两角和差正余弦公式地证明
(完整版)两角和与差的正弦、余弦、正切公式及变形

两角和与差的正弦、余弦、正切公式及变形1.两角和与差的正弦、余弦、正切公式 (1)公式①cos(α-β)=cos_αcos_β+sin_αsin_β(C (α-β)) ②cos(α+β)=cos_αcos_β-sin_αsin_β(C (α+β)) ③sin(α-β)=sin_αcos_β-cos_αsin_β(S (α-β)) ④sin(α+β)=sin_αcos_β+cos_αsin_β(S (α+β)) ⑤tan(α-β)=tan α-tan β1+tan αtan β(T (α-β))⑥tan(α+β)=tan α+tan β1-tan αtan β(T (α+β))(2)公式变形①tan α+tan β=tan(α+β)(1-tan αtan β). ②tan α-tan β=tan(α-β)(1+tan αtan β). 2.二倍角公式 (1)公式①sin 2α=2sin_αcos_α,②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α, ③tan 2α=2tan α1-tan 2α.(2)公式变形①cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;②1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin )4(πα±.3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)两角和与差的正弦、余弦公式中的角α,β是任意的.(√) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.(√) (3)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.(×)(4)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.(×)(5)二倍角的正弦、余弦、正切公式的适用范围是任意角.(×) (6)存在角α,使得sin 2α=2sin α成立.(√) (7)若α+β=π4,则(1+tan α)(1+tan β)=2.(√)(8)不存在实数α,β,使得cos(α+β)=sin α+cos β.(×) (9)存在实数α,使tan 2α=2tan α.(√) (10)y =1-2cos 2x 的x 无意义.(×)考点一 三角函数式的给角求值命题点1.已知非特殊角求函数式的值2.已知含参数的角化简函数或求值[例1] (1)求值:1+cos 20°2sin 20°-sin 10°)5tan 5tan 1(0-; 解:原式=2cos 210°2×2sin 10°cos 10°-sin 10°)5cos 5sin 5sin 5cos (0000- =cos 10°2sin 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5°=cos 10°2sin 10°-sin 10°·cos 10°12sin 10°=cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°2sin 10°=3sin 10°2sin 10°=32. (2)化简:sin 2α·sin 2β+cos 2α·cos 2β-12cos 2α·cos 2β. 解:法一:(复角→单角,从“角”入手)原式=sin 2α·sin 2β+cos 2α·cos 2β-12·(2cos 2α-1)·(2cos 2β-1) =sin 2α·sin 2β+cos 2α·cos 2β-12·(4cos 2α·cos 2β-2cos 2α-2cos 2β+1)=sin 2α·sin 2β-cos 2α·cos 2β+cos 2α+cos 2β-12 =sin 2α·sin 2β+cos 2α·sin 2β+cos 2β-12 =sin 2β+cos 2β-12=1-12=12. 法二:(从“名”入手,异名化同名)原式=sin 2α·sin 2β+(1-sin 2α)·cos 2β-12cos 2α·cos 2β=cos 2β-sin 2α(cos 2β-sin 2β)-12cos 2α·cos 2β=cos 2β-sin 2α·cos 2β-12cos 2α·cos 2β=cos 2β-cos 2β·)2cos 21(sin 2αα+=1+cos 2β2-cos 2β·⎣⎢⎡⎦⎥⎤sin 2α+12(1-2sin 2α) =1+cos 2β2-12cos 2β=12.法三:(从“幂”入手,利用降幂公式先降次) 原式=1-cos 2α2·1-cos 2β2+1+cos 2α2·1+cos 2β2-12cos 2α·cos 2β =14(1+cos 2α·cos 2β-cos 2α-cos 2β)+14(1+cos 2α·cos 2β+cos 2α+cos 2β)-12·cos 2α·cos 2β=12.[方法引航] 给角求值问题往往给出的角是非特殊角,求值时要注意:(1)观察角,分析角之间的差异,巧用诱导公式或拆分.(2)观察名,尽可能使函数统一名称.(3)观察结构,利用公式,整体化简.1.求值sin 50°(1+3tan 10°).解:sin 50°(1+3tan 10°)=sin 50°(1+tan 60°·tan 10°) =sin 50°·cos 60°cos 10°+sin 60°sin 10°cos 60°cos 10°=sin 50°·cos (60°-10°)cos 60°cos 10°=2sin 50°cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.2.在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C 2+3tan A 2tan C2的值为________.解析:因为三个内角A ,B ,C 成等差数列,且A +B +C =π, 所以A +C =2π3,A +C 2=π3,tan A +C 2=3, 所以tan A 2+tan C 2+3tan A 2tan C2 =tan )22(C A +)2tan 2tan 1(CA -+3tan A 2tan C 2 =3)2tan 2tan1(CA -+3tan A 2tan C 2= 3. 考点二 三角函数式的给值求值[例2] (1)(2016·高考全国丙卷)若tan θ=-13,则cos 2θ=( ) A .-45 B .-15 C.15 D.45解析:法一:cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=45.故选D. 法二:由tan θ=-13,可得sin θ=±110,因而cos 2θ=1-2sin 2θ=45.答案:D(2)已知tan )4(πα+=12,且-π2<α<0,则)4cos(2sin sin 22πααα-+等于( )A .-255B .-3510C .-31010 D.255 解析:由tan )4(πα+=tan α+11-tan α=12,得tan α=-13.又-π2<α<0,所以sin α=-1010. 故)4cos(2sin sin 22πααα-+=2sin α(sin α+cos α)22(sin α+cos α)=22sin α=-255.答案:A(3)已知α∈)2,0(π,且2sin 2α-sin α·cos α-3cos 2α=0,则12cos 2sin )4sin(+++ααπα=________.解析:2sin 2α-sin αcos α-3cos 2α=0则(2sin α-3cos α)(sin α+cos α)=0, 由于α∈)2,0(π,sin α+cos α≠0, 则2sin α=3cos α.又sin 2α+cos 2α=1,∴cos α=213, ∴12cos 2sin )4sin(+++ααπα=22(sin α+cos α)(sin α+cos α)2+(-sin 2α+cos 2α)=268.答案:268[方法引航] 三角函数的给值求值,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍”的关系或“互余互补”的关系.(3)已知三角函数时,先化简三角函数式,再利用整体代入求值.1.在本例(1)中,已知条件不变,求tan )6(θπ+的值.解:tan )6(θπ+=tan π6+tan θ1-tan π6tan θ=33-131+33×13=53-613.2.在本例(1)中,已知条件不变,求2sin 2θ-sin θcos θ-3cos 2θ的值. 解:原式=2sin 2θ-sin θcos θ-3cos 2θsin 2θ+cos 2θ=2tan 2θ-tan θ-3tan 2θ+1=2×⎝ ⎛⎭⎪⎫-132+13-3⎝ ⎛⎭⎪⎫-132+1=-115.3.已知cos )2(απ-+sin )32(απ-=235,则cos )32(πα+=________.解析:由cos )2(απ-+sin )32(απ-=235,得sin α+sin 2π3cos α-cos 23πsin α=235∴32sin α+32cos α=235, 即3sin )6(πα+=235,∴sin )6(πα+=25,因此cos )32(πα+=1-2sin 2)6(πα+=1-2×2)52(=1725.答案:1725考点三 已知三角函数式的值求角[例3] (1)已知cos α=17,cos(α-β)=1314,0<β<α<π2,则β=________. 解析:∵cos α=17,0<α<π2.∴sin α=437.