浙教版数学七年级上册 2.5 有理数的乘方 同步练习(2)
《2.5有理数的乘方》作业设计方案-初中数学浙教版12七年级上册

《有理数的乘方》作业设计方案(第一课时)一、作业目标通过本次作业,使学生掌握有理数乘方的概念和基本性质,能够正确理解和计算正整数指数的乘方运算,培养学生运用数学知识解决实际问题的能力,提高他们的数学逻辑思维和计算能力。
二、作业内容1. 基础练习:设计一系列有理数乘方的基础题目,包括正整数指数的乘方运算,如(2^3)、(-3^2)等,旨在让学生熟练掌握乘方的计算方法。
2. 概念理解:编写一些关于乘方概念的理解题,如“乘方的意义是什么?”、“乘方运算的规则有哪些?”等,帮助学生加深对乘方概念的理解。
3. 应用实践:设置一些实际问题的应用题,如“计算树苗的种植面积”、“计算火箭升空后的高度”等,通过实际问题让学生运用乘方知识解决实际问题。
4. 拓展提升:设计一些稍有难度的题目,如带有负指数的乘方运算、科学记数法的乘方运算等,旨在提升学生的数学思维和解题能力。
三、作业要求1. 学生在完成作业时,应先独立完成,不得抄袭他人答案。
2. 计算过程中应注重准确性和速度,既要保证计算结果正确,也要注意提高计算速度。
3. 对于应用实践题,学生应理解题意,合理运用所学知识解决问题,写出清晰的解题过程和答案。
4. 拓展提升题为选做题,学生可根据自身能力选择是否完成。
四、作业评价1. 教师将对每位学生的作业进行批改,评价其完成情况和正确性。
2. 对于基础练习和应用实践题的完成情况,教师将根据学生的解题过程和答案的准确性进行评价。
3. 对于拓展提升题的完成情况,教师将根据学生的解题思路和解题方法的创新性进行评价。
4. 教师将在批改过程中,对共性问题进行总结,并在课堂上进行讲解和指导。
五、作业反馈1. 教师将通过课堂讲解和个别辅导的方式,对学生的作业进行反馈和指导。
2. 对于共性问题,教师将在课堂上进行讲解和演示,帮助学生掌握正确的解题方法和思路。
3. 对于个别学生的问题,教师将通过个别辅导的方式,进行针对性的指导和帮助。
4. 学生在收到反馈后,应认真听取教师的建议和指导,及时改正错误,提高自己的学习效果。
浙教版七下2.5有理数的乘方(2)

例题
☞
例3 用科学记数法表示下列各数:
-230000
15800…0 解:
31个0
(1) - 230000 2.3 10
(2)15800…0 =1.58×1033
31个0
5
例题
☞
(2) 下列用科学记数法表示的 数,原来各是什么数?
4.31510
3 6
1.0210
例题
☞
8
(3)计算: (8.1 10
) (9 10 )
5
8
8.1 10 解: 原式 5 9 10 810000000 900000 900
练习
计算:
☞
8.5610 2.110
2
3 3
3
( -3 10 )
例 4 如果平均每人每天需要粮食0.5千克, 那么全国每天大约需要粮食多少千克? 9 1年呢(全国人口约1.37 10 人,结果用 科学记数法表示)?
2. 1000 000=( 106 ) 100 000 000 000=( 1011)
你发现了什么规律?
一般地指数为n,幂的最末有n个零, 反之亦ห้องสมุดไป่ตู้。
=2×10000=2×104
新知识
☞
5
600 000 6 10
2 10
20 000 000 2 10 000 000
7
这种把一个数表示成a(1≤a<10)与10 的幂相乘的形式,叫做科学记数法。
7 7.4 10 截止2010年,我国大约有 辆民用
汽车,按平均每辆车的车身长5m计算, 让这些汽车头尾相接排列,大约能排多长? 相当于几座万里长城的长度(万里长城的 3 长度按 km 5.13 10 来计算)
新浙教版七年级上册数学第二章《有理数的运算》知识点及典型例题

期末复习二有理数的运算要求知识与方法了解有理数加、减、乘、除、乘方的运算法则倒数的概念,会求一个数的倒数乘方、幂、指数、底数的概念计算器的简单使用理解有理数的混合运算的运算顺序,能进行有理数的混合运算用科学记数法表示较大的数说出一个由四舍五入法得到的有理数的精确位数及根据精确度取近似值运用合理运用运算律简化有理数混合运算的过程利用有理数的混合运算解决简单的实际问题一、必备知识:1.若两个有理数的乘积为____________,就称这两个有理数____________.2.有理数的各种运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律.3.有理数混合运算的法则是:先算____________,再算____________,最后算____________.如有括号,先进行____________运算.4.把一个数表示成____________与____________的幂相乘的形式叫做科学记数法.二、防范点:1.倒数不要和相反数混淆,倒数符号不变,相反数要变号.2.乘方运算不要和乘法运算混淆,如23和32不相等.3.有理数混合运算中注意运算顺序,特别是乘、除同级运算时,注意从左到右的运算顺序.4.求用科学记数法表示的数及带单位的有理数的精确位数时要注意单位及10的幂的位数.倒数的概念例1 (1)2017的倒数为( )A .-2017B .2017C .-12017D .12017(2)已知a 与b 互为倒数,m 与n 互为相反数,则12ab -9m -9n 的值是________. 【反思】互为倒数的两个数乘积为1,注意互为倒数的两数符号是相同的,不要与相反数混淆起来.有理数运算法则及运算顺序例2 下列计算错在哪里?应如何改正?(1)74-22÷70=70÷70=1;(2)(-112)2-23=114-6=-434; (3)23-6÷3×13=6-6÷1=0.【反思】乘方运算是初中阶段新学的一种运算,要弄清楚它的法则,不要和乘法混淆起来;运算顺序也是学生的一个易错点,特别是乘、除同级运算过程中要遵循从左到右的运算顺序.有理数的混合运算例3 计算:(1)(-2)2+3×(-2)-1÷(14)2; (2)-32-[-(12)2-116]×(-2)÷(-1)2017.【反思】有理数的混合运算要注意运算的顺序不要搞错,-32的求值也是学生的一个易错点.有理数的简便计算例4 用简便方法计算:(1)(-6134)-(-512)+(134)-(+8.5); (2)19999899×(-11); (3)(-5)×713+7×(-713)-(+12)×713.【反思】合理地利用加法和乘法的运算律可以加快速度,分配律和分配律的逆向使用也是简便计算的一种重要的方法.近似数及科学记数法例5 (1)数361000000用科学记数法表示,以下表示正确的是( )A .0.361×109B .3.61×108C .3.61×107D .36.1×107(2)下列近似数精确到哪一位?