高中数学知识点2
数学必修二知识点归纳

数学必修二知识点归纳一、函数的概念与性质1. 函数的定义:函数是从一个集合(称为定义域)到另一个集合(称为值域)的映射,每个定义域中的元素都有一个唯一的值与之对应。
2. 函数的表示方法:常用f(x) = y,其中x是自变量,y是因变量。
3. 函数的性质:包括单调性、奇偶性、周期性和有界性等。
- 单调性:函数在某个区间内单调递增或递减。
- 奇偶性:函数可能是奇函数(f(-x) = -f(x))或偶函数(f(-x) = f(x))。
- 周期性:函数如果存在一个非零常数T,使得对于所有x都有f(x + T) = f(x),则称函数具有周期T。
- 有界性:函数的值在某个范围内,即存在上界和下界。
二、基本初等函数1. 幂函数:形如y = x^n的函数,其中n是实数。
2. 指数函数:形如y = a^x的函数,其中a > 0且a ≠ 1。
3. 对数函数:形如y = log_a(x)的函数,其中a > 0且a ≠ 1。
4. 三角函数:包括正弦函数、余弦函数、正切函数等。
- 正弦函数:y = sin(x)- 余弦函数:y = cos(x)- 正切函数:y = tan(x)三、函数的图像与变换1. 函数图像的绘制:通过坐标系中的点来表示函数的图像。
2. 函数的平移:包括水平平移(左加右减)和垂直平移(上加下减)。
3. 函数的伸缩:包括水平伸缩(y = af(x))和垂直伸缩(y =f(bx))。
4. 函数的对称性:函数图像关于x轴、y轴或原点的对称性。
四、函数的应用1. 实际问题的建模:将实际问题转化为函数关系式进行求解。
2. 最值问题:求解函数的最大值和最小值。
3. 函数的复合:两个或多个函数的组合,如(f ∘ g)(x) = f(g(x))。
五、极限与连续性1. 极限的概念:描述函数在某一点附近的行为。
2. 极限的性质:包括唯一性、局部有界性、保号性等。
3. 连续函数:在定义域内任意一点都连续的函数。
高中数学必修二知识点总结及公式大全

高中数学必修二知识点总结及公式大全高中数学是培养学生逻辑思维和抽象能力的重要学科。
《必修二》作为高中数学课程的重要组成部分,涉及了许多核心知识点和基础公式。
本文将为您详细总结《必修二》的知识点,并整理出一份公式大全,帮助您更好地掌握这门学科。
一、高中数学必修二知识点总结1.函数概念与性质- 函数的定义、表示方法、分类- 函数的性质(单调性、奇偶性、周期性、对称性等)- 反函数及其求法2.指数函数与对数函数- 指数函数的定义、性质、图像- 对数函数的定义、性质、图像- 指数方程与对数方程的解法3.三角函数- 角度制与弧度制互换- 三角函数的定义、图像、性质- 三角恒等变换- 三角方程与不等式的解法4.数列- 等差数列与等比数列的定义、性质、求和公式- 数列的通项公式与求和公式- 数列的极限5.平面向量- 向量的定义、表示、线性运算- 向量的坐标表示与几何表示- 向量的数量积与垂直关系- 向量的平行四边形法则与三角形法则6.解析几何- 直线方程的求法(点斜式、截距式、一般式等)- 圆的方程与性质- 常见图形的面积、周长、体积计算二、高中数学必修二公式大全1.函数类- y=f(x) 的反函数:y=f^(-1)(x)- 幂函数:y=x^a(a 为常数)- 指数函数:y=a^x(a>0 且a≠1)- 对数函数:y=log_a(x)(a>0 且a≠1)2.三角函数类- 正弦函数:y=sin(x)- 余弦函数:y=cos(x)- 正切函数:y=tan(x)- 三角恒等变换公式(和差公式、倍角公式、半角公式等)3.数列类- 等差数列通项公式:a_n=a_1+(n-1)d- 等差数列求和公式:S_n=n/2(a_1+a_n)- 等比数列通项公式:a_n=a_1q^(n-1)- 等比数列求和公式:S_n=a_1(1-q^n)/(1-q)(q≠1)4.向量类- 向量加法:A+B=(a_x+b_x, a_y+b_y)- 向量减法:A-B=(a_x-b_x, a_y-b_y)- 向量数量积:A·B=a_xb_x+a_yb_y- 向量模长:|A|=√(a_x^2+a_y^2)5.解析几何类- 点斜式直线方程:y-y_1=k(x-x_1)- 截距式直线方程:x/a+y/b=1- 圆的标准方程:(x-a)^2+(y-b)^2=r^2总结:本文为您详细总结了高中数学必修二的知识点,并整理了一份公式大全。
高一数学第二章知识点总结