又cos(α-β)=1314,且0<β<α<π2.∴0<α-β<π2,则sin(α-β)=3314. 则cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=497×14=12,由于0<β<π2,所以β=π3.答案:π3(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________.解析:∵tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13>0,∴0<α<π2.又∵tan 2α=2tan α1-tan 2α=2)31(1312-⨯=34>0,∴0<2α<π2,∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1. ∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-34π. 答案:-34π[方法引航] 1.解决给值求角问题应遵循的原则 (1)已知正切函数值,选正切函数.(2)已知正、余弦函数值,选正弦函数或余弦函数,且①若角的范围是)2,0(π,选正、余弦皆可;②若角的范围是(0,π),选余弦较好;③若角的范围是)2,2(ππ-,选正弦较好. 2.解给值求角问题的一般步骤 (1)求角的某一个三角函数值. (2)确定角的范围.(3)根据角的范围写出所求的角.1.设α,β为钝角,且sin α=55,cos β=-31010,则α+β的值为( ) A.3π4 B.5π4 C.7π4 D.5π4或7π4 解析:选C.∵α,β为钝角,sin α=55,cos β=-31010, ∴cos α=-255,sin β=1010,∴cos(α+β)=cos αcos β-sin αsin β=22>0.又α+β∈(π,2π),∴α+β∈)2,23(ππ,∴α+β=7π4. 2.已知tan α=-13,cos β=55,α∈),2(ππ,β∈)2,0(π,求tan(α+β)的值,并求出α+β的值.解:由cos β=55,β∈)2,0(π,得sin β=255,tan β=2.∴tan(α+β)=tan α+tan β1-tan αtan β=-13+21+23=1. ∵α∈),2(ππ,β∈)2,0(π,∴π2<α+β<3π2,∴α+β=5π4.[方法探究]三角恒等变换在化简、求值、证明中的综合应用三角恒等变换要重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.[典例] 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: (1)sin 213°+cos 217°-sin 13°cos 17°; (2)sin 215°+cos 215°-sin 15°cos 15°; (3)sin 218°+cos 212°-sin 18°cos 12°; (4)sin 2(-18°)+cos 248°-sin(-18°)cos 48°; (5)sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(Ⅰ)试从上述五个式子中选择一个,求出这个常数;(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. [解] (Ⅰ)选择(2)式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34. (Ⅱ)法一:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin α·cos α-12sin 2α=34sin 2α+34cos 2α=34.法二:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+cos (60°-2α)2-sin α(cos 30°cos α+sin30°sin α)=12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α=12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α)=1-14cos 2α-14+14cos 2α=34.[高考真题体验]1.(2016·高考全国甲卷)若cos )4(απ-=35,则sin 2α=( )A.725B.15 C .-15 D .-725解析:选D.因为cos )4(απ-=cos π4cos α+sin π4sin α=22(sin α+cos α)=35,所以sin α+cos α=325,所以1+sin 2α=1825,所以sin 2α=-725,故选D. 2.(2016·高考全国丙卷)若tan α=34,则cos 2α+2sin 2α=( ) A.6425 B.4825 C .1 D.1625 解析:选A.法一:由tan α=sin αcos α=34,cos 2α+sin 2α=1,得⎩⎪⎨⎪⎧sin α=35cos α=45或⎩⎪⎨⎪⎧sin α=-35cos α=-45,则sin 2α=2sin αcos α=2425,则cos 2α+2sin 2α=1625+4825=6425. 法二:cos 2α+2sin 2α=cos 2α+4sin αcos αcos 2α+sin 2α=1+4tan α1+tan 2α=1+31+916=6425. 3.(2015·高考课标全国卷Ⅰ)sin 20°cos 10°-cos 160°sin 10°=( ) A .-32 B.32C .-12 D.12解析:选D.sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin 30°=12.4.(2014·高考课标全国卷Ⅰ)设α∈)2,0(π,β∈)2,0(π,且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2解析:选 B.由条件得sin αcos α=1+sin βcos β,即sin αcos β=cos α(1+sin β),sin(α-β)=cos α=sin )2(απ-,因为-π2<α-β<π2,0<π2-α<π2,所以α-β=π2-α,所以2α-β=π2,故选B.5.(2015·高考四川卷)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________. 解析:由sin α+2cos α=0,得tan α=-2.所以2sin αcos α-cos 2α=2sin αcos α-cos 2αsin 2α+cos 2α=2tan α-1tan 2α+1=-4-14+1=-1.答案:-16.(2016·高考四川卷)cos 2π8-sin 2π8=________.解析:由二倍角公式,得cos 2π8-sin 2π8=cos )82(π⨯=22.答案:22课时规范训练 A 组 基础演练1.tan 15°+1tan 15°=( )A .2B .2+3C .4 D.433 解析:选C.法一:tan 15°+1tan 15°=sin 15°cos 15°+cos 15°sin 15° =1cos 15°sin 15°=2sin 30°=4.法二:tan 15°+1tan 15°=1-cos 30°sin 30°+1sin 30°1+cos 30°=1-cos 30°sin 30°+1+cos 30°sin 30°=2sin 30°=4.2.2cos 10°-sin 20°sin 70°的值是( ) A.12 B.32 C. 3 D. 2解析:选C.原式=2cos (30°-20°)-sin 20°sin 70°=2(cos 30°·cos 20°+sin 30°·sin 20°)-sin 20°sin 70°=3cos 20°cos 20°= 3.3.已知θ∈(0,π),且sin )4(πθ-=210,则tan 2θ=( ) A.43 B.34 C .-247 D.247解析:选C.由sin )4(πθ-=210,得22(sin θ-cos θ)=210,所以sin θ-cos θ=15. 解方程组⎩⎪⎨⎪⎧ sin θ-cos θ=15sin 2θ+cos 2θ=1,得⎩⎪⎨⎪⎧ sin θ=45cos θ=35或⎩⎪⎨⎪⎧ sin θ=-35cos θ=-45.因为θ∈(0,π),所以sin θ>0,所以⎩⎪⎨⎪⎧ sin θ=-35cos θ=-45不合题意,舍去,所以tan θ=43,所以tan 2θ=2tan θ1-tan 2θ=2×431-⎝ ⎛⎭⎪⎫432=-247,故选C. 4.若θ∈]2,4[ππ,sin 2θ=378,则sin θ等于( ) A.35 B.45 C.74 D.34解析:选D.由sin 2θ=387和sin 2θ+cos 2θ=1得(sin θ+cos θ)2=378+1=2)473(+,又θ∈]2,4[ππ,∴sin θ+cos θ=3+74. 同理,sin θ-cos θ=3-74,∴sin θ=34.5.已知sin 2(α+γ)=n sin 2β,则tan (α+β+γ)tan (α-β+γ)的值为( ) A.n -1n +1 B.n n +1 C.n n -1 D.n +1n -1解析:选D.由已知可得sin[(α+β+γ)+(α-β+γ)]=n sin[(α+β+γ)-(α-β+γ)],则sin(α+β+γ)·cos(α-β+γ)+cos(α+β+γ)sin(α-β+γ)=n [sin(α+β+γ)cos(α-β+γ)-cos(α+β+γ)sin(α-β+γ)],即(n +1)cos(α+β+γ)sin(α-β+γ)=(n -1)sin(α+β+γ)cos(α-β+γ),所以tan (α+β+γ)tan (α-β+γ)=n +1n -1,故选D. 6.