学习激光原理时必须掌握的八个概念 2

合集下载

激光原理复习知识点

激光原理复习知识点

激光原理复习知识点激光原理是激光技术的核心知识之一,它是指光子在受激辐射作用下的放大过程。

下面将详细介绍激光原理的相关知识点。

1.基本概念激光是一种特殊的光,其特点是具有高度的单色性、方向性和相干性。

与常规的自然光不同,激光是一种具有相同频率和相位的光波。

2.受激辐射受激辐射是激光形成的基本原理,它是指当原子或分子受到外界能量激发后,处于激发态的原子或分子会通过辐射的方式从高能级跃迁到低能级,此时会放出光子能量,并与入射光子保持相位一致。

3.激光产生的条件为了产生激光,需要满足以下条件:-有大量的原子或分子处于激发态。

-具有一个能够增加原子或分子跃迁概率的辐射源。

-有一种方法可以让过多的激发态原子或分子跃迁到基态。

4.激光器的结构激光器通常由三个基本部分组成:激活介质、泵浦系统和光学腔。

-激活介质是产生激励能量的介质,如气体、液体或固体。

-泵浦系统是用来提供能量,并将大量原子或分子激发到激发态的装置。

-光学腔是由两个或多个高反射镜组成的光学结构,用来反射和放大光。

5.激光的放大激光的放大是通过在光学腔中来回传播,不断受到受激辐射的作用而增强光波的幅度。

通常,在光学腔中的一个镜子上镀膜,具有高反射率,而另一个镜子具有部分透射和部分反射的特性,用来逐渐放大光。

6.激光的增益介质增益介质是指能够提供光放大的介质,如气体(如CO2、氦氖)、固体(如Nd:YAG)或半导体(如激光二极管)等。

这些介质中的原子或分子通过与激励能量的相互作用,从而达到受激辐射的能量放大。

7.激光的产生方式激光可以通过多种方式产生,其中包括:-激光器:使用激光介质和泵浦系统来产生激光。

-激光二极管:使用半导体材料制成的二极管来产生激光。

-激光腔:使用自激振荡的原理来产生激光。

8.激光的应用激光具有广泛的应用领域,包括但不限于:-激光切割和焊接:激光切割和焊接用于金属加工、制造业等领域。

-激光打印:激光打印用于打印机和复印机等办公设备中。

激光知识点总结

激光知识点总结

激光知识点总结激光知识点总结初中物理的光知识是重点单元之一,下面是激光知识点总结,同学们可以根据这一汇总进行复习或者是预习,会有很好的学习效果。

一、定向发光普通光源是向四面八方发光。

要让发射的光朝一个方向传播,需要给光源装上一定的聚光装置,如汽车的车前灯和探照灯都是安装有聚光作用的反光镜,使辐射光汇集起来向一个方向射出。

激光器发射的激光,天生就是朝一个方向射出,光束的发散度极小,大约只有0.001弧度,接近平行。

1962年,人类第一次使用激光照射月球,地球离月球的距离约38万公里,但激光在月球表面的光斑不到两公里。

若以聚光效果很好,看似平行的探照灯光柱射向月球,按照其光斑直径将覆盖整个月球。

天文学家相信,外星人或许正使用闪烁的激光作为一种宇宙灯塔来尝试与地球进行联系。

二、亮度极高在激光发明前,人工光源中高压脉冲氙灯的亮度,与太阳的亮度不相上下,而红宝石激光器的激光亮度,能超过氙灯的几百亿倍。

