。
编号既是3的倍数又是5的倍数(即15的倍数)的运动员有6位。
假设都不参加的有x人,代入公式:33+20—6=100—x→x=53,选择C。
(历年)公务员考试数量关系真题解析

历年公务员考试数量关系试题及参考答案分析年龄问题解年龄问题,一般要抓住以下三条规律:(1)不论在哪一年,两个人的年龄差总是确定不变的;(2)随着时间向前(过去)或向后(将来)推移,两个人或两个以上人的年龄一定减少或增加相等的数量;(3)随着时间的变化,两个人年龄之间的倍数关系一定会改变。
【例1】妈妈今年43岁,女儿今年11岁,几年后妈[已屏蔽,想办法跳过屏蔽将直接禁言]年龄是女儿的3倍?几年前妈[已屏蔽,想办法跳过屏蔽将直接禁言]年龄是女儿的5倍?【分析】无论在哪一年,妈妈和女儿的年龄总是相差43-11=32(岁)当妈[已屏蔽,想办法跳过屏蔽将直接禁言]年龄是女儿的3倍时,女儿的年龄为(43-11)÷(3-1)=16(岁)16-11=5(岁)说明那时是在5年后。
同样道理,由11-(43-11)÷(5-1)=3(年)可知,妈妈年龄是女儿的5倍是在3年前。
【例2】今年,父亲的年龄是女儿的4倍,3年前,父亲和女儿年龄的和是49岁。
父亲、女儿今年各是多少岁?【分析】从3年前到今年,父亲、女儿都长了3岁,他们今年的年龄之和为49+3×2=55(岁)由“55 ÷(4+1)”可算出女儿今年11岁,从而,父亲今年44岁。
排列组合问题I一、知识点:分类计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法,……,在第n类办法中有种不同的方法那么完成这件事共有种不同的方法分步计数原理:做一件事情,完成它需要分成n个步骤,做第一步有种不同的方法,做第二步有种不同的方法,……,做第n步有种不同的方法,那么完成这件事有种不同的方法二、解题思路:解排列组合问题,首先要弄清一件事是“分类”还是“分步”完成,对于元素之间的关系,还要考虑“是有序”的还是“无序的”,也就是会正确使用分类计数原理和分步计数原理、排列定义和组合定义,其次,对一些复杂的带有附加条件的问题,需掌握以下几种常用的解题方法:特殊优先法对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法.例如:用0、1、2、3、4这5个数字,组成没有重复数字的三位数,其中偶数共有________个.(答案:30个)科学分类法对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生例如:从6台原装计算机和5台组装计算机中任取5台,其中至少有原装与组装计算机各两台,则不同的选取法有_______种.(答案:350)插空法解决一些不相邻问题时,可以先排一些元素然后插入其余元素,使问题得以解决例如:7人站成一行,如果甲乙两人不相邻,则不同排法种数是______.(答案:3600)捆绑法相邻元素的排列,可以采用“整体到局部”的排法,即将相邻的元素当成“一个”元素进行排列,然后再局部排列例如:6名同学坐成一排,其中甲、乙必须坐在一起的不同坐法是________种.(答案:240)排除法从总体中排除不符合条件的方法数,这是一种间接解题的方法.b、排列组合应用题往往和代数、三角、立体几何、平面解析几何的某些知识联系,从而增加了问题的综合性,解答这类应用题时,要注意使用相关知识对答案进行取舍.例如:从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax+By+C=0中的A、B、C,所得的经过坐标原点的直线有_________条.(答案:30)三、讲解范例:例1 由数字1、2、3、4、5、6、7组成无重复数字的七位数(1)求三个偶数必相邻的七位数的个数;(2)求三个偶数互不相邻的七位数的个数解(1):因为三个偶数2、4、6必须相邻,所以要得到一个符合条件的七位数可以分为如下三步:第一步将1、3、5、7四个数字排好有种不同的排法;第二步将2、4、6三个数字“捆绑”在一起有种不同的“捆绑”方法;第三步将第二步“捆绑”的这个整体“插入”到第一步所排的四个不同数字的五个“间隙”(包括两端的两个位置)中的其中一个位置上,有种不同的“插入”方法根据乘法原理共有=720种不同的排法所以共有720个符合条件的七位数解(2):因为三个偶数2、4、6互不相邻,所以要得到符合条件的七位数可以分为如下两步:第一步将1、3、5、7四个数字排好,有种不同的排法;第二步将2、4、6分别“插入”到第一步排的四个数字的五个“间隙”(包括两端的两个位置)中的三个位置上,有种“插入”方法根据乘法原理共有=1440种不同的排法所以共有1440个符合条件的七位数例2将A、B、C、D、E、F分成三组,共有多少种不同的分法?