若sin )2(θπ+=35,则cos 2θ=________. 解析:∵sin )2(θπ+=cos θ=35,∴cos 2θ=2cos 2θ-1=2×2)53(-1=-725. 答案:-7257.若点P (cos α,sin α)在直线y =-2x 上,则sin 2α+2cos 2α=________.解析:∵点P (cos α,sin α)在直线y =-2x 上∴sin α=-2cos α,于是sin 2α+2cos 2α=2sin αcos α+2(2cos 2α-1)=-4cos 2α+4cos 2α-2=-2.答案:-28.设sin 2α=-sin α,α∈),2(ππ,则tan 2α的值是________. 解析:∵sin 2α=-sin α,∴2sin αcos α=-sin α.∵α∈),2(ππ,sin α≠0,∴cos α=-12.又∵α∈),2(ππ,∴α=23π, ∴tan 2α=tan 43π=tan )3(ππ+=tan π3= 3. 答案: 39.化简:(1+sin θ+cos θ)⎝ ⎛⎭⎪⎫sin θ2-cos θ22+2cos θ(0<θ<π). 解:由θ∈(0,π),得0<θ2<π2,∴cos θ2>0, ∴2+2cos θ=4cos 2θ2=2cos θ2.又(1+sin θ+cos θ))2cos 2(sin θθ-=)2cos 2)(sin 2cos 22cos 2sin 2(2θθθθθ-+ =2cos θ2)2cos 2(sin 22θθ- =-2cos θ2cos θ.故原式=-2cos θ2cos θ2cos θ2=-cos θ. 10.已知α∈),2(ππ,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈),2(ππ,求cos β的值. 解:(1)因为sin α2+cos α2=62,两边同时平方,得sin α=12.又π2<α<π,所以cos α=-32.(2)因为π2<α<π,π2<β<π,所以-π<-β<-π2,故-π2<α-β<π2.又sin(α-β)=-35,得cos(α-β)=45.cos β=cos[α-(α-β)=cos αcos(α-β)+sin αsin(α-β)=-32×45+12×)53(-=-43+310. B 组 能力突破 1.已知sin α+cos α=22,则1-2sin 2)4(απ-=( )A.12B.32 C .-12 D .-32解析:选C.由sin α+cos α=22,得1+2sin αcos α=12,∴sin 2α=-12.因此1-2sin 2)4(απ-=cos2)4(απ-=sin 2α=-12. 2.已知f (x )=2tan x -2sin 2x 2-1sin x 2cos x 2,则f )12(π的值为( )A .43 B.833 C .4 D .8解析:选D.∵f (x )=2)sin cos cos sin (2)sin cos (tan xx x x x x x +⨯=+=2×1cos x ·sin x =4sin 2x , ∴f )12(π=4sin π6=8. 3.已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( )A.5π12B.π3C.π4D.π6解析:选C.∵α、β均为锐角,∴-π2<α-β<π2.又sin(α-β)=-1010,∴cos(α-β)=31010.又sin α=55,∴cos α=255,∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=55×31010-255×)1010(-=22. ∴β=π4.4.若tan α=lg(10a ),tan β=lg 1a ,且α+β=π4,则实数a 的值为________.解析:tan α+tan β=lg(10a )+lg 1a =lg 10=1,∵α+β=π4,所以tan π4=tan(α+β)=tan α+tan β1-tan αtan β=11-tan αtan β, ∴tan αtan β=0,则有tan α=lg(10a )=0或tan β=lg 1a =0.所以10a =1或1a =1,即a =110或1.答案:110或15.已知tan(π+α)=-13,tan(α+β)=ααααπ2sincos10cos4)2(2sin22-+-.(1)求tan(α+β)的值;(2)求tan β的值.解:(1)∵tan(π+α)=-13,∴tan α=-13.∵tan(α+β)=ααααπ2sincos10cos4)2(2sin22-+-=sin 2α+4cos2α10cos2α-sin 2α=2sin αcos α+4cos2α10cos2α-2sin αcos α=2cosα(sin α+2cos α)2cos α(5cos α-sin α)=sin α+2cos α5cos α-sin α=tan α+25-tan α=-13+25-⎝⎛⎭⎪⎫-13=516.(2)tan β=tan[(α+β)-α]=tan(α+β)-tan α1+tan(α+β)tan α=516+131-516×13=3143.。
两角和与差的正弦余弦和正切公式

利用三角函数的倍角公式推导
总结词
通过三角函数的倍角公式,我们可以推导出 两角和与差的正弦、余弦和正切公式。
详细描述
三角函数的倍角公式指出,对于任意角度α, sin(2α)、cos(2α)和tan(2α)的值可以通过
sin(α)、cos(α)、tan(α)的函数关系来表达。 利用这个公式,我们可以推导出两角和与差
总结词
通过三角函数的减法定理,我们可以推导出 两角和与差的正弦、余弦和正切公式。
详细描述
三角函数的减法定理指出,对于任意角度α、 β,sin(α-β)、cos(α-β)和tan(α-β)的值可 以通过sin(α)、cos(α)、sin(β)、cos(β)、 tan(α)和tan(β)的函数关系来表达。利用这 个定理,我们可以推导出两角和与差的正弦、 余弦和正切公式。
地理学问题
在地理学中,很多问题涉及到地 球的自转、公转等角度计算,如 时差、太阳高度角等,利用三角 函数公式可以方便地计算。
经济学问题
在经济学中,很多问题涉及到利 率、汇率等与角度相关的问题, 利用三角函数公式可以方便地描 述这些变化规律。
04
三角函数公式的扩展
利用三角函数的和差化积公式扩展
总结词
利用三角函数的积化和差公式扩展
总结词
利用三角函数的积化和差公式,可以将两角和与差的 正弦、余弦和正切公式进行扩展,得到更一般化的公 式形式。
详细描述
三角函数的积化和差公式可以将两个角度的正弦或余 弦的乘积转化为其他角度的正弦、余弦和正切的和或 差的形式,从而扩展了原有的公式。例如,利用积化 和差公式,可以将两角和的余弦表示为单个角度余弦 的函数,进一步推导得到更一般化的公式。
VS
详细描述
(完整版)两角和与差的正弦公式

• 例2:已知 sin 3 , ( , 3 ), 求 sin( )
5
2
3
•
sin( )
4
的值
• 例3:已知
sin
3 4
, cos
1, 3
且α为第二象限
• 角,β为第三象限角,求
sin( ),sin( ), cos( ), cos( )
• 的值
• 例4:已知α,β均为锐角,且 cos 2 5 ,cos 3 10 ,
5
10
• 求α+β的值
五。应用
• 例5:工业用三相交流电的电压u是时间t的函数。 现已知三相电流的电压分别为 u1 220 2 sin100t,u2 220 2 sin(100t 120 ), u3 220 2 sin(100t 120 )
• 例8:已知 sin( ) 3 , ( , 2 )
则求 cos 3
5 63
四、例题
• 例1:不用计算器,求下列各式的值
• (1)sin15 (2) sin105 (3) sin 75
• (4) sin 70 cos 25 cos 70 sin 25 • (5)cos80 sin 40 sin 80 cos 40 • (6)sin 25 sin 20 cos 25 sin 70
• 零的线电的压u电=压0,u这是u为1 什么u2? u3 根据常识,零线
• 例6:如图,保持点P(3,3)与原点的距离不变,
并绕原点旋转 60到 P'位置,设点P' 的坐标为
• (x', y')
• (1)点P与原点之间的距离是多少?
高中数学两角和与差的三角函数公式的证明

两角和与差的三角函数公式的证明数学三角函数两角和与差单位圆托勒密定理利用单位圆方法证明sin(α+β)= …与cos(α+β)= …,是进一步证明大部分三角函数公式的基础。
1、sin(α+β)=sinαcosβ+ cosαsinβ在笛卡尔坐标系中以原点O为圆心作单位圆,在单位圆中作以下线段:如图中所示,容易看出:sin(α+β)=CF;sinα=AB;cosα=OB; sinβ=CD;cosβ=OD 则:----------------------------------------------------------------------------------------------平面几何的证明方法:如图所示,过程见下面的【评论】中新浪网友的提示(非常感谢这位网友的提示,让我们看到了证明一个定理的多种途径,真是妙不可言!)----------------------------------------------------------------------------------附:如何证明托勒密定理?见 /69610635.html/b/2459822.html托勒密(Ptolemy)定理指出,圆内接凸四边形两对对边乘积的和等于两条对角线的乘积。
