奥数
儿童奥数启蒙100道题及答案(完整版)

儿童奥数启蒙100道题及答案(完整版)题目1:小红有3 个苹果,小明的苹果比小红多2 个,小明有几个苹果?答案:5 个。
3 + 2 = 5题目2:动物园里有5 只猴子,又来了3 只,现在动物园有几只猴子?答案:8 只。
5 + 3 = 8题目3:小兰有8 朵花,送给朋友2 朵,还剩几朵花?答案:6 朵。
8 - 2 = 6题目4:从1 数到7,第4 个数是几?答案:4 。
题目5:操场上有6 个小朋友在踢球,又来了4 个小朋友,一共有几个小朋友?答案:10 个。
6 + 4 = 10题目6:小明吃了5 颗糖,还剩下3 颗,小明原来有几颗糖?答案:8 颗。
5 + 3 = 8题目7:树上有7 只鸟,飞走了2 只,还剩几只鸟?答案:5 只。
7 - 2 = 5题目8:有4 个红色气球,3 个蓝色气球,一共有几个气球?答案:7 个。
4 + 3 = 7题目9:妈妈买了10 个苹果,爸爸吃了2 个,妈妈吃了1 个,还剩几个苹果?答案:7 个。
10 - 2 - 1 = 7题目10:数字2、4、6、8、10,哪个数字最小?答案:2 。
题目11:教室里有8 张桌子,又搬进来2 张,现在有几张桌子?答案:10 张。
8 + 2 = 10题目12:小花有9 支铅笔,用了3 支,还剩几支铅笔?答案:6 支。
9 - 3 = 6题目13:河里有7 条鱼,游走了3 条,又游来了2 条,现在河里有几条鱼?答案:6 条。
7 - 3 + 2 = 6题目14:小明前面有4 个人,后面有3 个人,这一排一共有几个人?答案:8 个人。
4 + 3 + 1 = 8题目15:有 5 只白兔,2 只黑兔,白兔比黑兔多几只?答案:3 只。
5 - 2 = 3题目16:从 3 数到9,一共数了几个数?答案:7 个。
题目17:盘子里有8 个梨,吃了一半,还剩几个梨?答案:4 个。
8÷2 = 4题目18:小红有6 本书,小刚的书和小红一样多,他们一共有几本书?答案:12 本。
奥数ppt课件免费

几何题型
几何题型
这类题型主要考察学生的空间思维和图形认知能力,包括平面几何和立体几何的 知识点。
总结
几何题型是奥数中的重要部分,能够培养学生的空间想象力和逻辑推理能力。
组合数学题型
组合数学题型
这类题型主要考察学生的排列组合、 概率统计等知识,涉及到组合数学的 多个方面。
总结
组合数学题型是奥数中的难点,需要 学生具备较高的逻辑思维和问题解决 能力。
数学公式
如加法交换律、加法结合律、乘 法交换律、乘法结合律等基本运 算定律,以及平方差公式、完全 平方公式等常用公式。
数学定理和性质
定理
如勾股定理、三角形的中位线定理、 平行四边形的性质等基础几何定理, 以及分数的性质、分数的运算等代数 定理。
性质
如三角形的稳定性、平行四边形的对 角线相等性质等几何性质,以及分数 的分子分母同除一个不为零的数,分 数的大小不变的性质等代数性质。
数论案例分析
总结词
数论是数学的一个重要分支,主要研究整数的性质和结构。在奥数中,数论问题通常涉及到质数、合数、因数、 倍数等概念,以及一些与整除、同余等相关的性质。
详细描述
例如,一个经典的数论问题是“哥德巴赫猜想”,即任何一个大于2的偶数都可以表示为两个质数之和。这个问 题虽然尚未被完全证明,但在奥数中常常作为难题出现,需要学生运用质数的性质和整除理论等知识进行解答。
数学方法和技巧
方法
如代数方程的解法、不等式的解法、函数的图像表示法等基础数学方法。
技巧
如因式分解的技巧、分数的化简技巧、几何图形的构造技巧等高级数学技巧。
03
奥数经典题型
数论题型
数论题型
这类题型主要考察学生对数字和数学关系的理解,如质数、 合数、最大公约数、最小公倍数等概念。
奥数题大全及答案

奥数题大全及答案奥数题大全及答案 11、棵梧桐树,共栽多少棵树?米栽1一条路长100米,从头到尾每隔101。
路分成100÷10=10段,共栽树10+1=11棵。
2、12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?3×(12-1)=33棵。
3、一根200厘米长的木条,要锯成10厘米长的小段,需要锯几次?200÷10=20段,20-1=19次。
4、蚂蚁爬树枝,每上一节需要10秒钟,从第一节爬到第13节需要多少分钟?从第一节到第13节需10×(13-1)=120秒,120÷60=2分。