解:要将A、B、C、D、E、F分成三组,可以分为三类办法:(1-1-4)分法、(1-2-3)分法、(2-2-2)分法下面分别计算每一类的方法数:(因为是分组,故在每一组内不是乘法,但是由于这件事情是分步完成,所以组与组之间也就是步与步之间是乘法,虽然如此,但是又因为仅仅是分组,故1,2,3和3,2,1和3,1,2都是一组,故需要把这三步看作是一个大组,除以步内排列数才是最终分组数)第一类(1-1-4)分法,这是一类整体不等分局部等分的问题,可以采用两种解法解法一:从六个元素中取出四个不同的元素构成一个组,余下的两个元素各作为一个组,有种不同的分法解法二:从六个元素中先取出一个元素作为一个组有种选法,再从余下的五个元素中取出一个元素作为一个组有种选法,最后余下的四个元素自然作为一个组,由于第一步和第二步各选取出一个元素分别作为一个组有先后之分,产生了重复计算,应除以所以共有=15种不同的分组方法第二类(1-2-3)分法,这是一类整体和局部均不等分的问题,首先从六个不同的元素中选取出一个元素作为一个组有种不同的选法,再从余下的五个不同元素中选取出两个不同的元素作为一个组有种不同的选法,余下的最后三个元素自然作为一个组,根据乘法原理共有=60种不同的分组方法第三类(2-2-2)分法,这是一类整体“等分”的问题,首先从六个不同元素中选取出两个不同元素作为一个组有种不同的取法,再从余下的四个元素中取出两个不同的元素作为一个组有种不同的取法,最后余下的两个元素自然作为一个组由于三组等分存在先后选取的不同的顺序,所以应除以,因此共有=15种不同的分组方法根据加法原理,将A、B、C、D、E、F六个元素分成三组共有:15+60+15=90种不同的方法例3一排九个坐位有六个人坐,若每个空位两边都坐有人,共有多少种不同的坐法?解:九个坐位六个人坐,空了三个坐位,每个空位两边都有人,等价于三个空位互不相邻,可以看做将六个人先依次坐好有种不同的坐法,再将三个空坐位“插入”到坐好的六个人之间的五个“间隙”(不包括两端)之中的三个不同的位置上有种不同的“插入”方法根据乘法原理共有=7200种不同的坐法排列组合问题II一、相临问题--整体捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2001年国家公务员考试数量关系真题一、数字推理:41.12,13,15,18,22,()。
A.25B.27C.30D.3442.6,24,60,132,()。
A.140B.210C.212D.27643.6,18,(),78,126。
A.40B.42C.44D.4644.3,15,7,12,11,9,15,()。
A.6B.8C.18D.1945.0,9,26,65,124,()。
A.186B.215C.216D.217二、数学运算46.1 235×6 788与1 234×6 789的差值是()。
A.5 444B.5 454C.5 544D.5 55447.已知甲的12%为13,乙的13%为14,丙的14%为15,丁的15%为16,则甲、乙、丙、丁四个数中最大的数是()。
A.甲B.乙C.丙D.丁48.某市一条大街长7 200米,从起点到终点共设有9个车站,那么每两个车站之间的平均距离是()。
A.780米B.800米C.850米D.900米49.飞行员前4分钟用半速飞行,后4分钟用全速飞行,在8分钟内一共飞行了72千米,则飞机全速飞行的时速是()。
A.360千米B.540千米C.720千米D.840千米50.某单位召开一次会议,会期10天。
后来由于议程增加,会期延长3天,费用超过了预算,仅食宿费用一项就超过预算20%,用了6 000元。
已知食宿费预算占总预算的25%,那么总预算费用是()。
A.18 000元B.20 000元C.25 000元D.30 000元51.一种收录机,连续两次降价10%后的售价是405元,那么原价是()。
A.490B.500元C.520元D.560元52.某企业1999年产值的20%相当于1998年产值的25%,那么1999年的产值与1998年的产值相比()。