原文:圆内接四边形中,两对角线所包矩形的面积等于一组对边所包矩形的面积与另一组对边所包矩形的面积之和。
从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质.(具体的推导方法详见数学目录下的博文,来自网友的提供!)思路:托勒密定理在平面几何中赫赫有名,其难点在于:把一条对角线分割成两条线段DE和BE。
第一步证明一对旋转的三角形相似:△ABE∽△ACD;第二步还需要证一对旋转的三角形相似△ADE∽△ACB;只有这两对相似的三角形出来了才能得到结论。
证明:以AB为边,作一个角等于已知角:即∠BAE=∠DAC;在ΔABE和ΔACD中,∵∠BAE=∠DAC;∠ABE=∠ACD;∴△ABE∽△ACD;∴AB·DC=BE·AC①∵∠BAE=∠DAC;∴∠DAE=∠CAB;在ΔADE和ΔACB中,∵∠ADE=∠ACB;∠DAE=∠CAB;∴△ADE∽△ACB;∴AD·BC=DE·AC②∴①+②得:AB·DC+ AD·BC= BE·AC+ DE·AC=(BE+DE)·AC=BD·AC。
两角和与差的三角函数公式知识点

两角和与差的三角函数公式知识点两角和与差的三角函数公式属于高中数学的重要内容,主要通过利用三角函数的性质,研究两个角的和与差的三角函数值之间的关系。
在解决三角方程、证明恒等式等问题时,这些公式的应用非常广泛。
本文将从公式的定义、推导及应用方面进行详细解析。
一、两角和的三角函数公式1.余弦和公式:cos(A+B) = cosAcosB - sinAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A+B。
我们知道,其对应的三条直角边分别是x、x'、x"和y、y'、y",根据三角函数的定义,我们可以得到如下关系:x = cosA,y = sinAx' = cosB,y' = sinBx" = cos(A+B),y" = sin(A+B)那么,点P、Q和R的连线所对应的三角形的三个内角之和应该等于180°,即有:∠POR+∠POQ+∠QOR=180°∠A+∠B+∠(A+B)=180°2A+B=180°将以上结果代入三角函数的定义中,我们可以得到:cos(A+B) = x" = x'x - y'y = cosAcosB - sinAsinB2.正弦和公式:sin(A+B) = sinAcosB + cosAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A+B。
同样,根据三角函数的定义,我们可以得到如下关系:x = cosA,y = sinAx' = cosB,y' = sinBx" = cos(A+B),y" = sin(A+B)那么,点P、Q和R的连线所对应的三角形的三个边长之和应该等于2,即有:PR+PQ+QR=2∠POR+∠POQ+∠QOR=360°∠A+∠B+∠(A+B)=360°2A+B=360°将以上结果代入三角函数的定义中,我们可以得到:sin(A+B) = y" = xy' + yx' = sinAcosB + cosAsinB二、两角差的三角函数公式1.余弦差公式:cos(A-B) = cosAcosB + sinAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A-B。
两角和与差的正弦余弦正切公式

两角和与差的正弦余弦正切公式在三角函数中,我们经常需要计算两个角的和或差的正弦、余弦或正切值。
这些公式被广泛应用于数学、物理、工程等领域的问题求解中。
本文将详细介绍两角和与差的正弦、余弦和正切公式。
一、两角和与差的正弦公式首先,我们来讨论两个角的和的正弦公式。
设有两个角A和B,那么它们的和角记为(A+B)。
根据三角函数的定义,我们知道正弦的定义为一个角的对边与斜边之比,可以表示为sin(x)=opposite/hypotenuse。
根据这个定义,我们可以得到如下的两角和的正弦公式:sin(A+B) = sinA*cosB + cosA*sinB这个公式很重要,可以帮助我们计算两个角的和的正弦值。
在实际应用中,我们经常需要计算两个角的和的正弦,而不是两个角分别的正弦。
所以这个公式非常有用。
接下来,我们来讨论两个角的差的正弦公式。
设有两个角A和B,那么它们的差角记为(A-B)。
根据三角函数的定义,我们可以得到如下的两角差的正弦公式:sin(A-B) = sinA*cosB - cosA*sinB这个公式与两角和的正弦公式类似,也非常有用。
二、两角和与差的余弦公式类似于正弦公式,我们也可以推导出两角和与差的余弦公式。
设有两个角A和B,那么它们的和角记为(A+B)。
根据三角函数的定义,我们知道余弦的定义为一个角的邻边与斜边之比,可以表示为cos(x)=adjacent/hypotenuse。
根据这个定义,我们可以得到如下的两角和的余弦公式:cos(A+B) = cosA*cosB - sinA*sinB同样地,我们也可以得到两角差的余弦公式:cos(A-B) = cosA*cosB + sinA*sinB这两个公式和两角和与差的正弦公式一样重要,经常被应用于实际问题中。
三、两角和与差的正切公式最后,我们来讨论两角和与差的正切公式。
设有两个角A和B,那么它们的和角记为(A+B)。
根据三角函数的定义,我们知道正切的定义为一个角的对边与邻边之比,可以表示为tan(x)=opposite/adjacent。
两角和与差的余弦公式的六种推导方法

两角和与差的余弦公式的六种推导方法沈阳市教育研究院王恩宾两角和与差的余弦公式是三角函数恒等变换的基础,其他三角函数公式都是在此公式基础上变形得到的,因此两角和与差的余弦公式的推导作为本章要推导的第一个公式,往往得到了广大教师的关注. 对于不同版本的教材采用的方法往往不同,认真体会各种不同的两角和与差的余弦公式的推导方法,对于提高学生的分析问题、提出问题、研究问题、解决问题的能力有很大的作用.下面将两角和与差的余弦公式的五种常见推导方法归纳如下:方法一:应用三角函数线推导差角公式的方法设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β.过点P作PM⊥x轴,垂足为M,那么OM即为α-β角的余弦线,这里要用表示α,β的正弦、余弦的线段来表示OM.过点P作PA⊥OP1,垂足为A,过点A作AB⊥x轴,垂足为B,再过点P作PC⊥AB,垂足为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是OM=OB+BM=OB+CP =OA cosα+AP sinα=cosβcosα+sinβsinα.综上所述,.说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解.但这种推导方法对于如何能够得到解题思路,存在一定的困难.此种证明方法的另一个问题是公式是在均为锐角的情况下进行的证明,因此还要考虑的角度从锐角向任意角的推广问题.方法二:应用三角形全等、两点间的距离公式推导差角公式的方法设P1(x1,y1),P2(x2,y2),则有|P1P2 |= .在直角坐标系内做单位圆,并做出任意角α,α+β和,它们的终边分别交单位圆于P2、P3和P4点,单位圆与x轴交于P1,则P1(1,0)、P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、.∵,且,∴,∴,∴,∴,∴,.说明:该推导方法巧妙的将三角形全等和两点间的距离结合在一起,利用单位圆上与角有关的四个点,建立起等式关系,通过将等式的化简、变形就可以得到符合要求的和角与差角的三角公式.在此种推导方法中,推导思路的产生是一个难点,另外对于三点在一条直线和三点在一条直线上时这一特殊情况,还需要加以解释、说明.方法三:应用余弦定理、两点间的距离公式推导差角公式的方法设,则.在△OPQ中,∵,∴,∴.说明:此题的解题思路和构想都是容易实现的. 因为要求两角和与差的三角函数,所以构造出和角和差角是必须实现的. 构造出的和角或差角的余弦函数又需要和这两个角的三角函数建立起等式关系,因此借助于余弦定理、两点间的距离公式建立起等式关系容易出现,因此此种方法是推导两角和与差的余弦的比较容易理解的一种方法. 但此种方法必须是在学习完余弦定理的前提下才能使用,因此此种方法在必修四中又无法使用. 另外也同样需要考虑三点在一条直线上的情况.方法四:应用三角形面积公式推导推导差角公式的方法设α、β是两个任意角,把α、β两个角的一条边拼在一起,顶点为O,过B点作OB 的垂线,交α另一边于A,交β另一边于C,则有S△OAC=S△OAB+S△OBC..根据三角形面积公式,有,∴.∵,,,∴,∵,∴sin(α+β)=sinαcosβ+sinβcosα.根据此式和诱导公式,可继续证出其它和角公式及差角公式.(1)sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosα;(2)cos(α+β)=sin[90-(α+β)]=sin[(90-α)-β]=sin(90-α)cosβ-sinβcos(90-α)=cosαcosβ-sinαsinβ;(3)cos(α-β)=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβ.说明:此种推导方法通过三角形的面积的和巧妙的将两角和的三角函数与各个角的三角函数和联系在一起,体现了数形结合的特点. 缺点是公式还是在两个角为锐角的情况下进行的证明,因此同样需要将角的范围进行拓展.(五)应用数量积推导余弦的差角公式在平面直角坐标系xOy内,作单位圆O,以Ox为始边作角α,β,它们的终边与单位圆的交点为A,B,则=(cosα,sinα),=(cosβ,sinβ).由向量数量积的概念,有.由向量的数量积的坐标表示,有.于是,有.说明:应用数量积推导余弦的差角公式无论是构造两个角的差,还是得到每个角的三角函数值都是容易实现的,而且从向量的数量积的定义和坐标运算两种形式求向量的数量积将二者之间结合起来,充分体现了向量在数学中的桥梁作用.附方法六:等积法推导余弦的差角公式广东佛山袁锦前如图:在△ABC中,AD⊥BC于D,BE⊥AC于E,设∠DAC=α,∠ABD=β,求:cos(α-β)解:在△ABD中,BD=c·cosβ,AD=b·cosα在△ACD中,CD= b c·sinα,AD= c·sinβ11cos cos sin sin 22ABD ACDSSbc bc αβαβ∴+=+ ()1cos cos sin sin 2bc αβαβ=+ …………………………..○1 又∵2BAD πβ∠=-()c sin =c sin 22BE ππβααβ⎡⎤⎛⎫⎡⎤∴=⋅-+⋅--⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦()c cos αβ=⋅-()11cos 22ABCSAC BE bc αβ∴=⋅=- …………………………………………○2 由○1○2可得: ()cos =cos cos sin sin αβαβαβ-+。