5、在花圃的周围方式菊花,每隔1米放1盆花。
花圃周围共20米长。
需放多少盆菊花?20÷1×1=20盆奥数题大全及答案 21、某种商品的价格是:每1个1分钱,每5个4分钱,每9个7分钱。
小赵的钱最多恰好能买50个,小李的钱最多恰好能买500个,问小李的钱比小赵的钱多多少分?答案:350分。
分析:当钱数一定,要想买的最多,就要采取最划算的策略:每9个7分钱,首先要考虑50和500中可以分成多少份9个。
然后看它们各自的余数是不是5的倍数,如果是,就按每5个4分钱累计,如果还有余数,才考虑每1个1分钱。
按此方法,可以把小李和小赵两人各有多少钱计算出来。
详解:因为50÷9=5……5,所以小赵有钱5×7+4=39(分)。
又因为500÷9=55……5,所以小李有钱55×7+4=389(分)。
因此小李的钱比小赵多389-39=350(分)。
2、有3个不同的数字,排列3次,组成了3个三位数,这3个三位数相加之和为789,又知运算中没有进位,那么这3个数字连乘所得的积是多少?答案:10或者12解析:由题意,3个三位数的百位之和为7,十位数之和为8,个位数之和为9,而在每个三位数里,3个数字都各出现了一次。
所以我们把百位之和、十位之和、个位之和再加在一起,就应该等于把三个数字各加了3次,也就等于3个数字之和的3倍。
50道奥数题及答案解析

50道奥数题及答案解析以下是50道奥数题及答案解析。
希望对你有帮助。
1. 小明有三只球,他把其中一只球放进一个盒子里。
请问,小明有多少种放置球的方式?答案解析:小明可以把球放在第一只、第二只或者第三只盒子中,所以有3种放置方式。
2. 如果A和B是两个正整数,且A的平方减去B的平方等于15,问A和B的值分别是多少?答案解析:设A>B,由(A+B)(A-B)=15得出,只有3和5满足要求,所以A=4,B=1。
3. 一个矩形的宽度是20厘米,周长是70厘米。
请问这个矩形的长度是多少?答案解析:设矩形的长度为L,则2(L+20)=70,解得L=15厘米。
4. 甲、乙两位学生正在一起排队,甲比乙在队伍中靠前4人,甲在队伍中的位置是第7位,问乙在队伍中的位置是第几位?答案解析:甲比乙靠前4人,所以乙在队伍中的位置是第7+4=11位。
5. 有一个三位数恰好能被5和7整除,且每一位上的数字都不相同,问这个三位数是多少?答案解析:我们知道这个三位数必须是5和7的倍数,即35的倍数。
35的倍数中,只有105满足题目要求,所以答案是105。
6. 一个年龄为x岁的人,这个人的年龄2倍之后再加2岁得到的结果是44,那么这个人现在多少岁?答案解析:设这个人的年龄为x岁,则2x+2=44,解得x=21岁。
7. 在一个等差数列中,它的首项是4,公差是3,第10项是多少?答案解析:第n项的公式为a(n) = a(1) + (n-1)d,代入a(1)=4,d=3,n=10得到a(10) = 4 + (10-1)3 = 4 + 27 = 31。
8. 一个数字的百位、十位和个位分别是1、2和3。
把这个数字的百位和个位互换,得到的新数字是多少?答案解析:将百位和个位互换得到新数字是321。
9. 两个数之和是8,它们的差是4,这两个数分别是多少?答案解析:设这两个数分别为x和y,则x+y=8,x-y=4。
解以上方程组,得到x=6,y=2。
奥数题20道

奥数题20道【题-001】抽屉原理有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
【题-002】牛吃草:(中等难度)一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?【题-003】奇偶性应用:(中等难度)桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。