A.降低了5%B.提高了5%C.提高了20%D.提高了25%53.一个游泳池,甲管放满水需6小时,甲、乙两管同时放水,放满水需4小时。
如果只用乙管放水,则放满水需()。
A.8小时B.10小时C.12小时D.14小时54.甲每5天进城一次,乙每9天进城一次,丙每12天进城一次,某天三人在城里相遇,那么下次相遇至少要()。
A.60天B.180天C.540天D.1 620天55.某商店实行促销手段,凡购买价值200元以上的商品可以优惠20%,那么用300元钱在该商店最多可买下价值()元的商品。
A.350元B.384元C.375元D.420元2002年国家公务员考试数量关系真题一、数字推理1.2,6,12,20,30,()A.38 B.42 C.48 D.562.20,22,25,30,37,()A.39 B.45 C.48 D.513.2,5,11,20,32,()A.43 B.45 C.47 D.494.1,3,4,7,11,()A.14 B.16 C.18 D.205.34,36,35,35,( ),34,37,( )A .36,33B .33,36C .37,34D .34,37二、数学运算6.1998年,甲的年龄是乙的年龄的4倍。
2002年,甲的年龄是乙的年龄的3倍。
问甲、乙二人2000年的年龄分别是多少岁?A .34岁,12岁B .32岁,8岁C .36岁,12岁D .34岁,10岁7.一项工作,甲单独做10天完成,乙单独做15天完成。
问:两人合作3天完成工作的几分之几?A .1/2B .1/3C .1/5D .1/68. 15.025.053÷⨯的值是: A .1 B .1.5 C .1.6 D .2.09.某学校学生排成一个方阵,最外层的人数是60人,问这个方阵共有学生多少人?A .256人B .250人C .225人D .196人10.一根长18米的钢筋被锯成两段。
短的一段是长的一段的4/5,问短的一段有多少米长?A .7.5米B .8米C .8.5米D .9米11.1.1^2+1.2^2+1.3^2+1.4^2的值是:A .5.04B .5.49C .6.06D .6.3012.一个正方形的边长增加20%后,它的面积增加百分之几?A .36%B .40%C .44%D .48%13.一块三角地,在三个边上植树,三个边的长度分别为156米、186米、234米,树与树之间的距离均为6米,三个角上都必须栽一棵树,问共需植树多少棵?A .90棵B .93棵C .96棵D .99棵14.甲乙两名工人8小时共加736个零件,甲加工的速度比乙加工的速度快30%,问乙每小时加工多少个零件?A .30个B .35个C .40个D .45个15.如下图,一个正方形分成了五个大小相等的长方形。
每个长方形的周长都是36米,问这个正方形的周长是多少米?A .56米B .60米C .64米D .68米行测、申论复习与考试过程中,阅读量都非常的大,如果不会提高效率,一切白搭。
首先要学会快速阅读,一般人每分钟才看200字左右,我们要学会一眼尽量多看几个字,甚至是以行来计算,把我们的速读提高,然后再提高阅读量,这是申论的基础。
《行测》的各种试题都是考察学生的思维,大家平时还要多刻意的训练自己的思维。
学会快速阅读,不仅在复习过程中效率倍增,在考试过程中更能够节省大量的时间,提高效率,而且,在我们一眼多看几个字的时候,还能够高度的集中我们的思维,大大的利于归纳总结,学会后,更有利于《行测》的复习、考试,特别是在学习速读的同事,还能够学习思维导图,对于《行测》的各种试题都能得心应手的应付。
本人当年有幸学习了快速阅读,至今阅读速度已经超过5000字/分钟,学习效率自然不用说了。
我读大学的成绩是很差,考公务员的时候我妈说我只是碰运气,结果最后成绩出来了居然考了岗位第二,对自己的成绩非常满意,速读记忆是我成功最大的功劳。
找了半天,终于给大家找到了下载的地址,怕有的童鞋麻烦,这里直接给做了个超链接,先按住键盘最左下角的“ctrl ”按键不要放开,然后鼠标点击此行文字就可以下载了。
认真练习,马上就能够看到效果了!此段是纯粹个人经验分享,可能在多个地方看见,大家读过的就不用再读了,只是希望能和更多的童鞋分享。
2003年国家公务员考试数量关系真题一、数字推理:1.1,4,8,13,16,20,()。