两角和与差的正弦、余弦与正切公式

3.5 两角和与差的正弦、余弦与正切公式[知识梳理]1.两角和与差的正弦、余弦、正切公式 (1)C (α∓β):cos(α∓β)=cos αcos β±sin αsin β. (2)S (α±β):sin(α±β)=sin αcos β±cos αsin β.(3)T (α±β):tan(α±β)=tan α±tan β1∓tan αtan β⎝ ⎛⎭⎪⎫α,β,α±β≠π2+k π,k ∈Z .2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin2α=2sin αcos α.(2)C 2α:cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. (3)T 2α:tan2α=2tan α1-tan 2α⎝ ⎛⎭⎪⎫α≠±π4+k π,且α≠k π+π2,k ∈Z .3.公式的常用变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β). (2)cos 2α=1+cos2α2,sin 2α=1-cos2α2. (3)1±sin2α=(sin α±cos α)2,sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4. (4)a sin α+b cos α=a 2+b 2sin(α+φ),其中cos φ=a a 2+b 2,sin φ=ba 2+b2,tan φ=ba(a≠0).特别提醒:(1)角:转化三角函数式中往往出现较多的差异角,注意观察角与角之间的和、差、倍、互补、互余等关系,运用角的变换,化多角为单角或减少未知角的数目,连接条件角与待求角,使问题顺利获解.对角变换时:①可以通过诱导公式、两角和与差的三角公式等;②注意倍角的相对性;③注意拆角、拼角技巧,例如,2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,β=α+β2-α-β2=(α+2β)-(α+β),α-β=(α-γ)+(γ-β),15°=45°-30°,π4+α=π2-⎝⎛⎭⎪⎫π4-α等.(2)将三角变换与代数变换密切结合:三角变换主要是灵活应用相应的三角公式,对于代数变换主要有因式分解、通分、提取公因式、利用相应的代数公式等,例如,sin4x+cos4x=(sin2x+cos2x)2-2sin2x cos2x=1-12sin22x.[诊断自测] 1.概念思辨(1)两角和与差的正弦、余弦公式中的角α,β是任意的.( ) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( ) (3)在锐角△ABC 中,sin A sin B 和cos A cos B 大小关系不确定.( )(4)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( )答案 (1)√ (2)√ (3)× (4)×2.教材衍化(1)(必修A4P 131T 5)sin20°cos10°-cos160°sin10°=( ) A .-32 B.32 C .-12 D.12 答案 D解析 原式=sin20°cos10°+cos20°sin10°=sin(20°+10°)=sin30°=12,故选D. (2)(必修A4P 146A 组T 3)已知tan ⎝ ⎛⎭⎪⎫α+π6=12,tan ⎝ ⎛⎭⎪⎫β-π6=13,则tan(α+β)=________.答案 1解析 ∵α+β=⎝⎛⎭⎪⎫α+π6+⎝ ⎛⎭⎪⎫β-π6, ∴tan(α+β)=tan ⎝ ⎛⎭⎪⎫α+π6+tan ⎝ ⎛⎭⎪⎫β-π61-tan ⎝ ⎛⎭⎪⎫α+π6tan ⎝ ⎛⎭⎪⎫β-π6=12+131-16=1. 3.小题热身(1)sin7°+cos15°sin8°cos7-sin15°sin8°的值为( ) A .2+ 3 B .2- 3 C .2 D.12 答案 B解析 原式=sin (15°-8°)+cos15°sin8°cos (15°-8°)-sin15°sin8°=sin15°cos8°cos15°cos8°=tan15°=tan(45°-30°)=tan45°-tan30°1+tan45°tan30° =1-331+33=3-13+1=2- 3.故选B.(2)若sin(α-β)sin β-cos(α-β)cos β=45,且α是第二象限角,则tan ⎝ ⎛⎭⎪⎫π4+α等于( )A .7B .-7 C.17 D .-17 答案 C解析 ∵sin(α-β)sin β-cos(α-β)cos β=45, ∴cos α=-45.又α是第二象限角,∴sin α=35,则tan α=-34. ∴tan ⎝ ⎛⎭⎪⎫π4+α=tan π4+tan α1-tan π4tan α=1-341+34=17.故选C.题型1 求值问题典例 已知cos ⎝ ⎛⎭⎪⎫π4+x =35,若17π12<x <7π4,求sin2x +2sin 2x 1-tan x 的值. 本题采用“函数转化法”.解 由17π12<x <7π4,得5π3<x +π4<2π.又cos ⎝ ⎛⎭⎪⎫π4+x =35,所以sin ⎝ ⎛⎭⎪⎫π4+x =-45,所以cos x =cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+x -π4=cos ⎝ ⎛⎭⎪⎫π4+x cos π4+sin ⎝ ⎛⎭⎪⎫π4+x sin π4=35×22-45×22=-210,从而sin x =-7210,tan x =7. 则sin2x +2sin 2x 1-tan x =2sin x cos x +2sin 2x 1-tan x=2⎝ ⎛⎭⎪⎫-7210·⎝ ⎛⎭⎪⎫-210+2⎝ ⎛⎭⎪⎫-721021-7=-2875.方法技巧三角恒等变换的变“角”与变“名”问题的解题思路1.角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的拆分与组合的技巧,半角与倍角的相互转化.2.名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.冲关针对训练已知锐角α,β满足sin α=55,cos β=31010,则α+β等于( ) A.3π4 B.π4或3π4C.π4 D .2k π+π4(k ∈Z )答案 C解析 由sin α=55,cos β=31010,且α,β为锐角,可知cos α=255,sin β=1010, 故cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22,又0<α+β<π,故α+β=π4.故选C.题型2 三角恒等变换的综合应用角度1 研究三角函数的性质典例 (2017·临沂一模)已知函数f (x )=4sin ⎝ ⎛⎭⎪⎫x -π3cos x + 3.(1)求函数f (x )的最小正周期和单调递增区间;(2)若函数g (x )=f (x )-m 在⎣⎢⎡⎦⎥⎤0,π2上有两个不同的零点x 1,x 2,求实数m 的取值范围,并计算tan(x 1+x 2)的值.本题采用转化法、数形结合思想.解 函数f (x )=4sin ⎝ ⎛⎭⎪⎫x -π3cos x +3,化简可得f (x )=2sin x cos x -23cos 2x + 3=sin2x -23⎝ ⎛⎭⎪⎫12+12cos2x + 3 =sin2x -3cos2x =2sin ⎝⎛⎭⎪⎫2x -π3. (1)函数的最小正周期T =2π2=π, 由2k π-π2≤2x -π3≤2k π+π2时单调递增, 解得k π-π12≤x ≤k π+5π12(k ∈Z ),∴函数的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z . (2)函数g (x )=f (x )-m 在⎣⎢⎡⎦⎥⎤0,π2上有两个不同的零点x 1,x 2,转化为函数f (x )与函数y =m 有两个交点.令u =2x -π3,∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴u ∈⎣⎢⎡⎦⎥⎤-π3,2π3可得f (x )=2sin u 的图象(如图).由图可知:m 在[3,2),函数f (x )与函数y =m 有两个交点,其横坐标分别为x 1,x 2.故得实数m 的取值范围是m ∈[3,2), 由题意可知x 1,x 2是关于对称轴是对称的: 那么函数在⎣⎢⎡⎦⎥⎤0,π2的对称轴为x =5π12,∴x 1+x 2=5π12×2=5π6.