高一数学第二章知识点总结第二章是高一数学学习中的重要章节,主要包括平面向量、数列与数学归纳法、不等式及其应用三个部分。
本文将对这些知识点进行总结和归纳,帮助同学们复习和巩固相关概念和方法。
一、平面向量平面向量是高中数学中的重要内容,掌握平面向量的相关概念和运算法则对于后续的学习非常重要。
在这一章节中,我们主要了解了平面向量的定义、加法、数乘以及模长的计算方法。
1. 平面向量的定义平面向量是具有大小和方向的量,通常用有向线段来表示。
平面向量的起点是固定的,终点可以在平面上任意取值。
2. 平面向量的加法平面向量的加法满足三角法则,即将两个向量的起点连接起来,然后从第一个向量的终点指向第二个向量的终点,这个指向的向量就是它们的和向量。
3. 平面向量的数乘平面向量的数乘指的是将向量的长度进行伸缩,即将向量的每一个分量都乘以一个实数。
4. 平面向量的模长平面向量的模长表示向量的长度,可以通过坐标值计算得出,也可以通过勾股定理来计算。
二、数列与数学归纳法数列与数学归纳法是数学中常见的概念和方法,能够帮助我们描述和研究一系列数字的规律和性质。
在这一章节中,我们主要了解了数列的定义、数列的通项公式、数列的求和及数学归纳法的应用。
1. 数列的定义数列是按照一定顺序排列的一组数字,可以用通项公式来表示。
常见的数列有等差数列和等比数列。
2. 数列的通项公式数列的通项公式是指可以通过一个公式来表示数列中任意一项与其序号之间的关系,从而求得数列中某一项的值。
3. 数列的求和通过计算数列中各项的和,我们可以得到数列的部分和或总和,这在解决实际问题时非常有用。
4. 数学归纳法的应用数学归纳法是证明数学命题的一种常用方法,通过证明当命题对某个整数成立时,它对这个整数的后续整数也成立,从而得出这个命题对所有正整数成立。
三、不等式及其应用不等式是数学中常见的比较关系,它在描述和研究问题时起着重要的作用。
在这一章节中,我们主要了解了不等式的性质、不等式的解集求解方法以及利用不等式解决实际问题的应用。
高中数学必修2知识点总结归纳

高中数学必修2知识点一:直线方程1、直线的斜率 过两点的直线的斜率公式:)(211212x x x x y y k ≠--= 且tan k α=,当[)90,0∈α时,0≥k ; 当()180,90∈α时,0<k ; 当 90=α时,k 不存在。
2、直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x y a b+= ⑤一般式:0=++C By Ax (A ,B 不全为0)3、平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线可设为:000=++C y B x A (C 为常数)4、当0:1111=++C y B x A l ,0:2222=++C y B x A l 时,,//2121k k l l =⇔或212211C C B A B A ≠=(01221=-B A B A ) 12121-=⇔⊥k k l l 或 02121=+B B A A5、两条直线的交点0:1111=++C y B x A l 0:2222=++C y B x A l 相交交点坐标即方程组⎩⎨⎧=++=++00222111C y B x A C y B x A 的一组解。
6、两点间距离公式:设1122(,),A x y B x y,()是平面直角坐标系中的两个点,则||AB7、点到直线距离公式:点()00,y x P 到直线0:1=++C By Ax l 的距离2200B A CBy Ax d +++=8、两平行直线距离公式:2221B A C C d +-=二:圆的方程1、圆的方程(1)标准方程222)(r b y a x =-+-)(,圆心),(b a ,半径为r ;(2)一般方程022=++++F Ey Dx y x当0422>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫ ⎝⎛--2,2E D ,半径为:F E D r 42122-+= 2、求圆方程的方法:若利用圆的标准方程,需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
高中数学必修2知识点总结

高中数学必修2知识点总结高中数学必修二知识点总结1. 一元二次方程一元二次方程的标准形式为ax^2+bx+c=0,并且a≠0。