①4.7万 ②17.68(3)用四舍五入法按要求取下列各数的近似数:①0.61548(精确到千分位);②73540(精确到千位).【反思】求带单位的近似数的精确度时,要注意单位也是有效的.有理数混合运算的应用例6 出租车司机王师傅从上午8:00~9:00在某市区东西向公路上营运,共连续运载八批乘客.若规定向东为正,向西为负,王师傅营运八批乘客里程如下:(单位:千米)+5,-6,+3,-7,+5,+4,-3,-4.(1)将最后一批乘客送到目的地时,王师傅在第一批乘客出发地的什么位置?(2)已知王师傅的车在市区耗油成本约为0.6元/千米,若出租车的收费标准为:起步价8元(不超过3千米),若超过3千米,超过部分按每千米2元收费,则王师傅在上午8:00~9:00扣除耗油成本后赚了多少元?【反思】用有理数的运算解决实际问题,主要是要抓住题中各数量之间的关系,弄清是求各数之和还是各数的绝对值之和.1.计算:3×(-1)3+(-5)×(-3)____________.2.已知(x -2)2+||2y +6=0,则x +y =____________.3.如图,数轴上A 、B 两点分别对应实数a 、b ,则a 与b 之间的关系是____________.(写出一个正确关系式即可)第3题图4.由四舍五入得到的近似数0.50,精确到____________位,它表示大于或等于____________且小于____________的数.5.数轴上A 、B 两点位于原点O 的两侧,点A 表示的实数是a ,点B 表示的实数是b ,若||a -b =2016,且AO =2BO ,则a +b 的值是____________.6.计算:(1)(34-112+13)×(-60);(2)(-3)2÷92+(-1)2017-|-2|.7.已知x ,y 为有理数,现规定一种新运算※,满足x ※y =xy +1.(1)求2※3的值;(2)求(3※5)※(-2)的值;(3)探索a ※(b +c)与a ※b +a ※c 的关系,并用等式把它们表达出来.参考答案期末复习二 有理数的运算【必备知识与防范点】1.1 互为倒数 3.乘方 乘除 加减 括号里的 4.a(1≤a<10) 10【例题精析】例1 (1)D (2)12例2 (1)运算顺序错.改正为:74-22÷70=74-4÷70=74-235=733335; (2)运算法则错.改正为:(-112)2-23=94-8=-234; (3)运算法则和运算顺序都错.改正为:23-6÷3×13=8-6×13×13=8-23=713.例3 (1)-18 (2)-838例4 (1)-63 (2)-2199989(3)-176 例5 (1)B (2)①千位 ②百分位 (3)①0.615 ②7.4×104例6 (1)正西方向3千米处 (2)67.8元【校内练习】1.12 2.-1 3.答案不唯一,如a >b4.百分 0.495 0.505 5.±6726.(1)(34-112+13)×(-60)=-60×34+60×112-60×13=-45+5-20=-60. (2)(-3)2÷92+(-1)2017-|-2|=9×29-1-2=-1. 7.(1)7 (2)-31 (3)∵a ※(b +c)=a(b +c)+1=ab +ac +1,a ※b +a ※c =ab +1+ac +1.∴a ※(b +c)+1=a ※b +a ※c.。
浙教版数学七年级上册2.5《有理数的乘方》(第1课时)教学设计

浙教版数学七年级上册2.5《有理数的乘方》(第1课时)教学设计一. 教材分析《有理数的乘方》是浙教版数学七年级上册第2.5节的内容,主要介绍了有理数的乘方概念、性质及运算法则。
这部分内容是学生学习数学的基础,对于培养学生的逻辑思维和抽象思维能力具有重要意义。
本节内容与现实生活紧密相连,有利于激发学生的学习兴趣。
二. 学情分析七年级的学生已具备一定的数学基础,掌握了有理数的加减乘除运算。
但学生对于乘方的概念和性质可能较为抽象,需要通过具体的例子和实际操作来理解和掌握。
此外,学生的学习习惯和思维方式各有不同,需要教师在教学中善于引导和调动学生的积极性。
三. 教学目标1.理解有理数的乘方概念,掌握有理数乘方的性质和运算法则。
2.能够运用乘方知识解决实际问题,提高学生的数学应用能力。
3.培养学生的逻辑思维和抽象思维能力,提高学生的数学素养。
4.激发学生学习数学的兴趣,养成良好的学习习惯。
四. 教学重难点1.有理数的乘方概念和性质的理解。
2.有理数乘方的运算法则的掌握。
3.乘方知识在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例引入乘方概念,激发学生学习兴趣。
2.引导发现法:教师引导学生发现乘方的性质和运算法则,培养学生的自主学习能力。
3.实践操作法:让学生通过实际操作,加深对乘方知识的理解和掌握。
4.巩固拓展法:通过课堂练习和课后作业,巩固所学知识,提高学生的应用能力。
六. 教学准备1.教学PPT:制作包含乘方概念、性质和运算法则的PPT,以便于课堂展示和讲解。
2.教学案例:准备一些与生活紧密相关的乘方实例,以便于引导学生学习和应用。
3.练习题:准备一些有针对性的练习题,以便于课堂练习和课后巩固。
七. 教学过程1.导入(5分钟)利用生活实例引入乘方概念,如“2的3次方表示3个2相乘,即2×2×2=8”。
通过实例让学生感受乘方的意义,激发学生的学习兴趣。
2.呈现(10分钟)呈现乘方的性质和运算法则,如“乘方的性质:a m×a n=a(m+n);乘方的运算法则:a m÷a n=a(m-n)”。
浙教版数学七年级上册2.6有理数的混合运算同步练习 (2)

2.6有理数的混合运算同步练习一.选择题(共12小题)1.算式[﹣5﹣(﹣11)]÷(×4)之值为何?()A.1 B.16 C.﹣ D.﹣2.在算式(﹣1)□(﹣2)的□中填上运算符号,使结果最小,这个运算符号是()A.加号 B.减号 C.乘号 D.除号.3.计算:1﹣1×(﹣3)=()A.0 B.4 C.﹣4 D.54.下列计算正确的是()A.﹣3÷3×3=﹣3 B.﹣3﹣3=0 C.﹣3﹣(﹣3)=﹣6 D.﹣3÷3÷3=﹣3 5.下列算式中,与(﹣3)2相等的是()A.﹣32 B.(﹣3)×2 C.(﹣3)×(﹣3) D.(﹣3)+(﹣3)6.计算2×(﹣3)3+4×(﹣3)的结果等于()A.﹣18 B.﹣27 C.﹣24 D.﹣667.计算8+6÷(﹣2)的结果是()A.﹣7 B.﹣5 C.5 D.78.定义运算a⊗b=a(1﹣b),下面给出的关于这种运算的四个结论中正确的是()A.2⊗(﹣2)=﹣4 B.a⊗b=b⊗aC.(﹣2)⊗2=2 D.若a⊗b=0,则a=09.对于正整数n,定义:其中f(n)表示n的首位数字与末位数字的平方和.