A.20B.25C.27D.282.1,3,7,15,31,()。
A.61B.62C.63D.643.1,4,27,(),3125。
A.70B.184C.256D.3514.(),36,19,10,5,2。
A.77B.69C.54D.485.2/3,1/2,2/5,1/3,2/7,()。
A.1/4B.1/6C.2/11D.2/9二、数学运算:6.一件商品如果以八折出售,可以获得相当于进价20%的毛利,那么如果以原价出售,可以获得相当于进价百分之几的毛利?()。
A.20%B.30%C.40%D.50%7.某服装厂生产出来的一批衬衫中大号和小号各占一半。
其中25%是白色的,75%是蓝色的。
如果这批衬衫总共有100件,其中大号白色衬衫有10件,问小号蓝色衬衫有多少件?()。
A.15B.25C.35D.408.某剧场共有100个座位,如果当票价为10元时,票能售完,当票价超过10元时,每升高2元,就会少卖出5张票。
那么当总的售票收入为1 360元时,票价为多少?()。
A.12元B.14元C.16元D.18元9.2001年,某公司所销售的计算机台数比上一年度上升了20%,而每台的价格比上一年度下降了20%。
如果2001年该公司的计算机销售额为3 000万元,那么2000年的计算机销售额大约是多少?()。
A.2 900万元B.3 000万元C.3 100万元D.3 300万元10.赛马场的跑马道600米长,现有甲、乙、丙三匹马,甲1分钟跑2圈,乙1分钟跑3圈,丙1分钟跑4圈。
如果这三匹马并排在起跑线上,同时往一个方向跑,请问经过几分钟,这三匹马自出发后第一次并排在起跑线上?()。
A.1/2B.1C.6D.1211.一种挥发性药水,原来有一整瓶,第二天挥发后变为原来的1/2;第三天变为第二天的2/3;第四天变为第三天的3/4,请问第几天时药水还剩下1/30瓶?()。
A.5天B.12天C.30天D.100天12.某企业发奖金是根据利润提成的。
利润低于或等于10万元时可提成10%;低于或等于20万元时,高于10万元的部分按7.5%提成;高于20万元时,高于20万元的部分按5%提成。
当利润为40万元时,应发放奖金多少万元?()。
A.2 B.2.75 C.3 D.4.513.某校在原有基础(学生700人,教师300人)上扩大规模,现新增加教师75人。
为使学生和教师比例低于2∶1,问学生人数最多能增加百分之几?()。
A.7%B.8%C.10.3%D.11%14.姐弟俩出游,弟弟先走一步,每分钟走40米,走了80米后姐姐去追他。
姐姐每分钟走60米,姐姐带的小狗每分钟跑150米。
小狗追上了弟弟又转去找姐姐,碰上了姐姐又转去追弟弟,这样跑来跑去,直到姐弟相遇小狗才停下来。
问小狗共跑了多少米?()。
A.600米B.800米C.1 200米D.1 600米15.假设地球是一个正球形,它的赤道长4万千米。
现在用一根比赤道长10米的绳子围绕赤道一周,假设在各处绳子离地面的距离都是相同的,请问绳子距离地面大约有多高?()。
A.1.6毫米B.3.2毫米C.1.6米D.3.2米2004年国家公务员考试数量关系真题36.0.0495×2500+49.5×2.4+51×4.95的值是()。
A.4.95 B.49.5 C.495 D.495037.2002×20032003-2003×20022002的值是()。
A.-60 B.0 C.60 D.8038.99+1919+9999的个位数字是()。
A.1 B.2 C.3 D.739.南岗中学每一位校长都是任职一届,一届任期三年,那么在8年期间南岗中学最多可能有几位校长?()。
A.2 B.3 C.4 D.540.假设五个相异正整数的平均数是15,中位数是18,则此五个正整数中的最大数的最大值可能为()。
A.24 B.32 C.35 D.4041.半径为5厘米的三个圆弧围成如右图所示的区域,其中AB弧与AD弧是四分之一圆弧,而BCD弧是一个半圆弧,则此区域的面积是多少平方厘米?()。
A.25 B.10+5π C.50 D.50+5π42.一个边长为8的正立方体,由若干个边长为l的正立方体组成,现在要将大立方体表面涂漆,请问一共有多少个小立方体被涂上了颜色?()。
A.296 B.324 C.328 D.38443.右图中心线上半部与下半部都是由3个红色小三角形,5个蓝色小三角形与8个白色小三角形所组成。