因为激光的亮度极高,所以能够照亮远距离的物体。

红宝石激光器发射的光束在月球上产生的照度约为0.02勒克斯(光照度的单位),颜色鲜红,激光光斑肉眼可见。

若用功率的探照灯照射月球,产生的照度只有约一万亿分之一勒克斯,人眼根本无法察觉。

激光亮度极高的主要原因是定向发光。

大量光子集中在一个极小的空间范围中射出,能量密度自然极高。

激光的亮度与阳光之间的比值是的,而且它是人类创造的。

三、激光的颜色激光的颜色取决于激光的波长,而波长取决于发出激光的活性物质,即被刺激后能产生激光的那种材料。

刺激红宝石就能产生深玫瑰色的激光束,它应用于医学领域,比如用于皮肤病的治疗和外科手术。

公认最贵重的气体之一的氩气能够产生蓝绿色的激光束,它有诸多用途,如激光印刷术,在显微眼科手术中也是不可缺少的。

半导体产生的激光能发出红外光,因此我们的眼睛看不见,但它的能量恰好能"解读"激光唱片,并能用于光纤通讯。

但有的激光器可调节输出激光的波长。

激光原理 知识点

激光原理 知识点

激光原理知识点
激光原理的知识点包括:
1.黑体和黑体辐射:黑体是一种理想化的辐射体,黑体辐射是描述黑体发出的辐射规律的理论。

2.自发辐射、受激辐射和受激吸收:这是激光产生的基本过程。

即自发辐射产生光子,受激辐射放大光子,受激吸收则吸收光子。

3.光腔理论:涉及到光腔的稳定性条件、共轴球面腔的稳定性条件、开腔模式的物理概念和行射理论分析方法、高斯光東的基本性质及特征参数等。

4.电磁场和物质的共振相互作用:描述了光和物质相互作用的经典理论。

以及谱线加宽和线型函数等概念。

5.激光振落特性:涉及到激光的特性,如相干性好、方向性好、单色性好、亮度高,这些特性可以归结为激光具有很高的光子简并度。

6.光子简并度:是描述激光光子相干性的物理量。

7.光的多普勒效应:描述了光波在运动中由于光源和观察者的相对运动而产性频率变化的现象。

8.均匀增宽与非均匀增宽:描述了光谱线增宽的两种类型,均匀增宽通常是由于原子或分子的自然热运动引起的,而非均匀增宽则通常是由于原子或分子之间的碰撞弓|起的。

9.自然增宽和多普勒堵宽:自然增宽是由于原子或分子自旋的统计分布引起的,多普勒增宽是由于原子或分子的热运动引起的。

以上只是简单的列举,实际上激光原理所涵盖的知识点还有很多,需
要系统学习和实践。

制表:审核:批准:。

激光原理考点总结

激光原理考点总结

激光原理考点总结激光(Laser)是指一种由集中的电磁辐射所产生的具有高度单色性、相干性和方向性的光。

激光原理是激光器工作的基础,其中涉及到激光的产生和放大过程。

下面将从以下几个方面总结激光原理的考点。

1.电磁辐射:激光器利用电磁辐射的原理产生激光。

电磁辐射是由电场和磁场相互作用产生的波动现象,包括广义上的光波,其中可见光是电磁辐射的一种。

了解光波的特性和传播方式对理解激光原理很重要。

2.反射和吸收:激光器中的反射是激光产生和放大的关键过程。

反射镜的设置可以实现光的反复来回传播,使得光能够在增益介质中多次通过,增强光的能量。

另一方面,激光器中的吸收是影响激光输出功率和效率的因素之一、吸收是指光被介质吸收和转化为热能的过程。