例如:f(6)=62=36,f(123)=12+32=10.规定f1(n)=f(n),f k+1(n)=f(f k (n))(k为正整数).例如:f1(123)=f(123)=12+32=10,f2(123)=f(f1(123))=f(10)=1.则f4(4)的值为()A.37 B.58 C.89 D.14510.玲玲利用电脑调整两张相同尺寸照片的大小:第一张照片缩小了60%后感觉偏大,第二张照片缩小了80%后正合适,为使第一张照片也合适,则玲玲将这张照片再缩小的百分比是()A.20% B.30% C.40% D.50%11.如图是一个数值运算的程序,若输出的y值为3,则输入的x值为()A.3.5 B.﹣3.5 C.7 D.﹣712.若a、b、c在数轴上位置如图所示,则必有()A.abc>0 B.ab﹣ac>0 C.(a+b)c>0 D.(a﹣c)b>0二.填空题(共8小题)13.已知(39+)×(40+)=a+b,若a是整数,1<b<2,则a=______.14.计算:﹣3×2+(﹣2)2﹣5=______.15.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔______支.16.高斯函数[x],也称为取整函数,即[x]表示不超过x的最大整数.例如:[2.3]=2,[﹣1.5]=﹣2.则下列结论:①[﹣2.1]+[1]=﹣2;②[x]+[﹣x]=0;③若[x+1]=3,则x的取值范围是2≤x<3;④当﹣1≤x<1时,[x+1]+[﹣x+1]的值为0、1、2.其中正确的结论有______(写出所有正确结论的序号).17.为了缓解城市拥堵,某市对非居民区的公共停车场制定了不同的收费标准(见下表).如果小王某次停车3小时,缴费24元,请你判断小王该次停车所在地区的类别是______(填“一类、二类、三类”中的一个).18.“数21世纪教育网子”高斯从小就善于观察和思考.在他读小学时就能在课堂上快速地计算出1+2+3+…+98+99+100=5050,今天我们可以将高斯的做法归纳如下:令S=1+2+3+…+98+99+100 ①S=100+99+98+…+3+2+1 ②①+②:有2S=(1+100)×100 解得:S=5050请类比以上做法,回答下列问题:若n为正整数,3+5+7+…+(2n+1)=168,则n=______.19.随着北京公交票制票价调整,公交集团更换了新版公交站牌,乘客在乘车时可以通过新版公交站牌计算乘车费用.新版站牌每一个站名上方都有一个对应的数字,将上下车站站名所对应数字相减取绝对值就是乘车路程,再按照其所在计价区段,参照票制规则计算票价.具体来说:乘车路程计价区段0﹣10 11﹣15 16﹣20 …对应票价(元) 2 3 4 …另外,一卡通普通卡刷卡实行5折优惠,学生卡刷卡实行2.5折优惠.小明用学生卡乘车,上车时站名上对应的数字是5,下车时站名上对应的数字是22,那么,小明乘车的费用是______元.20.已知|ab﹣2|+|a﹣1|=0,则++…+=______.三.解答题(共8小题)21.计算(1)﹣8﹣(﹣15)+(﹣9)﹣(﹣12)(2)(3)﹣(3﹣5)+32×(﹣3)(4)(5)|(6).22.已知a、b互为相反数,c、d互为负倒数(即cd=﹣1),x是最小的正整数.试求x2﹣(a+b+cd)x+(a+b)2008+(﹣cd)2008的值.23.(2016春•绍兴校级期中)数学课上老师出了一道题计算:1+21+22+23+24+25+26+27+28+29,老师在教室巡视了一圈,发现同学们都做不出来,于是给出答案:解:令s=1+21+22+23+24+25+26+27+28+29①则2s=2+22+23+24+25+26+27+28+29+210②②﹣①得s=210﹣1根据以上方法请计算:(1)1+2+22+23+…+22015(写出过程,结果用幂表示)(2)1+3+32+33+…+32015=______(结果用幂表示)24.已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4的值;(2)求(1※4)※(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.25.股民小张五买某公司股票1000股,每股14.80元,表为第二周星期一至星期五每日该股票涨跌情况(1)星期三收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知小张买进股票时付了成交额0.15%的手续费,卖出时付了成交额0.15%的手续费和成交额0.1%的交易税,如果小张在星期五收盘前将全部股票卖出,那么他的收益情况如何?26.今年铁路大提速,小明的爸爸因要出差,于是去火车站查询列车的开行时间.下面是小明的爸爸从火车站带回家的最新时刻表:小明的爸爸找出以前同一车次的时刻表如下:比较了两张时刻表后,小明的爸爸提出了如下问题,请你帮小明解答:(1)请直接写出现在该次列车的运行时间是多少小时?(2)现在该次列车的运行时间比以前缩短了多少小时?(3)若该次列车提速后的平均时速为每小时200千米,那么,该次列车原来的平均时速为多少?(结果精确到个位)27.阅读材料:大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+n=n(n+1),其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…n(n+1)=?观察下面三个特殊的等式:1×2=(1×2×3﹣0×1×2)2×3=(2×3×4﹣1×2×3)3×4=(3×4×5﹣2×3×4)将这三个等式的两边相加,可以得到1×2+2×3+3×4=×3×4×5=20读完这段材料,请你思考后回答:(1)1×2+2×3+…+100×101=______;(2)1×2+2×3+3×4+…+n×(n+1)=______;(3)1×2×3+2×3×4+…+n(n+1)(n+2)=______.(只需写出结果,不必写中间的过程)28.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的“探究”【提出问题】三个有理数a、b、c满足abc>0,求的值.【解决问题】解:由题意得:a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①当a,b,c都是正数,即a>0,b>0,c>0时,则:==1+1+3;②当a,b,c有一个为正数,另两个为负数时,设a>0,b<0,c<0,则:==1+(﹣1)+(﹣1)=﹣1所以的值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a,b,c满足abc<0,求的值;(2)已知|a|=3,|b|=1,且a<b,求a+b的值.2.6有理数的混合运算同步练习参考答案与试题解析一.