求解一元二次方程的方法是配方法、公式法和因式分解法。
2. 三角函数常用的三角函数有正弦函数、余弦函数、正切函数和余切函数。
三角函数的定义域和值域以及其性质和图像都是必须掌握的。
3. 三角恒等式包括正弦、余弦和正切等三角函数的恒等式,例如正弦函数的和差公式、倍角公式、半角公式等。
三角恒等式是解决三角函数问题的重要工具。
4. 二次函数的图像和性质二次函数的标准形式为y=ax^2+bx+c,其中a≠0。
二次函数的图像是一个开口朝上或开口朝下的抛物线,其对称轴为x=-b/2a。
必须掌握二次函数的顶点、零点、对称轴等性质,这些性质是判断图像和求解问题的重要方法。
5. 平面向量平面向量包括向量的定义、向量之间的运算、向量的坐标表示等。
向量的运算包括向量的加法、减法、数量积和向量积。
向量的坐标表示是将向量投影在坐标轴上来表示的。
6. 点、直线、平面和空间几何点、直线、平面和空间几何的基本概念和性质是必须掌握的,例如点的坐标、直线的一般式方程、平面的法向量等。
此外,必须掌握两条直线和两个平面之间的位置关系、垂直平分线以及中垂线等概念。
7. 三视图和轴测图三视图是立体图形的三个视图,包括正视图、左视图和俯视图。
轴测图是用于三维图形表示的一种图形表示方法,包括斜二测和等轴测。
8. 四边形和圆的性质四边形和圆的主要性质包括四边形内角和定理、对角线定理、圆的周长和面积计算公式、圆内部和圆外部点与圆的位置关系等。
9. 三角形和圆的性质三角形和圆的主要性质包括三角形内角和、三角形的面积计算公式、圆心角和圆弧、圆的切线和切点等。
10. 函数及其应用函数的概念和图像、定义域和值域、单调性等性质必须掌握。
函数的应用包括函数的极值、最大值和最小值等问题。
以上是高中数学必修二知识点的总结,这些知识点是高中数学教育的重点和难点,学好这些知识点对于提高数学成绩和发展数学思维能力都具有重要的意义。
高中数学必修2知识点总结

高中数学必修2知识点总结一、函数基础1. 函数的概念- 定义:一个从非空数集A到非空数集B的映射,记为y=f(x)。
- 函数的表示:解析式、图象、表格。
- 函数的符号:f(x),x∈A。
2. 函数的性质- 单调性:函数在某个区间内,随着x的增加,y值单调递增或递减。
- 奇偶性:f(-x)=f(x)为偶函数,f(-x)=-f(x)为奇函数。
- 周期性:存在正数T,使得f(x+T)=f(x)。
3. 函数的运算- 四则运算:两个函数的和、差、积、商。
- 复合函数:f(g(x))。
- 反函数:满足f(f^(-1)(x))=x的函数。
4. 基本初等函数- 幂函数:y=x^a,a∈R。
- 指数函数:y=a^x,a>0,a≠1。
- 对数函数:y=log_a(x),a>0,a≠1。
- 三角函数:正弦、余弦、正切等。
二、三角函数1. 三角函数的定义- 正弦、余弦、正切函数的定义。
- 弧度制与角度制的转换。
2. 三角函数的图象与性质- 周期性、单调性。
- 最大值、最小值。
- 特殊角的三角函数值。
3. 三角函数的运算- 三角函数的和差公式。
- 二倍角公式、半角公式。
- 积化和差与和差化积公式。
4. 解三角形- 正弦定理、余弦定理。
- 三角形面积公式。
三、数列1. 数列的概念- 定义:按照一定顺序排列的一列数。
- 有穷数列与无穷数列。
2. 等差数列与等比数列- 定义与通项公式。
- 求和公式。
- 性质与判定。
3. 数列的极限- 极限的概念。
- 极限的性质。
- 极限的运算法则。
四、解析几何1. 平面直角坐标系- 点的坐标。
- 距离公式、中点坐标公式。
2. 直线的方程- 点斜式、斜截式、一般式。
- 两直线的交点、平行与垂直。
3. 圆的方程- 标准方程。
- 一般方程。
4. 圆锥曲线- 椭圆、双曲线、抛物线的方程与性质。
五、概率与统计1. 随机事件与概率- 事件的概率定义。
- 条件概率、独立事件。
2. 随机变量及其分布- 离散型随机变量与连续型随机变量。
高一数学第二节知识点

高一数学第二节知识点在高一数学的学习中,数学的第二节知识点是我们学习数学的基础。
本文将对高一数学第二节知识点进行探讨和总结,以帮助我们更好地理解和掌握这些知识。
1. 有理数与无理数在数学中,我们将数字分为有理数与无理数。
有理数是可以表示为两个整数的比值,包括整数、分数和小数。
无理数是不能表示为两个整数的比值,如π 和根号2。