3.激射和跃迁:激射是指从低能级向高能级跃迁的过程。

在激光器中,通过能量输入或外部激发,使得电子从基态跃迁到激发态。

而跃迁是指电子从一个能级到另一个能级的过程。

了解能级和电子跃迁的类型对激光器的设计和调谐至关重要。

4.反转粒子数和增益:激光器中的反转粒子数是指在激光器工作过程中,高能级粒子数目大于低能级粒子数目的情况。

这种不平衡的粒子数分布是产生和放大激光的关键。

通过提供能量,例如光或电能,可以增加反转粒子数,增强激光的输出功率。

5.波长选择和模式锁定:激光器的波长选择是指产生特定波长的激光。

波长选择可以通过选择合适的增益介质和谐振腔的设计来实现。

激光器中的模式锁定是指使光场处于稳定、精确的频率和相位关系的状态。

这对于精密测量、光谱分析和通信应用非常重要。

6.激光器结构和组成:激光器的结构和组成也是激光原理的考点。

激光器通常包括三个主要部分:激活介质(液体、固体或气体)、谐振腔(用于反射和放大光)和泵浦源(提供能量,如光波或电流)。

不同类型的激光器具有不同的结构,如气体激光器、固体激光器和半导体激光器。

综上所述,激光原理的考点包括电磁辐射、反射和吸收、激射和跃迁、反转粒子数和增益、波长选择和模式锁定以及激光器的结构和组成。

激光原理复习知识点

激光原理复习知识点

一 名词解释1. 损耗系数及振荡条件:0)(m ≥-=ααS o I g I ,即α≥o g 。

α为包括放大器损耗和谐振腔损耗在内的平均损耗系数。

2. 线型函数:引入谱线的线型函数p v p v v )(),(g 0~=,线型函数的单位是S ,括号中的0v 表示线型函数的中心频率,且有⎰+∞∞-=1),(g 0~v v ,并在0v 加减2v ∆时下降至最大值的一半。

按上式定义的v∆称为谱线宽度。

3. 多普勒加宽:多普勒加宽是由于做热运动的发光原子所发出的辐射的多普勒频移所引起的加宽。

4. 纵模竞争效应:在均匀加宽激光器中,几个满足阈值条件的纵模在震荡过程中互相竞争,结果总是靠近中心频率0v 的一个纵模得胜,形成稳定振荡,其他纵模都被抑制而熄灭的现象。

5. 谐振腔的Q 值:无论是LC 振荡回路,还是光频谐振腔,都采用品质因数Q 值来标识腔的特性。

定义p v P w Q ξπξ2==。

ξ为储存在腔内的总能量,p 为单位时间内损耗的总能量。

v 为腔内电磁场的振荡频率。

6. 兰姆凹陷:单模输出功率P 与单模频率q v 的关系曲线,在单模频率等于0的时候有一凹陷,称作兰姆凹陷。

7. 锁模:一般非均匀加宽激光器如果不采取特殊的选模措施,总是得到多纵模输出,并且由于空间烧孔效应,均匀加宽激光器的输出也往往具有多个纵模,但如果使各个振荡的纵模模式的频率间隔保持一定,并具有确定的相位关系,则激光器输出的是一列时间间隔一定的超短脉冲。

这种使激光器获得更窄得脉冲技术称为锁模。

8. 光波模:在自由空间具有任意波矢K 的单色平面波都可以存在,但在一个有边界条件限制的空间V内,只能存在一系列独立的具有特定波矢k 的平面单色驻波;这种能够存在腔内的驻波成为光波模。