选择题(共12小题)1.算式[﹣5﹣(﹣11)]÷(×4)之值为何?()A.1 B.16 C.﹣ D.﹣【分析】原式先计算括号中的运算,再计算除法运算即可得到结果.【解答】解:原式=(﹣5+11)÷(3×2)=6÷6=1,故选A【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.在算式(﹣1)□(﹣2)的□中填上运算符号,使结果最小,这个运算符号是()A.加号 B.减号 C.乘号 D.除号.【分析】将运算符号填入算式中,计算即可得到结果.【解答】解:(﹣1)+(﹣2)=﹣1﹣2=﹣3;﹣1﹣(﹣2)=﹣1+2=1;(﹣1)×(﹣2)=2;﹣1÷(﹣2)=0.5,﹣3<0.5<1<2,则这个运算符号为加号.故选A【点评】此题考查了有理数的混合运算,以及有理数比较大小,熟练掌握运算法则是解本题的关键.3.计算:1﹣1×(﹣3)=()A.0 B.4 C.﹣4 D.5【分析】先算乘法,再算减法即可求解.【解答】解:1﹣1×(﹣3)=1﹣(﹣3)=4.故选:B.【点评】本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.4.下列计算正确的是()A.﹣3÷3×3=﹣3 B.﹣3﹣3=0 C.﹣3﹣(﹣3)=﹣6 D.﹣3÷3÷3=﹣3 【分析】A、原式从左到右依次计算即可得到结果,即可作出判断;B、原式利用减法法则计算得到结果,即可作出判断;C、原式利用减法法则计算得到结果,即可作出判断;D、原式从左到右依次计算得到结果,即可作出判断.【解答】解:A、原式=﹣1×3=﹣3,正确;B、原式=﹣6,错误;C、原式=﹣3+3=0,错误;D、原式=﹣1÷3=﹣,错误,故选A【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.5.下列算式中,与(﹣3)2相等的是()A.﹣32 B.(﹣3)×2 C.(﹣3)×(﹣3) D.(﹣3)+(﹣3)【分析】原式利用乘方的意义计算出结果,即可作出判断.【解答】解:(﹣3)2=9,A、原式=﹣9,不相等;B、原式=﹣6,不相等;C、原式=9,相等;D、原式=﹣6,不相等,故选C【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.6.计算2×(﹣3)3+4×(﹣3)的结果等于()A.﹣18 B.﹣27 C.﹣24 D.﹣66【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=2×(﹣27)﹣12=﹣54﹣12=﹣66,故选D.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.7.计算8+6÷(﹣2)的结果是()A.﹣7 B.﹣5 C.5 D.7【分析】根据有理数混合运算的运算顺序,首先计算除法,然后计算加法,即可求出算式8+6÷(﹣2)的结果是多少.【解答】解:8+6÷(﹣2)=8+(﹣3)=8﹣3=5即计算8+6÷(﹣2)的结果是5.故选:C.【点评】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.8.定义运算a⊗b=a(1﹣b),下面给出的关于这种运算的四个结论中正确的是()A.2⊗(﹣2)=﹣4 B.a⊗b=b⊗aC.(﹣2)⊗2=2 D.若a⊗b=0,则a=0【分析】A:根据新运算a⊗b=a(1﹣b),求出2⊗(﹣2)的值是多少,即可判断出2⊗(﹣2)=﹣4是否正确.B:根据新运算a⊗b=a(1﹣b),求出a⊗b、b⊗a的值各是多少,即可判断出a⊗b=b⊗a 是否正确.C:根据新运算a⊗b=a(1﹣b),求出(﹣2)⊗2的值是多少,即可判断出(﹣2)⊗2=2是否正确.D:根据a⊗b=0,可得a(1﹣b)=0,所以a=0或b=1,据此判断即可.【解答】解:∵2⊗(﹣2)=2×[1﹣(﹣2)]=2×3=6,∴选项A不正确;∵a⊗b=a(1﹣b),b⊗a=b(1﹣a),∴a⊗b=b⊗a只有在a=b时成立,∴选项B不正确;∵(﹣2)⊗2=(﹣2)×(1﹣2)=(﹣2)×(﹣1)=2,∴选项C正确;∵a⊗b=0,∴a(1﹣b)=0,∴a=0或b=1∴选项D不正确.故选:C.【点评】(1)此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:①有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.②进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.(2)此题还考查了对新运算“⊗”的理解和掌握,解答此题的关键是要明确:a⊗b=a(1﹣b).9.对于正整数n,定义:其中f(n)表示n的首位数字与末位数字的平方和.例如:f(6)=62=36,f(123)=12+32=10.规定f1(n)=f(n),f k+1(n)=f(f k (n))(k为正整数).例如:f1(123)=f(123)=12+32=10,f2(123)=f(f1(123))=f(10)=1.则f4(4)的值为()A.37 B.58 C.89 D.145【分析】根据新定义运算法则列出算式并计算.【解答】解:依题意得:则f1(4)=f(4)=02+42=16,f2(4)=f(f1(4))=f(16)=12+62=37.f3(4)=f(f3(4))=f(37)=32+72=58.f4(4)=f(f3(4))=f(58)=52+82=89.故选:C.【点评】本题考查了有理数的混合运算.根据f1(n)=f(n),f k+1(n)=f(f k(n))(k为正整数)求得f4(4)的值.10.玲玲利用电脑调整两张相同尺寸照片的大小:第一张照片缩小了60%后感觉偏大,第二张照片缩小了80%后正合适,为使第一张照片也合适,则玲玲将这张照片再缩小的百分比是()A.20% B.30% C.40% D.50%【分析】首先根据题意,分别求出第一张、第二张照片各变为了原来的百分之几十;然后用第二张照片的尺寸占原来照片的尺寸的分率除以第一张照片的尺寸占原来照片的尺寸的分率,求出玲玲将这张照片再缩小的百分比是多少即可.【解答】解:(1﹣80%)÷(1﹣60%)=20%÷40%=50%所以玲玲将这张照片再缩小的百分比是50%.故选:D.【点评】此题主要考查了有理数的混合运算,要熟练掌握有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.11.如图是一个数值运算的程序,若输出的y值为3,则输入的x值为()A.3.5 B.﹣3.5 C.7 D.