【题-004】整除问题:(中等难度)用一个自然数去除另一个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少?【题-005】填数字:(中等难度)请在下图的每个空格内填入1至8中的一个数字,使每行、每列、每条对角线上8个数字都互不相同.【题-006】灌水问题:(中等难度)公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开小1时,恰好在打开某根进水管1小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,比第一周多用了15分钟.第四周他三个管同时打开,灌满一池水用了2小时20分,第五周他只打开甲管,那么灌满一池水需用________小时.【题-007】浓度问题:(中等难度)瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的A、B两种酒精溶液,瓶中的浓度变成了14%.已知A种酒精溶液浓度是B种酒精溶液浓度的2倍,那么A种酒精溶液的浓度是百分之几?【题-008】水和牛奶:(中等难度)一个卖牛奶的人告诉两个小学生:这儿的一个钢桶里盛着水,另一个钢桶里盛着牛奶,由于牛奶乳脂含量过高,必须用水稀释才能饮用.现在我把A桶里的液体倒入B桶,使其中液体的体积翻了一番,然后我又把B桶里的液体倒进A桶,使A桶内的液体体积翻番.最后,我又将A桶中的液体倒进B桶中,使B桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体,而在B桶中,水比牛奶多出1升.现在要问你们,开始时有多少水和牛奶,而在结束时,每个桶里又有多少水和牛奶?【题-009】巧算:(中等难度)计算:【题-010】队形:(中等难度)做少年广播体操时,某年级的学生站成一个实心方阵时(正方形队列)时,还多10人,如果站成一个每边多1人的实心方阵,则还缺少15人.问:原有多少人?【题-011】计算:(中等难度)一个自然数,如果它的奇数位上各数字之和与偶数位上各数字之和的差是11的倍数,那么这个自然数是11的倍数,例如1001,因为1+0=0+1,所以它是11的倍数;又如1234,因为4+2-(3+1)=2不是11的倍数,所以1234不是11的倍数.问:用0、1、2、3、4、5这6个数字排成不含重复数字的六位数,其中有几个是11的倍数?【题-012】分数:(中等难度)某学校的若干学生在一次数学考试中所得分数之和是8250分.第一、二、三名的成绩是88、85、80分,得分最低的是30分,得同样分的学生不超过3人,每个学生的分数都是自然数.问:至少有几个学生的得分不低于60分?【题-013】四位数:(中等难度)某个四位数有如下特点:①这个数加1之后是15的倍数;②这个数减去3是38的倍数;③把这个数各数位上的数左右倒过来所得的数与原数之和能被10整除,求这个四位数.【题-014】行程:(中等难度)王强骑自行车上班,以均匀速度行驶.他观察来往的公共汽车,发现每隔12分钟有一辆汽车从后面超过他,每隔4分钟迎面开来一辆,如果所有汽车都以相同的匀速行驶,发车间隔时间也相同,那么调度员每隔几分钟发一辆车?【题-015】跑步:(中等难度)狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
小升初经典奥数题十道

小升初经典奥数题十道1. 已知一个水缸的底面是一个直径为10 cm的圆形,水缸的高为20 cm。
将高度为8 cm的巨蛋放入水缸,水的涨幅是多少?解析:巨蛋的体积可以通过巨蛋的底面积乘以高度来计算。
巨蛋的底面积是一个直径为8 cm的圆形的面积,所以底面积为π×(8/2)^2=π×4^2=16π。
所以巨蛋的体积为16π×8=128π。
水缸的体积可以通过底面积乘以高度来计算。
底面积是一个直径为10 cm的圆形的面积,所以底面积为π×(10/2)^2=π×5^2=25π。
所以水缸的体积为25π×20=500π。
水的涨幅等于巨蛋的体积除以水缸的体积,即(128π)/(500π)=128/500=0.256.所以水的涨幅是0.256,或者换算成百分数为25.6%。
2. 某个数的十分之一减去该数的十分之二等于20,求这个数是多少?解析:设这个数为x。
根据题意,可以列出方程:(1/10)x - (1/2)x = 20。
化简得到:(1/10 - 1/2)x = 20,即(-1/5)x = 20。
两边同时乘以-5,得到:x = -5 × 20 = -100。
所以这个数是-100。
3. 小明用一条绳子绕正方形ABCD的一边3圈,绕正方形EFGH的一边2圈,正方形CD的长度是正方形EFGH的长度的4倍。
求绳子的长度是多少?解析:设正方形CD的边长为x,则正方形EFGH的边长为(1/4)x。
绕正方形ABCD的一边3圈,即绕了3次x的长度。