有理数与无理数的概念在高中数学中非常重要,我们需要了解它们的性质和运算规律。
2. 实数的区间表示方法实数有无数个,为了方便表示和比较实数,我们使用区间表示方法。
例如,开区间 (a, b) 表示所有大于 a 且小于 b 的实数;闭区间 [a, b] 表示所有大于等于 a 且小于等于 b 的实数。
我们可以利用区间表示法来表示实数集合,以便更好地进行运算和推理。
3. 幂的性质幂的性质在高中数学中占据重要地位,它们有助于简化计算和解决复杂的问题。
幂的性质包括:指数相乘等于底数不变且指数相加,指数相除等于底数不变且指数相减。
我们需要熟练掌握这些性质,并能够灵活运用它们解决实际问题。
4. 实数的绝对值与模实数的绝对值表示该实数到原点的距离,它的性质包括:非负性、正定性和三角不等式。
绝对值的概念在解决绝对值方程和不等式时非常重要。
模是实数的绝对值的推广,它是一个复数的长度或大小。
我们需要了解实数绝对值和复数模的定义和性质,并能够灵活应用它们解决问题。
5. 数列与等差数列数列是按一定规律排列的一组数,等差数列是其中相邻两项之差相等的数列。
数列与等差数列在高中数学中经常出现,我们需要能够根据数列的定义和性质解决数列的各种问题。
等差数列的通项公式和求和公式是我们需要掌握的关键知识。
6. 数列与等比数列与等差数列类似,等比数列是其中相邻两项之比相等的数列。
等比数列在高中数学中也有重要的应用,如复利问题和指数函数的研究。
我们需要了解等比数列的定义和性质,并能够根据实际问题应用等比数列来解决各种问题。
高中数学必修2知识点总结归纳

高中数学必修2知识点总结归纳
1、二次函数及其图像的性质:二次函数的定义,形式,及其未知量的解析解,二次
函数图像的性质,凹凸性和极值点位置,及其判定方法。
2、三角函数及其图形:正弦函数、余弦函数、正切函数的定义,平面直角坐标系下
的正弦余弦正切函数图像的性质及其判定方法,正弦定理,余弦定理,根据图形求三角函
数值,及其应用。
3、小数和分数的运算:常用的小数转分数的方法,小数和分数的加减乘除运算,及
其规律性的分析。
4、指数及对数:指数的定义,特殊指数的运算及其规律性,指数函数的图像及性质,对数的定义及其特殊性质,对数函数及其图形性质,及其一元二次多项式的变换。
5、多项式及其因子分解:多项式的基本定义,及其分母和分子的几何概念,多项式
的因子分解,及其唯一性的判断。
6、不定积分及其应用:不定积分的定义及其特殊性,常用的不定积分计算方法,及
其实际应用,求积分近似值的方法,以及实际的应用案例。
7、应用题中的数字变换:应用题中常见的实数变化,及其最高次数的判定,同时变
化的最小公倍数及其关系,求解应用题中特殊方程组的方法,及其实际案例。
8、圆的参数方程及极坐标方程:圆的定义,参数方程与极坐标方程的转换,园的性质,及其圆上点的定位方法,过定点且与圆的关系及应用。
9、高等函数及应用:高次函数的定义,及其图像的特点,高次函数的求解及其实际
应用,对数及指数函数的求解及应用,以及多项式、二次曲线等拟合应用。
10、三角型函数与几何图形的关系:三角型函数的定义及其特殊性质,三角型函数的
变换及其图形改变,及其三角函数与几何图形联系的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 、元素与集合的关系2 、集合的子集个数共有个;真子集有个;非空子集有个;非空的真子集有个.3 、二次函数的解析式的三种形式:(1)一般式:(2)顶点式:(当已知抛物线的顶点坐标时,设为此式)(3)零点式:(当已知抛物线与轴的交点坐标为时,设为此式)(4)切线式:。
(当已知抛物线与直线相切且切点的横坐标为时,设为此式)4、真值表:同真且真,同假或假5 、常见结论的否定形式;6 、四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)充要条件:(1)则P是q的充分条件,反之,q是p的必要条件;(2)且q ≠> p,则P是q的充分不必要条件;(3) p ≠> p ,且,则P是q的必要不充分条件;(4)p ≠> p ,且则P是q的既不充分又不必要条件。
7、函数单调性:增函数:(1)文字描述是:y随x的增大而增大。
(2)数学符号表述是:设f(x)在上有定义,若对任意的,都有成立,则就叫在上是增函数。
D则就是f(x)的递增区间。
减函数:(1)、文字描述是:y随x的增大而减小。