﹣7【分析】由题意可得[(﹣x)﹣1]÷2=y,然后令y=3即可得到输入的x的值.【解答】解:由题意可得,[(﹣x)﹣1]÷2=y,当y=3时,[(﹣x)﹣1]÷2=3,解得,x=﹣7,故选D.【点评】本题考查有理数的混合运算,解题的关键是明确题意,根据题意可以列出相应的关系式.12.若a、b、c在数轴上位置如图所示,则必有()A.abc>0 B.ab﹣ac>0 C.(a+b)c>0 D.(a﹣c)b>0【分析】根据图示得知,a<﹣1<0<b<1<c,然后根据有理数的混合运算法则进行计算.【解答】解:根据图示知,a<﹣1,0<b<1,1<c.A、∵a是负数,b、c是正数,∴abc<0.故本选项错误;B、∵b<c,a<0,∴ab>ac,∴ab﹣ac>0.故本选项正确;C、∵a<﹣1,0<b<1,1<c,∴ac<﹣1,0<bc<1,∴ac+bc<0,即(a+b)c<0.故本选项错误;D、∵a<﹣1,0<b<1,1<c,∴a﹣c<﹣2,∴(a﹣c)b<﹣2.故本选项错误.故选B.【点评】本题考查了数轴、有理数的混合运算.解答此题的关键是根据图示找出a、b、c 的取值范围:a<﹣1,0<b<1,1<c.二.填空题(共8小题)13.已知(39+)×(40+)=a+b,若a是整数,1<b<2,则a= 1611 .【分析】首先把原式整理,利用整式的乘法计算,进一步根据b的取值范围得出a的数值即可.【解答】解:(39+)×(40+)=1560+27+24+=1611+∵a是整数,1<b<2,∴a=1611.故答案为:1611.【点评】此题考查有理数的混合运算,掌握运算的方法和数的估算是解决问题的关键.14.(2014•滨州)计算:﹣3×2+(﹣2)2﹣5= ﹣7 .【分析】根据有理数混合运算的顺序进行计算即可.【解答】解:原式=﹣3×2+4﹣5=﹣6+4﹣5=﹣7.故答案为:﹣7.【点评】本题考查的是有理数的混合运算,熟知先算乘方,再算乘除,最后算加减是解答此题的关键.15.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔352 支.【分析】三月份销售各种水笔的支数比二月份增长了10%,是把二月份销售的数量看作单位“1”,增加的量是二月份的10%,即三月份生产的是二月份的(1+10%),由此得出答案.【解答】解:320×(1+10%)=320×1.1=352(支).答:该文具店三月份销售各种水笔352支.故答案为:352.【点评】此题考查有理数的混合运算,理解题意,列出算式解决问题.16.高斯函数[x],也称为取整函数,即[x]表示不超过x的最大整数.例如:[2.3]=2,[﹣1.5]=﹣2.则下列结论:①[﹣2.1]+[1]=﹣2;②[x]+[﹣x]=0;③若[x+1]=3,则x的取值范围是2≤x<3;④当﹣1≤x<1时,[x+1]+[﹣x+1]的值为0、1、2.其中正确的结论有①③(写出所有正确结论的序号).【分析】根据[x]表示不超过x的最大整数,即可解答.【解答】解:①[﹣2.1]+[1]=﹣3+1=﹣2,正确;②[x]+[﹣x]=0,错误,例如:[2.5]=2,[﹣2.5]=﹣3,2+(﹣3)≠0;③若[x+1]=3,则x的取值范围是2≤x<3,正确;④当﹣1≤x<1时,0≤x+1<2,0<﹣x+1≤2,∴[x+1]=0或1,[﹣x+1]=0或1或2,当[x+1]=0时,[﹣x+1]=2;当[﹣x+1]=1时,[﹣x+1]=1或0;所以[x+1]+[﹣x+1]的值为1、2,故错误.故答案为:①③.【点评】本题考查了有理数的混合运算,解决本题的关键是明确[x]表示不超过x的最大整数.17.为了缓解城市拥堵,某市对非居民区的公共停车场制定了不同的收费标准(见下表).如果小王某次停车3小时,缴费24元,请你判断小王该次停车所在地区的类别是二类(填“一类、二类、三类”中的一个).【分析】根据公共停车场的收费标准,分别求出三个类别停车所在地区的收费,进而求解即可.【解答】解:如果停车所在地区的类别是一类,应该收费:2.5×4+3.75×8=40(元),如果停车所在地区的类别是二类,应该收费:1.5×4+2.25×8=24(元),如果停车所在地区的类别是三类,应该收费:0.5×4+0.75×8=8(元),故答案为二类.【点评】本题考查了实际问题的应用,正确理解公共停车场的收费标准,求出三个类别停车所在地区的收费是解题的关键.18.“数21世纪教育网子”高斯从小就善于观察和思考.在他读小学时就能在课堂上快速地计算出1+2+3+…+98+99+100=5050,今天我们可以将高斯的做法归纳如下:令S=1+2+3+…+98+99+100 ①S=100+99+98+…+3+2+1 ②①+②:有2S=(1+100)×100 解得:S=5050请类比以上做法,回答下列问题:若n为正整数,3+5+7+…+(2n+1)=168,则n= 12 .【分析】根据题目提供的信息,列出方程,然后求解即可.【解答】解:设S=3+5+7+…+(2n+1)=168①,则S=(2n+1)+…+7+5+3=168②,①+②得,2S=n(2n+1+3)=2×168,整理得,n2+2n﹣168=0,即(n﹣12)(n+14)=0,解得n1=12,n2=﹣14(舍去).故答案为:12.【点评】本题考查了有理数的混合运算,读懂题目提供的信息,表示出这列数据的和并列出方程是解题的关键.19.随着北京公交票制票价调整,公交集团更换了新版公交站牌,乘客在乘车时可以通过新版公交站牌计算乘车费用.新版站牌每一个站名上方都有一个对应的数字,将上下车站站名所对应数字相减取绝对值就是乘车路程,再按照其所在计价区段,参照票制规则计算票价.具体来说:乘车路程计价区段0﹣10 11﹣15 16﹣20 …对应票价(元) 2 3 4 …另外,一卡通普通卡刷卡实行5折优惠,学生卡刷卡实行2.5折优惠.小明用学生卡乘车,上车时站名上对应的数字是5,下车时站名上对应的数字是22,那么,小明乘车的费用是 1 元.【分析】首先用下车时站名上对应的数字减去上车时站名上对应的数字,求出小明乘车的路程是多少,进而求出相应的票价是多少;然后用它乘以0.25,求出小明乘车的费用是多少元即可.【解答】解:因为小明乘车的路程是:22﹣5=17,所以小明乘车的费用是:4×0.25=1(元).答:小明乘车的费用是1元.故答案为:1.【点评】此题主要考查了有理数的混合运算,要熟练掌握有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,解答此题的关键是求出小明乘车的路程、相应的票价是多少.20.已知|ab﹣2|+|a﹣1|=0,则++…+= .【分析】由绝对值的结果为非负数,且两非负数之和为0可得两个绝对值同时为0,可得ab=2且a=1,把a=1代入ab=2可求出b的值为2,把求出的a与b代入所求的式子中,利用拆项法把所求式子的各项拆项后,去括号合并即可求出值.