9. 注入锁定:用一束弱的性能优良的激光注入一自由运转的激光器中,控制一个强激光器输出光束的光谱特性及空间特性的锁定现象。

(分为连续激光器的注入锁定和脉冲激光器的注入锁定)。

激光原理知识点总结

激光原理知识点总结

激光原理知识点总结激光的产生原理激光是一种与常规光具有本质不同的光。

它是通过一种叫做“受激辐射”的过程产生的,这是量子力学的一种结果。

激光的产生原理主要涉及三个主要过程:光的激发、光的放大和光的辐射。

首先是光的激发。

激光的产生需要通过能量输入来激发原子或分子的能级。

当外界能量激发物质的能级时,原子或分子的电子会从低能级跃迁到高能级,形成“受激辐射”所需的激发态。

然后是光的放大。

在受激辐射的过程中,当一个光子与处于激发态的原子或分子碰撞时,它会与其相互作用,导致后者释放出另一个同频率、同相位和同偏振的光子,并回到低能级。

这个新的光子与已有的光子具有相同的频率、相位和偏振,因此它们会在相互作用的同时相互放大,形成一支激光光束。

最后是光的辐射。

当受激辐射的过程一直不断地发生时,光子会在光学共振腔中来回反射,产生一支具有高度相干性、高亮度和高直线度的激光光束。

这种光具有很强的聚焦能力和穿透能力,因此在很多领域有着广泛的应用价值。

激光的特点激光具有以下几个主要特点:1.高度相干性。

激光光束的波长一致、频率一致、相位一致,因此具有很高的相干性。

这使得激光在干涉、衍射和频谱分析等方面具有很大的优势。

2.高亮度。

激光的辐射强度非常集中,因此具有很高的亮度。

这使得激光可用于制备高清晰度的成像系统和高精度的测量装置。

3.高直线度。

激光的传播路径非常直线,几乎不具有散射,因此具有很高的直线度。

这使得激光在通信、激光雷达和光刻等领域有着广泛的应用。

激光器件的工作原理和应用激光器件是产生激光光束的重要设备,其工作原理一般基于受激辐射过程。

目前常用的激光器件主要包括气体激光器、固体激光器、半导体激光器和光纤激光器。

气体激光器是将气体放电或者由光泵浦的气体装置转变成激光的光源。

其中最著名的就是氦氖激光器。

使用稳态直流电源或者交变电源将氦气充入放电管,并保持一定的氦气气压。

然后用电子束或者泵浦光源来使得氦原子激发至高能级,然后在碰撞的作用下通过受激辐射作用形成激光光束。

激光知识点归纳总结

激光知识点归纳总结

激光知识点归纳总结一、激光的基本概念1. 激光的定义:激光是指一种纯准直性极好的光线,其光子是高度同步的单色光子。

2. 激光的产生:激光是由受激发射产生的,利用三能级或四能级的原子,分子或离子系统,通过外加能量使体系转移到激发态,再利用其辐射产生激光光子。

3. 激光的特性:激光具有单色性、准直性、明暗对比度高、相干性强等特点。

4. 激光的种类:激光可以分为气体激光器、固体激光器、液体激光器和半导体激光器等。

二、激光的基本原理1. 激光的受激辐射:当原子、分子或离子处于激发态时,通过外界刺激的辐射能引起它们从激发态向稳态跃迁,再发出与外界激发辐射相同特性的电磁波,即受激辐射。

2. 激光的稳态条件:产生激光需要满足稳态条件,即发射和吸收的粒子数要平衡,从而实现能量的持续放大和稳定输出。

3. 激光的放大作用:在激光器内,通过激发态原子、分子或离子吸收外界光子能量,使它们跃迁到更高激发态,从而放大光子,产生激光。

4. 激光的光学谐振腔:激光器内部常常设置光学谐振腔,用来反射和增强激光,从而实现激光的输出。

三、激光的应用领域1. 激光测距与测速:激光雷达通过测量反射光的飞行时间来实现测距,同时通过多普勒效应测速。

2. 激光材料加工:激光可用于金属切割、焊接、打孔等材料加工过程。

3. 激光医学应用:激光可用于眼科手术、皮肤治疗、激光治疗仪等医疗设备。

4. 激光通讯:激光可以传输更大带宽、更高速率的信息,用于通讯领域。

5. 激光导航:激光雷达可用于无人飞行器、自动驾驶汽车等导航系统。

6. 激光防御:激光武器可用于导弹防御、激光束武器等领域。

四、激光器的分类1. 气体激光器:以气体为工作物质的激光器,常见的包括二氧化碳激光器、氦氖激光器等。

2. 固体激光器:以固体为工作物质的激光器,常见的包括Nd:YAG激光器、激光二极管等。

3. 半导体激光器:以半导体为工作物质的激光器,可用于激光打印机、光纤通信等领域。

4. 液体激光器:以液体为工作物质的激光器,常见的包括染料激光器等。

《激光》 知识清单

《激光》 知识清单

《激光》知识清单一、什么是激光激光,英文名为“Laser”,是“Light Amplification by Stimulated Emission of Radiation”的缩写,意思是“通过受激辐射光放大”。