那么tan(x 1+x 2)=tan 5π6=-33. 方法技巧三角函数综合性试题涉及三角函数的性质研究.首先将三角函数化为f (x )=A sin(ωx +φ)的形式,在转化过程中需要三角恒等变换.如典例.这是高考的重点题型.冲关针对训练(2017·河北区二模)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π6+cos x . (1)求函数f (x )的最小正周期;(2)若α是第一象限角,且f ⎝ ⎛⎭⎪⎫α+π3=45,求tan ⎝ ⎛⎭⎪⎫α-π4的值.解 (1)f (x )=sin ⎝ ⎛⎭⎪⎫x -π6+cos x =32sin x -12cos x +cos x =32sin x +12cos x =sin ⎝⎛⎭⎪⎫x +π6,所以函数f (x )的最小正周期为T =2π1=2π. (2)由于f (x )=sin ⎝⎛⎭⎪⎫x +π6, 则f ⎝ ⎛⎭⎪⎫α+π3=sin ⎝ ⎛⎭⎪⎫α+π2=cos α=45,由于α是第一象限角, 所以sin α=35, 则tan α=34,则tan ⎝ ⎛⎭⎪⎫α-π4=tan α-11+tan α=-17.角度2 三角恒等变换与向量的综合典例 (2017·南京三模)已知向量a =(2cos α,sin 2α),b =(2sin α,t ),α∈⎝ ⎛⎭⎪⎫0,π2,t 为实数.(1)若a -b =⎝ ⎛⎭⎪⎫25,0,求t 的值; (2)若t =1,且a ·b =1,求tan ⎝⎛⎭⎪⎫2α+π4的值.本题采用向量法、平方法.解 (1)向量a =(2cos α,sin 2α),b =(2sin α,t ),α∈⎝⎛⎭⎪⎫0,π2,t 为实数.若a -b =⎝ ⎛⎭⎪⎫25,0,则(2cos α-2sin α,sin 2α-t )=⎝ ⎛⎭⎪⎫25,0, 可得cos α-sin α=15,平方可得sin 2α+cos 2α-2cos αsin α=125,即为2cos αsin α=1-125=2425(cos α>0,sin α>0), 由sin 2α+cos 2α=1,解得cos α+sin α=(cos α-sin α)2+4sin αcos α =125+4825=75,即有sin α=35,cos α=45,则t =sin 2α=925.(2)若t =1,且a ·b =1,即有4cos αsin α+sin 2α=1, 即有4cos αsin α=1-sin 2α=cos 2α,由α为锐角,可得cos α∈(0,1),即有tan α=sin αcos α=14, 则tan2α=2tan α1-tan 2α=121-116=815, tan ⎝ ⎛⎭⎪⎫2α+π4=tan2α+11-tan2α=1+8151-815=237. 方法技巧三角恒等变换与向量的综合问题是高考中经常出现的问题,一般以向量的坐标形式给出与三角函数有关的条件,并结合简单的向量运算进行化简.冲关针对训练(2017·南通模拟)已知向量m =⎝ ⎛⎭⎪⎫sin x 2,1,n =⎝ ⎛⎭⎪⎫1,3cos x 2,函数f (x )=m ·n .(1)求函数f (x )的最小正周期; (2)若f ⎝ ⎛⎭⎪⎫α-2π3=23,求f ⎝ ⎛⎭⎪⎫2α+π3的值. 解 (1)f (x )=sin x 2+3cos x2=2sin ⎝ ⎛⎭⎪⎫x 2+π3,∴f (x )的最小正周期T =2π12=4π.(2)∵f ⎝ ⎛⎭⎪⎫α-2π3=2sin α2=23,∴sin α2=13,∴cos α=1-2sin 2α2=79,∴f ⎝ ⎛⎭⎪⎫2α+π3=2sin ⎝ ⎛⎭⎪⎫α+π2=2cos α=149.1.(2016·全国卷Ⅱ)若cos ⎝ ⎛⎭⎪⎫π4-α=35,则sin2α=( )A.725B.15 C .-15 D .-725 答案 D解析 cos ⎝ ⎛⎭⎪⎫π4-α=22(cos α+sin α)=35⇒cos α+sin α=325⇒1+sin2α=1825,∴sin2α=-725.故选D.2.(2014·全国卷Ⅰ)设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,且tan α=1+sin βcos β,则( )A .3α-β=π2 B .3α+β=π2 C .2α-β=π2 D .2α+β=π2答案 C解析 由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+sin βcos α,所以sin(α-β)=cos α,又cos α=sin ⎝ ⎛⎭⎪⎫π2-α,所以sin(α-β)=sin ⎝ ⎛⎭⎪⎫π2-α,又因为α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,所以-π2<α-β<π2,0<π2-α<π2,因此α-β=π2-α,所以2α-β=π2,故选C.3.(2014·全国卷Ⅱ)函数f (x )=sin(x +2φ)-2sin φcos(x +φ)的最大值为________. 答案 1解析 f (x )=sin[(x +φ)+φ]-2sin φcos(x +φ) =sin(x +φ)cos φ+cos(x +φ)sin φ-2sin φcos(x +φ) =sin(x +φ)cos φ-sin φcos(x +φ) =sin(x +φ-φ) =sin x ,∴f (x )的最大值为1.4.(2017·全国卷Ⅱ)函数f(x)=sin2x+3cos x-34⎝⎛⎭⎪⎫x∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.答案 1解析f(x)=1-cos2x+3cos x-34=-⎝⎛⎭⎪⎫cos x-322+1.∵x∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x∈[0,1],∴当cos x=32时,f(x)取得最大值,最大值为1.[重点保分 两级优选练]A 级一、选择题1.计算sin43°cos13°+sin47°cos103°的结果等于( ) A.12 B.33 C.22 D.32 答案 A解析 原式=sin43°cos13°-cos43°sin13°=sin(43°-13°)=sin30°=12.故选A. 2.sin47°-sin17°cos30°cos17°=( ) A .-32 B .-12 C.12 D.32 答案 C解析 sin47°=sin(30°+17°)=sin30°cos17°+cos30°·sin17°, ∴原式=sin30°cos17°cos17°=sin30°=12.故选C.3.已知过点(0,1)的直线l :x tan α-y -3tan β=0的斜率为2,则tan(α+β)=( ) A .-73 B.73 C.57 D .1 答案 D解析 由题意知tan α=2,tan β=-13. ∴tan(α+β)=tan α+tan β1-tan αtan β=2-131-2×⎝ ⎛⎭⎪⎫-13=1.故选D.4.(2017·云南一检)cos π9·cos 2π9·cos ⎝ ⎛⎭⎪⎫-23π9=( )A .-18B .-116 C.116 D.18答案 A解析 cos π9·cos 2π9·cos ⎝ ⎛⎭⎪⎫-23π9=cos20°·cos40°·cos100°=-cos20°·cos40°·cos80° =-sin20°·cos20°·cos40°·cos80°sin20°=-12sin40°·cos40°·cos80°sin20°=-14sin80°·cos80°sin20° =-18sin160°sin20°=-18sin20°sin20°=-18.故选A.5.(2017·衡水中学二调)3cos10°-1sin170°=( ) A .4 B .2 C .-2 D .-4 答案 D解析 3cos10°-1sin170°=3cos10°-1sin10°=3sin10°-cos10°sin10°cos10°=2sin (10°-30°)12sin20°=-2sin20°12sin20°=-4.故选D. 6.若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛ π4-⎭⎪⎫β2=33,则cos ⎝ ⎛⎭⎪⎫α+β2=( ) A.33 B .-33 C.539 D .-69 答案 C解析 cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2 =cos ⎝⎛⎭⎪⎫π4+αcos ⎝⎛⎭⎪⎫π4-β2+sin ⎝⎛⎭⎪⎫π4+αsin ⎝⎛⎭⎪⎫π4-β2,由0<α<π2,得π4<α+π4<3π4,则sin ⎝⎛⎭⎪⎫π4+α=223.由-π2<β<0,得π4<π4-β2<π2,则sin ⎝ ⎛⎭⎪⎫π4-β2=63,代入上式,得cos ⎝ ⎛⎭⎪⎫α+β2=539,故选C.7.(2018·长春模拟)已知tan(α+β)=-1,tan(α-β)=12,则sin2αsin2β的值为( )A.13 B .-13 C .3 D .-3 答案 A解析 sin2αsin2β=sin[(α+β)+(α-β)]sin[(α+β)-(α-β)]=sin (α+β)cos (α-β)+cos (α+β)sin (α-β)sin (α+β)cos (α-β)-cos (α+β)sin (α-β) =tan (α+β)+tan (α-β)tan (α+β)-tan (α-β)=13.故选A. 8.(2017·山西八校联考)若将函数f (x )=sin(2x +φ)+3cos(2x +φ)(0<φ<π)的图象向左平移π4个单位长度,平移后的图象关于点⎝ ⎛⎭⎪⎫π2,0对称,则函数g (x )=cos(x +φ)在⎣⎢⎡⎦⎥⎤-π2,π6上的最小值是( ) A .