【解答】解:∵|ab﹣2|≥0,|a﹣1|≥0,且|ab﹣2|+|a﹣1|=0,∴ab﹣2=0且a﹣1=0,解得ab=2且a=1,把a=1代入ab=2中,解得b=2,则原式=(1﹣)+(﹣)+(﹣)+…+(﹣)=1﹣=.故答案为:【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.三.解答题(共8小题)21.计算(1)﹣8﹣(﹣15)+(﹣9)﹣(﹣12)(2)(3)﹣(3﹣5)+32×(﹣3)(4)(5)|(6).【分析】(1)先化简再计算加减法;根据有理数的加法法则计算即可求解;(2)将除法变为乘法,再约分计算即可求解;(3)(5)(6)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(4)直接运用乘法的分配律计算.【解答】解:(1)﹣8﹣(﹣15)+(﹣9)﹣(﹣12)=﹣8+15﹣9+12=﹣17+27=10;(2)=﹣×××=﹣;(3)﹣(3﹣5)+32×(﹣3)=2+9×(﹣3)=2﹣27=﹣25;(4)=30﹣×36﹣×36+×36=30﹣28﹣30+33=5;(5)|=﹣9+×(﹣)+4=﹣9﹣1+4=﹣6;(6)=9﹣7÷7﹣×4=9﹣1﹣1=7.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.22.已知a、b互为相反数,c、d互为负倒数(即cd=﹣1),x是最小的正整数.试求x2﹣(a+b+cd)x+(a+b)2008+(﹣cd)2008的值.【分析】根据已知与相反数、倒数、正整数的定义,确定a+b=0,cd=﹣1,x=1,再将a+b、cd、x(其中a+b、cd做为一个整体出现),代入x2﹣(a+b+cd)x+(a+b)2008+(﹣cd)2008求的值.【解答】解:∵a、b互为相反数∴a+b=0∵c、d互为负倒数∴cd=﹣1∵x是最小的正整数∴x=1∴x2﹣(a+b+cd)x+(a+b)2008+(﹣cd)2008=12﹣[0+(﹣1)]×1+02008+[﹣(﹣1)]2008=3.【点评】本题考查相反数、负倒数、正整数的定义,有理数的混合运算.解决本题的关键是首先确定a+b、cd、x的值,再将a+b、cd做为一个整体代入x2﹣(a+b+cd)x+(a+b)2008+(﹣cd)2008,从而使问题得解.23.(2016春•绍兴校级期中)数学课上老师出了一道题计算:1+21+22+23+24+25+26+27+28+29,老师在教室巡视了一圈,发现同学们都做不出来,于是给出答案:解:令s=1+21+22+23+24+25+26+27+28+29①则2s=2+22+23+24+25+26+27+28+29+210②②﹣①得s=210﹣1根据以上方法请计算:(1)1+2+22+23+…+22015(写出过程,结果用幂表示)(2)1+3+32+33+…+32015= (结果用幂表示)【分析】(1)根据题意可以对所求式子变形,从而可以解答本题;(2)根据题意可以对所求式子变形,从而可以解答本题.【解答】解:(1)设s=1+2+22+23+…+22015①,则2s=2+22+23+…+22015+22016②,②﹣①,得s=22016﹣1,即1+2+22+23+…+22015=22016﹣1;(2)设s=1+3+32+33+…+32015①,则3s=3+32+33+…+32015+32016②,②﹣①,得2s=32016﹣1,∴s=,故答案为:.【点评】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.24.已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4的值;(2)求(1※4)※(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.【分析】读懂题意,掌握规律,按规律计算每个式子.【解答】解:(1)2※4=2×4+1=9;(2)(1※4)※(﹣2)=(1×4+1)×(﹣2)+1=﹣9;(3)(﹣1)※5=﹣1×5+1=﹣4,5※(﹣1)=5×(﹣1)+1=﹣4;(4)∵a※(b+c)=a(b+c)+1=ab+ac+1,a※b+a※c=ab+1+ac+1=ab+ac+2.∴a※(b+c)+1=a※b+a※c.【点评】解答此类题目的关键是认真观察已知给出的式子的特点,找出其中的规律.25.股民小张五买某公司股票1000股,每股14.80元,表为第二周星期一至星期五每日该股票涨跌情况(1)星期三收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知小张买进股票时付了成交额0.15%的手续费,卖出时付了成交额0.15%的手续费和成交额0.1%的交易税,如果小张在星期五收盘前将全部股票卖出,那么他的收益情况如何?【分析】(1)由图可以算出每天每股的价格;(2)比较找到本周内最高价是每股多少元?最低价是多少元?;(3)收益=星期五收盘的总收入﹣买进时付了0.15%的手续费﹣卖出时须付成交额0.15%的手续费和0.1%的交易税,代入求值即可.【解答】解:(1)14.8+0.4+0.5﹣0.1=15.6(元),答:每股是15.6元;(2)14.8+0.4+0.5﹣0.1﹣0.2+0.4=15.8(元),14.8+0.4=15.2(元).故本周内最高价是每股15.8元,最低价是每股15.2元;(3)∵买1000张的费用是:1000×14.8=14800(元),星期五全部股票卖出时的总钱数为:1000×15.80=15800(元)15800﹣14800﹣14800×0.15%﹣15800×(0.15%+0.1%)=1000﹣22.2﹣39.5=938.3(元).所以小张赚了938.3元.【点评】本题考查了有理数的混合运算,在运算中应注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.26.今年铁路大提速,小明的爸爸因要出差,于是去火车站查询列车的开行时间.下面是小明的爸爸从火车站带回家的最新时刻表:小明的爸爸找出以前同一车次的时刻表如下:比较了两张时刻表后,小明的爸爸提出了如下问题,请你帮小明解答:(1)请直接写出现在该次列车的运行时间是多少小时?(2)现在该次列车的运行时间比以前缩短了多少小时?(3)若该次列车提速后的平均时速为每小时200千米,那么,该次列车原来的平均时速为多少?(结果精确到个位)【分析】(1)运行时间等于到站时间减去出发时间即可;(2)用以前列车运行时间减去现在列车运行时间即为缩短时间;(3)首先计算路程,然后用路程除以原来运行时间即为来的平均时速.