简单来说,激光是一种具有高度单色性、相干性和方向性的强光。

它与普通光有着明显的区别。

普通光是由大量不同频率、相位和方向的光子组成,显得比较杂乱。

而激光则是近乎完美的同频、同相和同向的光,这使得它具有独特的性质和广泛的应用。

二、激光的产生原理激光的产生依赖于原子或分子的能级跃迁。

在物质的原子或分子中,存在着不同的能级。

当原子或分子吸收一定能量时,电子会从低能级跃迁到高能级。

而处于高能级的电子并不稳定,会自发地向低能级跃迁,并释放出光子。

然而,普通的自发辐射所产生的光具有随机性,方向、频率和相位都不一致。

而激光的产生则是基于受激辐射。

当一个处于高能级的电子受到一个与它即将释放的光子频率、相位和方向都相同的入射光子的激发时,就会产生一个与入射光子完全相同的新光子。

这样,通过在一个特定的光学谐振腔内不断地进行受激辐射,就能使光得到放大,从而形成激光。

三、激光的特点1、高度单色性激光的单色性非常好,即它的波长或频率范围非常窄。

这使得激光在光谱分析、通信等领域有着重要的应用。

2、相干性激光具有很好的相干性,意味着其光波的相位关系非常稳定和明确。

这使得激光在干涉测量、全息技术等方面发挥着关键作用。

3、方向性激光的方向性极强,可以聚焦成非常小的光斑,并传播很远的距离而几乎不发散。

这一特点在激光测距、激光武器等领域具有重要意义。

4、高亮度激光的能量高度集中,亮度极高,能够在瞬间产生巨大的能量。

四、激光的类型1、气体激光例如氦氖激光、二氧化碳激光等。

气体激光通常具有较好的光束质量和稳定性。

2、固体激光像红宝石激光、钕玻璃激光等。

固体激光具有较高的输出功率。

3、液体激光例如染料激光,其波长可以在一定范围内调节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习激光原理时必须掌握的八个概念(二)
5)受激辐射
受激辐射是指处于高能级的电子在光子的“刺激”或者“感应”下,跃迁到低能级,并辐射出一个和入射光子同样频率的光子。

受激辐射的最大特点是由受激辐射产生的光子与引起受激辐射的原来的光子具有完全相同的状态。

它们具有相同的频率,相同的方向,完全无法区分出两者的差异。

这样,通过一次受激辐射,一个光子变为两个相同的光子。

这意味着光被加强了,或者说光被放大了。

这正是产生激光的基本过程。

6)受激吸收和受激辐射之间的关系
在一个原子体系中,总有些原子处于高能级,有些处于低能级。

而自发辐射产生的光子既可以去刺激高能级的原子使它产生受激辐射,也可能被低能级的原子吸收而造成受激吸收。

因此,在光和原子体系的相互作用中,自发辐射、受激辐射和受激吸收总是同时存在的。

7)粒子数反转
一个诱发光子不仅能引起受激辐射,而且它也能引起受激吸收,所以只有当处在高能级的原子数目比处在低能级的还多时,受激辐射才能超过受激吸收,而占优势。

由此可见,为使光源发射激光,而不是发出普通光的关键是发光原子处在高能级的数目比低能级上的多,这种情况,称为粒子数反转。

但在热平衡条件下,原子几乎都处于最低能级(基态)。

8)波尔兹曼分布规律
在通常热平衡条件下,处于高能级E2上的原子数密度N2,远比处于低能级的原子数密度低,这是因为处于能级E的原子数密度N的大小时随能级E的增加而指数减小,即N∝exp(-E/kT),这就是著名的波耳兹曼分布规律。

文章来源:武汉梅曼科技有限公司。

相关文档
最新文档