-12 B .-32 C.22 D.12 答案 D解析 ∵f (x )=sin(2x +φ)+3cos(2x +φ)=2sin (2x +φ+π3 ),∴将函数f (x )的图象向左平移π4个单位长度后,得到函数解析式为y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4+φ+π3=2cos ⎝ ⎛⎭⎪⎫2x +φ+π3的图象.∵该图象关于点⎝ ⎛⎭⎪⎫π2,0对称,对称中心在函数图象上,∴2cos ⎝ ⎛⎭⎪⎫2×π2+φ+π3=2cos ⎝ ⎛⎭⎪⎫π+φ+π3=0,解得π+φ+π3=k π+π2,k ∈Z ,即φ=k π-5π6,k ∈Z .∵0<φ<π,∴φ=π6,∴g (x )=cos ⎝ ⎛⎭⎪⎫x +π6,∵x ∈⎣⎢⎡⎦⎥⎤-π2,π6,∴x +π6∈⎣⎢⎡⎦⎥⎤-π3,π3, ∴cos ⎝⎛⎭⎪⎫x +π6∈⎣⎢⎡⎦⎥⎤12,1, 则函数g (x )=cos(x +φ)在⎣⎢⎡⎦⎥⎤-π2,π6上的最小值是12.故选D.9.(2018·兰州检测)在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B tan C =1-2,则角A 的值为( )A.π4B.π3C.π2D.3π4 答案 A解析 由题意知,-2cos B cos C =sin A =sin(B +C )=sin B cos C +cos B sin C ,等式-2cos B cos C =sin B cos C +cos B sin C 两边同除以cos B cos C ,得tan B +tan C =-2,又tan(B +C )=tan B +tan C 1-tan B tan C=-1=-tan A ,即tan A =1,所以A =π4.故选A.10.(2018·河北模拟)已知θ∈⎝ ⎛⎭⎪⎫0,π4,且sin θ-cos θ=-144,则2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ等于( )A.23B.43C.34D.32 答案 D解析 由sin θ-cos θ=-144,得sin ⎝ ⎛⎭⎪⎫π4-θ=74, ∵θ∈⎝⎛⎭⎪⎫0,π4,∴π4-θ∈⎝⎛⎭⎪⎫0,π4,∴cos ⎝ ⎛⎭⎪⎫π4-θ=34,∴2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ=cos2θsin ⎝ ⎛⎭⎪⎫π4-θ=sin ⎝ ⎛⎭⎪⎫π2-2θsin ⎝ ⎛⎭⎪⎫π4-θ=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-θsin ⎝ ⎛⎭⎪⎫π4-θ=2cos⎝ ⎛⎭⎪⎫π4-θ=32.故选D. 二、填空题11.已知cos(α+β)cos(α-β)=13,则cos 2α-sin 2β=________. 答案 13解析 ∵(cos αcos β-sin αsin β)(cos αcos β+sin αsin β)=13, ∴cos 2αcos 2β-sin 2αsin 2β=13.∴cos 2α(1-sin 2β)-(1-cos 2α)sin 2β=13.∴cos 2α-sin 2β=13.12.已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________. 答案 -3π4解析 ∵tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13>0, 又α∈(0,π),∴0<α<π2.又∵tan2α=2tan α1-tan 2α=2×131-⎝ ⎛⎭⎪⎫132=34>0,∴0<2α<π2,∴tan(2α-β)=tan2α-tan β1+tan2αtan β=34+171-34×17=1. ∵tan β=-17<0,∴π2<β<π,-π<2α-β<0, ∴2α-β=-3π4.13.(2017·江苏模拟)已知α、β为三角形的两个内角,cos α=17,sin(α+β)=5314,则β=________.答案 π3解析 因为0<α<π,cos α=17,所以sin α=1-cos 2α=437,故π3<α<π2,又因为0<α+β<π,sin(α+β)=5314<32,所以0<α+β<π3或2π3<α+β<π.由π3<α<π2,知2π3<α+β<π,所以cos(α+β)=-1-sin 2(α+β)=-1114,所以cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=12, 又0<β<π,所以β=π3.14.已知sin α=12+cos α,且α∈⎝ ⎛⎭⎪⎫0,π2,则cos2αsin ⎝ ⎛⎭⎪⎫α-π4的值为________. 答案 -142解析 ∵sin α=12+cos α,∴sin α-cos α=12,∴(sin α-cos α)2=1-2sin αcos α=14,∴2sin αcos α=34,∵α∈⎝ ⎛⎭⎪⎫0,π2,∴sin α+cos α=sin 2α+cos 2α+2sin αcos α= 1+34=72,∴cos2αsin ⎝ ⎛⎭⎪⎫α-π4=(cos α+sin α)(cos α-sin α)22(sin α-cos α) =-2(sin α+cos α)=-142.B 级三、解答题15.(2017·合肥质检)已知a =(sin x ,3cos x ),b =(cos x ,-cos x ),函数f (x )=a ·b +32.(1)求函数y =f (x )图象的对称轴方程;(2)若方程f (x )=13在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.解 (1)f (x )=a ·b +32=(sin x ,3cos x )·(cos x ,-cos x )+32=sin x ·cos x -3cos 2x +32=12sin2x -32cos2x =sin ⎝ ⎛⎭⎪⎫2x -π3. 令2x -π3=k π+π2(k ∈Z ),得x =5π12+k π2(k ∈Z ), 即函数y =f (x )图象的对称轴方程为x =5π12+k π2(k ∈Z ).(2)由条件知sin ⎝ ⎛⎭⎪⎫2x 1-π3=sin ⎝ ⎛⎭⎪⎫2x 2-π3=13>0,设x 1<x 2,则0<x 1<5π12<x 2<2π3,易知(x 1,f (x 1))与(x 2,f (x 2))关于直线x =5π12对称,则x 1+x 2=5π6,∴cos(x 1-x 2)=cos ⎣⎢⎡⎦⎥⎤x 1-⎝ ⎛⎭⎪⎫5π6-x 1=cos ⎝ ⎛⎭⎪⎫2x 1-5π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2x 1-π3-π2=sin ⎝ ⎛⎭⎪⎫2x 1-π3=13.16.(2017·黄冈质检)已知函数f (x )=2cos 2x -sin ⎝ ⎛⎭⎪⎫2x -7π6. (1)求函数f (x )的最大值,并写出f (x )取最大值时x 的取值集合;(2)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=32,b +c =2.求实数a 的取值范围.解 (1)f (x )=2cos 2x -sin ⎝⎛⎭⎪⎫2x -7π6 =(1+cos2x )-⎝ ⎛⎭⎪⎫sin2x cos 7π6-cos2x sin 7π6=1+32sin2x +12cos2x =1+sin ⎝ ⎛⎭⎪⎫2x +π6.∴函数f (x )的最大值为2.当且仅当sin ⎝ ⎛⎭⎪⎫2x +π6=1,即2x +π6=2k π+π2(k ∈Z ),即x =k π+π6,k ∈Z 时取到. ∴函数f (x )的最大值为2时x 的取值集合为x ⎪⎪⎪⎭⎬⎫x =k π+π6,k ∈Z . (2)由题意,f (A )=sin ⎝⎛⎭⎪⎫2A +π6+1=32,化简得sin ⎝ ⎛⎭⎪⎫2A +π6=12.∵A ∈(0,π),∴2A +π6∈⎝ ⎛⎭⎪⎫π6,13π6,∴2A +π6=5π6,∴A =π3. 在△ABC 中,根据余弦定理, 得a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc .由b +c =2,知bc ≤⎝⎛⎭⎪⎫b +c 22=1,即a 2≥1. ∴当且仅当b =c =1时,取等号.又由b +c >a 得a <2.所以a 的取值范围是[1,2).17.(2017·青岛诊断)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a sin B +3a cos B =3c .(1)求角A 的大小;(2)已知函数f (x )=λcos 2⎝⎛⎭⎪⎫ωx +A 2-3(λ>0,ω>0)的最大值为2,将y =f (x )的图象的纵坐标不变,横坐标伸长到原来的32倍后便得到函数y =g (x )的图象,若函数y =g (x )的最小正周期为π.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求函数f (x )的值域. 解 (1)∵a sin B +3a cos B =3c , ∴sin A sin B +3sin A cos B =3sin C . ∵C =π-(A +B ),∴sin A sin B +3sin A cos B =3sin(A +B ) =3(sin A cos B +cos A sin B ). 即sin A sin B =3cos A sin B .