【解答】解:(1)该次列车现在的运行时间为28小时,(2)原来运行时间为42小时,所以该次列车的运行时间比原来缩短了14小时;)(3)因为现在该次列车的速度为每小时200千米,所以始发站到终点站的距离为:28×200=5600千米则原来该次列车的速度为:5600/42≈133千米/小时.答:该次列车原来的速度约为每小时133千米.【点评】题目考查了有理数混合运算的应用,题目利用列车运行为背景,考查学生知识掌握情况,题目整体较简单,适合随堂训练.27.阅读材料:大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+n=n(n+1),其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…n(n+1)=?观察下面三个特殊的等式:1×2=(1×2×3﹣0×1×2)2×3=(2×3×4﹣1×2×3)3×4=(3×4×5﹣2×3×4)将这三个等式的两边相加,可以得到1×2+2×3+3×4=×3×4×5=20读完这段材料,请你思考后回答:(1)1×2+2×3+…+100×101= 343400 ;(2)1×2+2×3+3×4+…+n×(n+1)= n(n+1)(n+2);(3)1×2×3+2×3×4+…+n(n+1)(n+2)= n(n+1)(n+2)(n+3).(只需写出结果,不必写中间的过程)【分析】(1)根据三个特殊等式相加的结果,代入熟记进行计算即可求解;(2)先对特殊等式进行整理,从而找出规律,然后把每一个算式都写成两个两个算式的运算形式,整理即可得解;(3)根据(2)的求解规律,利用特殊等式的计算方法,先把每一个算式分解成两个算式的运算形式,整理即可得解.【解答】解:∵1×2+2×3+3×4=×3×4×5=20,即1×2+2×3+3×4=×3×(3+1)×(3+2)=20∴(1)原式=×100×(100+1)×(100+2)=×100×101×102=343400;(2)原式=n(n+1)(n+2);(3)原式=n(n+1)(n+2)(n+3).故答案为:343400;n(n+1)(n+2);n(n+1)(n+2)(n+3).【点评】考查了有理数的混合运算,能从材料中获取所需的信息和解题方法是需要掌握的基本能力.要注意:连续的整数相乘的进一步变形,即n(n+1)=[n(n+2)﹣n(n+1)(n﹣1)];n(n+1)(n+2)=[n(n+1)(n+2)(n+3)﹣n(n﹣1)(n+1)(n+2)].28.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的“探究”【提出问题】三个有理数a、b、c满足abc>0,求的值.【解决问题】解:由题意得:a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①当a,b,c都是正数,即a>0,b>0,c>0时,则:==1+1+3;②当a,b,c有一个为正数,另两个为负数时,设a>0,b<0,c<0,则:==1+(﹣1)+(﹣1)=﹣1所以的值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a,b,c满足abc<0,求的值;(2)已知|a|=3,|b|=1,且a<b,求a+b的值.【分析】(1)分2种情况讨论:①当a,b,c都是负数,即a<0,b<0,c<0时;②a,b,c有一个为负数,另两个为正数时,设a<0,b>0,c>0,分别求解即可;(2)利用绝对值的代数意义,以及a小于b求出a与b的值,即可确定出a+b的值.【解答】解:(1)∵abc<0,∴a,b,c都是负数或其中一个为负数,另两个为正数,①当a,b,c都是负数,即a<0,b<0,c<0时,则=﹣﹣﹣=﹣1﹣1﹣1=﹣3;②a,b,c有一个为负数,另两个为正数时,设a<0,b>0,c>0,则=﹣++=﹣1+1+1=1.(2)∵|a|=3,|b|=1,且a<b,∴a=﹣3,b=1或﹣1,则a+b=﹣2或﹣4.【点评】本题主要考查了有理数的混合运算,绝对值,有理数的除法,解(1)题的关键是讨论a与ab的取值情况.初中数学试卷。
2.5 有理数的乘方七年级上册数学浙教版

2.5 有理数的乘方
七上数学 ZJ
1.理解有理数乘方的意义,掌握乘方、幂、指数、底数等概念,发展抽象能力。2.会进行有理数的乘方运算,强化运算能力。3.会用科学记数法表示较大的数,会将用科学记数法表示的数还原。
概念
示例
乘方
求几个相同因数的积的运算,叫作乘方。(乘方是一种运算,幂是乘方的结果)
典例2 计算:
(1);
解: 。
(2) ;
解: 。(底数为分数时,要带括号)
注意与 区别
(3) ;
解: 。(底数为分数时,要带括号)
(5) ;
解: 。
(6) 。
解: 。
(4) ;
解: 。
求带分数的乘方时,要先将带分数转化成假分数再计算
对于乘除和乘方的混合运算,应先算乘方,后算乘除;如果遇到括号,就先进行括号里的运算。
个 相乘的积记作
底数可以是任意有理数,指数 是正整数。
概念
示例
幂
乘方的结果叫作幂。
_
底数
在中, 叫作底数。
指数
在中, 叫作指数。
敲黑板(1)一个数可以看作这个数本身的一次方。例如,5就是 ,指数1通常省略不写。(2)指数是2时读作平方或二次方,指数是3时读作立方或三次方。例如,通常读作“5的平方”,也可以读作“5的二次方”; 通常读作“5的立方”,也可以读作“5的三次方”。
敲黑板(1)用科学记数法表示一个带单位的数时,其表示的结果也应该带单位且前后应该一致。(2)用科学记数法表示负数的方法和表示正数的方法一样,只需前面加一个“-”即可。(3)“万”可转化为,“亿”可转化为 。
3.把用科学记数法表示的数还原:(1)中的指数 加上1就得到原数的整数位数,从而确定原数。(2)把中的小数点向右移动 位即可,若向右移动的位数不够,则用“0”补足。
七年级上册数学同步练习题库:有理数的乘方(选择题:较难)