绕正方形EFGH的一边2圈,即绕了2次(1/4)x的长度。
所以,绳子的长度为3x + 2(1/4)x = 3x + (1/2)x = (7/2)x。
根据题意,正方形CD的长度是正方形EFGH的长度的4倍,即 x= 4×(1/4)x,化简得到 x = x。
所以,绳子的长度为(7/2)x。
4. 某两位数,个位在10位上,十位在个位上,该两位数等于原来两位数的4倍,求该两位数。
50道经典初中奥数题及答案详细解析

50道经典初中奥数题及答案详细解析现在很多孩子都在补习奥数,奥数在小升初有着重要作用,以下是无忧考网分享的50道经典奥数题及答案详细解析,快来猜猜你和孩子的水平吧。
1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。
2、3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?想:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
解:45+5×3=45+15=60(千克)答:3箱梨重60千克。
3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?想:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。
即可求甲比乙每小时快多少千米。
解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。
4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?想:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
解:0.6÷[13-(13+7)÷2]=0.6÷[13-20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。
5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
奥数学习的五个阶段

奥数学习的五个阶段奥数,即奥林匹克数学竞赛,是一项旨在培养学生数学思维和解题能力的活动。
参加奥数不仅能够提高学生的数学成绩,还能培养他们的逻辑思维和问题解决能力。
奥数学习是一个渐进的过程,可以分为五个阶段,分别是初级阶段、基础阶段、提高阶段、竞赛阶段和进阶阶段。
第一阶段:初级阶段在初级阶段,学生主要学习基础的数学知识和解题技巧。
这个阶段的目标是建立一个扎实的数学基础,包括数的基本概念、运算法则、整数、分数、小数、百分数、比例与比例关系、代数基础等。
学生需要通过大量的练习来熟练掌握这些知识,并能够运用到实际问题的解决中。
第二阶段:基础阶段在基础阶段,学生将进一步学习数学的基本概念和基础知识,并开始接触一些较为复杂的数学问题。
这个阶段的重点是培养学生的逻辑思维和问题解决能力,包括数学推理、证明、计算方法等。
学生需要学会运用已学知识解决一定难度的问题,并且能够对解题过程进行合理的解释和论证。
第三阶段:提高阶段提高阶段是奥数学习的关键阶段,学生需要进一步提高自己的数学水平,并开始接触一些奥数竞赛中的典型问题和解题思路。
这个阶段的重点是培养学生的问题分析和解决能力,学生需要学会辨别问题的本质,并能够运用不同的数学方法和技巧解决问题。
同时,学生还需要进行大量的题目训练和模拟比赛,以提高自己在竞赛中的表现。
第四阶段:竞赛阶段竞赛阶段是奥数学习的重要环节,学生需要参加各类奥数竞赛,如校际比赛、区县比赛、省级比赛等。
这个阶段的目标是提高学生在竞赛中的成绩,培养他们的应试能力和比赛经验。
学生需要通过参加竞赛来检验自己的学习成果,并不断完善自己的解题方法和策略。
第五阶段:进阶阶段进阶阶段是奥数学习的高级阶段,学生需要进一步深化自己的数学知识和解题技巧,并开始接触一些较为高级的数学领域和难度较大的问题。
这个阶段的目标是培养学生的创新能力和独立思考能力,学生需要通过开展研究性学习来解决一些开放性的数学问题,并能够进行深入的思考和探索。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章加减速算一、加法中的巧算
1.什么叫“补数”?