∵sin B ≠0,∴tan A =3,∵0<A <π,∴A =π3. (2)由A =π3,得f (x )=λcos 2⎝⎛⎭⎪⎫ωx +π6-3=λ·1+cos ⎝ ⎛⎭⎪⎫2ωx +π32-3=λ2cos ⎝⎛⎭⎪⎫2ωx +π3+λ2-3,∴λ-3=2,λ=5.∴f (x )=5cos 2⎝ ⎛⎭⎪⎫ωx +π6-3=52cos ⎝ ⎛⎭⎪⎫2ωx +π3-12,从而g (x )=52cos ⎝ ⎛⎭⎪⎫43ωx +π3-12,∴2π43ω=π,得ω=32, ∴f (x )=52cos ⎝ ⎛⎭⎪⎫3x +π3-12. 当x ∈⎣⎢⎡⎦⎥⎤0,π2时,π3≤3x +π3≤11π6,∴-1≤cos ⎝ ⎛⎭⎪⎫3x +π3≤32, 从而-3≤f (x )≤53-24,∴f (x )的值域为⎣⎢⎡⎦⎥⎤-3,53-24. 18.(2017·江西南昌三校模拟)已知函数f (x )=sin ⎝⎛⎭⎪⎫5π6-2x -2sin ⎝⎛⎭⎪⎫x -π4cos ⎝ ⎛⎭⎪⎫x +3π4. (1)求函数f (x )的最小正周期和单调递增区间;(2)若x ∈⎣⎢⎡⎦⎥⎤π12,π3,且F (x )=-4λf (x )-cos ⎝ ⎛⎭⎪⎫4x -π3的最小值是-32,求实数λ的值.解 (1)∵f (x )=sin ⎝ ⎛⎭⎪⎫5π6-2x -2sin ⎝ ⎛⎭⎪⎫x -π4cos ⎝ ⎛⎭⎪⎫x +3π4=12cos2x +32sin2x +(sin x -cos x )(sin x +cos x )=12cos2x +32sin2x +sin 2x -cos 2x =12cos2x +32sin2x -cos2x =sin ⎝ ⎛⎭⎪⎫2x -π6.∴函数f (x )的最小正周期T =2π2=π.由2k π-π2≤2x -π6≤2k π+π2得k π-π6≤x ≤k π+π3(k ∈Z ),专业文档珍贵文档 ∴函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ). (2)F (x )=-4λf (x )-cos ⎝⎛⎭⎪⎫4x -π3 =-4λsin ⎝ ⎛⎭⎪⎫2x -π6-⎣⎢⎡⎦⎥⎤1-2sin 2⎝ ⎛⎭⎪⎫2x -π6 =2sin 2⎝ ⎛⎭⎪⎫2x -π6-4λsin ⎝ ⎛⎭⎪⎫2x -π6-1 =2⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫2x -π6-λ2-1-2λ2. ∵x ∈⎣⎢⎡⎦⎥⎤π12,π3,∴0≤2x -π6≤π2, ∴0≤sin ⎝ ⎛⎭⎪⎫2x -π6≤1. ①当λ<0时,当且仅当sin ⎝ ⎛⎭⎪⎫2x -π6=0时,F (x )取得最小值,最小值为-1,这与已知不相符;②当0≤λ≤1时,当且仅当sin ⎝ ⎛⎭⎪⎫2x -π6=λ时,F (x )取得最小值,最小值为-1-2λ2,由已知得-1-2λ2=-32,解得λ=-12(舍)或λ=12;③当λ>1时,当且仅当sin ⎝ ⎛⎭⎪⎫2x -π6=1时,F (x )取得最小值,最小值为1-4λ,由已知得1-4λ=-32,解得λ=58,这与λ>1矛盾. 综上所述,λ=12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两角和差正余弦公式的证明
两角和差的正余弦公式是三角学中很重要的一组公式。
下面我们就它们的推导证明方
法进行探讨。
由角, 的三角函数值表示的正弦或余弦值, 这正是两角和差的正余弦公
式的功能。
换言之, 要推导两角和差的正余弦公式, 就是希望能得到一个等式或方程, 将或与, 的三角函数联系起来。
根据诱导公式, 由角的三角函数可以得到的三角函数。
因此, 由和角公式容易得到对应的差角公式, 也可以由差角公式得到对应的和角公式。
又因为
, 即原角的余弦等于其余角的正弦, 据此, 可以实现正弦公式和余弦
公式的相互推导。
因此, 只要解决这组公式中的一个, 其余的公式将很容易得到。
(一) 在单位圆的框架下推导和差角余弦公式
注意到单位圆比较容易表示, 和, 而且角的终边与单位圆的交点坐标可
以用三角函数值表示, 因此, 我们可以用单位圆来构造联系与, 的三角函数值的等式。
1. 和角余弦公式
(方法1) 如图所示, 在直角坐标系中作单位圆, 并作角, 和, 使
角的始边为, 交于点A, 终边交于点B;角始边为, 终边交
于点C;角始边为, 终边交于点。
从而点A, B, C和D的坐标分别为, ,,。
由两点间距离公式得
;。
注意到, 因此。
注记:这是教材上给出的经典证法。
它借助单位圆的框架, 利用平面内两点间距离公式表达两条相等线段, 从而得到我们所要的等式。
注意, 公式中的和为任意角。
2. 差角余弦公式
仍然在单位圆的框架下, 用平面内两点间距离公式和余弦定理表达同一线段, 也可以得到我们希望的三角等式。
这就是
(方法2) 如图所示, 在坐标系中作单位圆, 并作角和, 使角和
的始边均为, 交于点C, 角终边交于点A,角终边交于点。
从而点A, B的坐标为,。
由两点间距离公式得。
由余弦定理得。
从而有。
注记:方法 2 中用到了余弦定理, 它依赖于是三角形的内角。
因此, 还需要补充讨论角和的终边共线, 以及大于的情形。
容易验证, 公式在以上情形中依然成立。
在上边的证明中, 用余弦定理计算的过程也可以用勾股定理来进行。
也可以用向量法来证明。
(二) 在三角形的框架下推导和差角正弦公式
除了在单位圆的框架下推导和差角的余弦公式, 还可以在三角形中构造和角或差角来证明和差角的正弦公式。
1. 和角正弦公式(一)
(方法3) 如图所示, 为的边上的高, 为边上的高。
设
, , , 则。
从而有
, ,
,。
因此,。
注意到,
从而有:,
整理可得:。
注记:在方法 3 中, 用和与底角, 相关的三角函数, 从两个角度来表示
边上高, 从而得到所希望的等式关系。
这一证明所用的图形是基于钝角三角形的, 对基于直角或锐角三角形的情形, 证明过程类似。
利用方法 3 中的图形, 我们用类似于恒等变形的方式, 可以得到下面的
(方法4) 如图所示, 为的边上的高, 为边上的高。
设, , 则。
注意到, 则有,即。
从而有。
利用正弦定理和射影定理, 将得到下面这个非常简洁的证法。
注意证明利用的图形框架与方法3,4 所用的图形框架是相同的。
(方法5) 如图所示, 为的边上的高。
设,
, 则有,。
由正弦定理可得
,
其中d为的外接圆直径。
由得,
从而有。
2. 和角正弦公式( 二)
方法3,4 和 5 利用的图形框架是将角, 放在三角形的两个底角上。
如果将这两个角的和作为三角形的一个内角, 将会有下面的几种证法( 方法6~11)。
(方法6) 如图所示, 作于D, 交外接圆于E, 连和。
设, , 则, ,。
设的外接圆直径为d, 则有,
,,。
所以有。
注意到, 从而。
(方法7) 如图所示, 为的边上的高, 为边上的高。
设, , 则。
设, 则
, , ,,。
又
从而。
整理可得。
(方法8) 如图所示, 作于D, 过D作于F, 于G。
设,, 则,设, 从而
,,,。
所以。
注意到, 则有。
注记:我们用两种不同的方法计算, 得到了和角的正弦公式。
如果我们用两种方
法来计算, 则可以得到和角的余弦公式。
由上图可得
,
,
从而有。
注意到, 从而可得。
方法6,7 和8 都是用角, 的三角函数从两个角度表示图形中的同一线段, 从而构造出我们所希望的等式关系。
(方法9 ) 如图所示, 设为的边上的高。
设, ,, , 从而有
方法9 利用面积关系构造三角恒等式。
下面这两个证法的思路则有所不同。
(方法10) 如图所示, 设为的外接圆直径d, 长度为d。
设, , 则, 从而
注记:这一证明用到了托勒密定理:若和是圆内接四边形的对角线, 则有。
(方法11) 如图所示, 为的边上的高。
设, , 则。
设, 则
方法10 和11 将某一线段作为基本量, 利用与角, 相关的三角函数表示其它
线段, 再通过联系这些线段的几何定理( 托勒密定理或正弦定理), 构造出我们希望的等式关系。
3. 差角正弦公式
仍然还是在三角形中, 我们可以在三角形的内角里构造出差角来。
方法12 和13 便是用这种想法来证明的。
(方法12) 如图所示,。
设, , 记, 作
于E, 则, , 从而有
(方法13) 如图所示, 为的外接圆直径, 长度为d。
设, , 则, 。
从而
方法12 和13 的基本思路仍然是用两种不同方法计算同一线段, 借此来构造等式关系。
很显然, 在这十二种证法中, 方法 1 和 2 更具普遍性。
换言之, 这两种方法中出现的角, 是任意角。
而其余方法中, 角和则有一定的限制, 它们都是三角形的内角( 甚至都是锐角)。
因此, 对于方法3~13, 我们需要将我们的结果推广到角和是任意角的情形。
具体而言, 我们要证明:如果公式对任意成立, 则对任意角也成立。
容易验证, 角和中至少有一个是轴上角( 即终边在坐标轴上的角), 我们的
公式是成立的。
下面证明, 角和都是象限角( 即终边在坐标系的某一象限中的角) 时, 我们的公式也成立。
不妨设为第二象限角, 为第三象限角, 从而有
从而
同理可证, 公式对于象限角和的其它组合方式都成立。
因此, 我们可以将方法3~13 推导的公式推广到角, 是任意角的情形。
两角和差的正余弦公式是三角学中很基本的一组公式。
其推导证明对指导学生进行探究性学习很有帮助。
从上文中可以看到, 这一探究过程可分为四个步骤:
(1) 明确推导证明的目标:构造联系和三角函数与或
的等式或方程;
(2) 简化课题:四个公式只要解决一个, 其余的都可由它推出;
(3) 解决问题:利用单位圆或三角形作为联系和三角函数与或
的工具, 寻找我们希望的等式关系;
(4) 完善解决问题的方法:考察方法是否有普遍性。
如果普遍性有欠缺, 可考虑将其化归为已解决的情形, 必要时还要进行分类讨论。