有理数的乘方(选择题:较难)1、如图,是一组按照某种规律摆放而成的图案,第1个图有1个三角形,第二个图有4个三角形,第三个图有8个三角形,第四个图有12个三角形,则图5中三角形的个数是()A.8 B.12 C.16 D.172、大家都知道,八点五十五可以说成九点差五分,有时这样表达更清楚.这启发人们设计一种新的加减计数法.比如:9写成1,1=10﹣1;198写成20,20=200﹣2;7683写成13,13=10000﹣2320+3总之,数字上画一杠表示减去它,按这个方法请计算53﹣31=()A.1990 B.2068 C.2134 D.30243、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256……,则231的结果的个位数应为()A.2 B.4 C.8 D.64、若m、n满足,则的值等于().A.-1 B.1 C.-2 D.5、如果,那么的值为( ) .A.0 B.4 C.-4 D.26、某校女生的平均身高约为1.6米,则该校全体女生的平均身高的范围是()A.大于1.55米且小于1.65米 B.不小于1.55米且小于1.65米C.大于1.55米且不大于1.65米 D.不小于1.55米且不大于1.65米7、∑表示数学中的求和符号,主要用于求多个数的和,∑下面的小字,i=1表示从1开始求和;上面的小字,如n表示求和到n为止.即x i=x1+x2+x3+…+x n.则(i2﹣1)表示()A.n2﹣1B.12+22+32+…+i2﹣iC.12+22+32+…+n2﹣1D.12+22+32+…+n2﹣(1+2+3+…+n )8、观察下列算式:71=7,72=49,73=343,74=2401,….根据上述算式中的规律,你认为72006的个位数字是()A.7 B.9 C.3 D.19、小飞测量身高近似1.71米,若小飞的身高记为x,则他的实际身高范围为()A.1.7≤x≤1.8 B.1.705<x<1.715C.1.705≤x<1.715 D.1.705≤x≤1.71510、将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是()A.502 B.503 C.504 D.50511、观察下面由正整数组成的数阵:照此规律,按从上到下、从左到右的顺序,第50行的第50个数是()A.2450 B.2451 C.2550 D.255112、如图,是一组按照某种规律摆放而成的图案,第1个图有1个三角形,第二个图有4个三角形,第三个图有8个三角形,第四个图有12个三角形,则图5中三角形的个数是()A.8 B.12 C.16 D.1713、如图,是一组按照某种规律摆放成的图案,则图6中三角形的个数是()A.18 B.19 C.20 D.2114、如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第个图形需要黑色棋子的个数是.15、已知,+=0,则=().A.1 B.-2013 C.-1 D.201316、某种细菌在培养过程中,每半个小时分裂一次(由1个分裂成2个,两个裂成4个…),若这种细菌由1个分裂成128个,那么这个过程需要经过()小时。
浙教版七年级上册数学习题:2.5有理数的乘方

2.5 有理数的乘方班级:___________ 姓名:___________ 分数:___________1.如图,是由假设干个完全一样的小正方体组成的一个几何体的主视图和左视图,那么组成这个几何体的小正方体的个数是 ()A.2个或3个B.4个或5个C.5个或6个D.6个或7个【答案】B【考点】初中数学知识点?图形与变换?投影与视图【解析】由主视图和左视图知,这个几何体的底层应有3个或4个,第二层应有1个,因此组成这个几何体的小正方体应有4个或5个.2.用“◇〞和“☆〞分别代表甲种植物和乙种植物,为了美化环境,采用如下图的方案种植⑴观察图形,寻找规律,并填写下表:⑵求出第个图形中甲种植物和乙种植物的株数⑶是否存在一种种植方案,使得乙种植物的株数甲种植物的株数多17?假设存在,请你写出是第几个图案,假设不存在,请说明理由.【答案】〔1〕16,25,36;25,36,49;〔2〕第n个图形中甲种植物和乙种植物的株数分别为:n2和〔n+1〕2;〔3〕第8个方案满足.【考点】初中数学知识点?数与式?有理数【解析】试题分析:此题的规律一定要注意结合图形观察发现规律:第n个图中,有甲种植物n2株,乙种植物〔n+1〕2株;据此规律代入数值计算即可.试题解析:〔1〕16,25,36;25,36,49;〔2〕第n个图形中甲种植物和乙种植物的株数分别为:n2和〔n+1〕2;〔3〕设第n个方案满足,那么答:第8个方案满足.考点:图形的变化规律.3.观察图中正方形四个顶点所标的数字规律,可知数2021应标在 ()A.第503个正方形的左下角B.第503个正方形的右下角C.第504个正方形的左上角D.第504个正方形的右下角【答案】D【考点】初中数学知识点?数与式?有理数?有理数的加减乘除以及乘方【解析】通过观察发现:正方形的左下角是4的倍数,左上角是4的倍数余3,右下角是4的倍数余1,右上角是4的倍数余2.∵2021÷4=503…1,∴数2021应标在第504个正方形的右下角.应选D.4.观察以下各式:12+1=1×2,22+2=2×3,32+3=3×4,…请你将猜测得到的规律用自然数n表示出来:.【答案】n2+n=n〔n+1〕.【考点】初中数学知识点?数与式?有理数【解析】试题分析:根据题意可知规律n2+n=n〔n+1〕.故答案是n2+n=n〔n+1〕.考点:规律型.5.-3-〔-5〕=________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.5有理数乘方(2)
基础巩固训练
一、选择题
1.表示的意义是()
A.12个4连乘
B.12乘以4
C.4个12连乘
D.4个12相加
2.下列各数中,数值相等的是()
A. B. C. D.
3.下列计算中,正确的是()
A. B. C. D.
4.21000用科学记数法表示为()
A. B. C. D.
5.则n值为()
A.2
B.3
C.4
D.5
6.若,则a值为
A.51
B.
C.5.1
D.
二、填空题
1.在中,底数是,指数是,幂是.
2.在中,底数是,指数是,结果是.
3.底数是-2,指数是2的幂写作,其结果是.
4.=.
5.将612300写成科学记数法的表示形式应为.
6.的结果是位数.
三、解答题
1.计算下列各题.
(1)
(2)
(3)
(4)
(5)
2.用科学记数法表示下列各数.
(1)607000(2)-7001000
(3)16780000(4)100.1
3.写出下列用科学记数法表示的数的原数
(1)(2)
(3)(4)
能力达标测试
[时间60分钟满分100分]
一、选择题(每小题3分,共24分)
1.a与b互为相反数,则下列式子中,不是互为相反数的是()
A. B. C. D.
2.如果一个数的立方等于它本身,则这个数是()
A.0
B.0或1
C.1或-1
D.0或1或-1
3.的值为()
A.2
B.4
C.-4
D.-2
4.化简为()
A. B. C. D.
5.所得的结果为()
A.0
B.-1
C.-2
D.2
6.下列各组数中,运算结果相等的是()
A. B. C. D.
7.下列各数,是用科学记数法表示的是()
A. B. C. D.
8.用科学记数法表示的数,原数是()
A.2001
B.200.1
C.200100
D.20.01
二、填空题(每小题2分,共20分)
1.若.
2.写成幂的形式为.
3.若则.。