两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
如:1+9=10,3+7=10, 2+8=10,4+6=10, 5+5=10。
又如:11+89=100,33+67=100, 22+78=100,44+56=100, 55+45=100,
在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。
对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如: 87655→12345, 46802→53198, 87362→12638,…
下面讲利用“补数”巧算加法,通常称为“凑整法”。
2.互补数先加。
例1 巧算下面各题:
①36+87+64②99+136+101③ 1361+972+639+28 解:①式=(36+64)+87 =100+87=187
②式=(99+101)+136 =200+136=336
③式=(1361+639)+(972+28) =2000+1000=3000
3.拆出补数来先加。
例2 ①188+873 ②548+996 ③9898+203
解:①式=(188+12)+(873-12)(熟练之后,此步可略)=200+861=1061
②式=(548-4)+(996+4) =544+1000=1544
③式=(9898+102)+(203-102) =10000+101=10101
4.竖式运算中互补数先加。
二、减法中的巧算
1.把几个互为“补数”的减数先加起来,再从被减数中减去。
例 3① 300-73-27 ② 1000-90-80-20-10
解:①式= 300-(73+ 27)=300-100=200
②式=1000-(90+80+20+10)
=1000-200=800
2.先减去那些与被减数有相同尾数的减数。
例4① 4723-(723+189)② 2356-159-256
解:①式=4723-723-189
=4000-189=3811
②式=2356-256-159 =2100-159 =1941
3.利用“补数”把接近整十、整百、整千…的数先变整,再运算(注意
把多加的数再减去,把多减的数再加上)。
例 5 ①506-397 ②323-189 ③467+997
④987-178-222-390
解:①式=500+6-400+3(把多减的 3再加上) =109
②式=323-200+11(把多减的11再加上) =123+11=134
③式=467+1000-3(把多加的3再减去)=1464
④式=987-(178+222)-390=987-400-400+10=197
三、加减混合式的巧算
1.去括号和添括号的法则
在只有加减运算的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即:
a+(b+c+d)=a+b+c+d a-(b+a+d)=a-b-c-d a-(b-c)=a-b+c
例6 ①100+(10+20+30)② 100-(10+20+3O)③ 100-(30-10)
解:①式=100+10+20+30 =160
②式=100-10-20-30 =40
③式=100-30+10 =80
例7 计算下面各题:① 100+10+20+30 ② 100-10-20-30 ③ 100-30+10
解:①式=100+(10+20+30) =100+60=160
②式=100-(10+20+30)=100-60=40
③式=100-(30-10) =100-20=80
2.带符号“搬家”
例8 计算 325+46-125+54 解:原式=325-125+46+54 =(325-125)+(46+54) =200+100=300
注意:每个数前面的运算符号是这个数的符号.如+46,-125,+54.而325前面虽然没有符号,应看作是+325。
3.两个数相同而符号相反的数可以直接“抵消”掉例9 计算9+2-9+3
解:原式=9-9+2+3=5
4.找“基准数”法
几个比较接近于某一整数的数相加时,选这个整数为“基准数”。
例10 计算 78+76+83+82+77+80+79+85 =640
原式=(80-2)+(80-4)+(80+3)+(80+2)+(80-3)+(80+0)+(80-1)+(80+5)
=80×8-2-4+3+2-3+0-1+5=640。