(2)、数学符号表述是:设f(x)在xD上有定义,若对任意的,都有成立,则就叫f(x)在上是减函数。
D则就是f (x)的递减区间。
单调性性质:(1)、增函数+增函数=增函数;(2)、减函数+减函数=减函数;(3)、增函数-减函数=增函数; (4)、减函数-增函数=减函数;注:上述结果中的函数的定义域一般情况下是要变的,是等号左边两个函数定义域的交集。
复合函数的单调性:等价关系:(1)设,那么上是增函数;上是减函数.(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.8、函数的奇偶性:(注:是奇偶函数的前提条件是:定义域必须关于原点对称)奇函数定义:在前提条件下,若有,则f(x)就是奇函数。
性质:(1)、奇函数的图象关于原点对称;(2)、奇函数在x>0和x<0上具有相同的单调区间;(3)、定义在R上的奇函数,有f(0)=0 .偶函数定义:在前提条件下,若有f(—x)=f(x),则f(x)就是偶函数。
性质:(1)、偶函数的图象关于y轴对称;(2)、偶函数在x>0和x<0上具有相反的单调区间;奇偶函数间的关系:(1)、奇函数·偶函数=奇函数;(2)、奇函数·奇函数=偶函数;(3)、偶奇函数·偶函数=偶函数; (4)、奇函数±奇函数=奇函数(也有例外得偶函数的)(5)、偶函数±偶函数=偶函数; (6)、奇函数±偶函数=非奇非偶函数奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.9、函数的周期性:定义:对函数f(x),若存在,使得f(x+T)=f(x),则就叫f(x)是周期函数,其中,T是f(x)的一个周期。
周期函数几种常见的表述形式:(1)、 f(x+T)= - f(x),此时周期为2T ;(2)、 f(x+m)=f(x+n),此时周期为;(3)、此时期为2m 。
10、常见函数的图像:11、对于函数恒成立,则函数的对称轴是;两个函数f=(x+a)与y=(b-x)的图象关于直线对称.12、分数指数幂与根式的性质:13 、指数式与对数式的互化式: .指数性质:指数函数:(1)、在定义域内是单调递增函数;(2)、在定义域内是单调递减函数。
注:指数函数图象都恒过点(0,1)对数性质:对数函数:(1)、在定义域内是单调递增函数;(2)、在定义域内是单调递减函数;注:对数函数图象都恒过点(1,0)(3)、(4)、14、对数的换底公式 :对数恒等式推论15、对数的四则运算法则:若a>0,a≠1,M>0,N>0,则16、平均增长率的问题(负增长时):如果原来产值的基础数为N,平均增长率为p,则对于时间的总产值,有.17 、等差数列:通项公式:(1),其中为首项,d为公差,n为项数,为末项。
(2)推广:(3)(注:该公式对任意数列都适用)前n项和:(1);其中为首项,n为项数,为末项。
(2)(3)(注:该公式对任意数列都适用)(4)(注:该公式对任意数列都适用)常用性质:(1)、若m+n=p+q ,则有;注:若的等差中项,则有n、m、p成等差。
(2)、若、为等差数列,则为等差数列。
(3)、为等差数列,为其前n项和,则也成等差数列。
(4)、(5)等比数列:通项公式:(1),其中为首项,n为项数,q为公比。
(2)推广:(3)(注:该公式对任意数列都适用)前n项和:(1)(注:该公式对任意数列都适用)(2)(注:该公式对任意数列都适用)(3)常用性质:(1)、若m+n=p+q ,则有;注:若的等比中项,则有成等比。
(2)、若、为等比数列,则为等比数列。
18、分期付款(按揭贷款):每次还款元(贷款元,次还清,每期利率为).19、三角不等式:(1)若,则.(2) 若,则.(3) .20 、同角三角函数的基本关系式:21、正弦、余弦的诱导公式(奇变偶不变,符号看象限)22、和角与差角公式(辅助角所在象限由点(a,b) 的象限决定, ). 23、二倍角公式及降幂公式.24、三角函数的周期公式函数及函数),x ∈R(A,ω,为常数,且A≠0)的周期;函数,(A,ω,为常数,且A ≠0)的周期.三角函数的图像:25 、正弦定理:(R为外接圆的半径).26、余弦定理:27、面积定理:(1)分别表示a、b、c边上的高).28、三角形内角和定理:在△ABC中,有.29、实数与向量的积的运算律:设λ、μ为实数,那么:30、与的数量积(或内积):·31、平面向量的坐标运算:32 、两向量的夹角公式:33、平面两点间的距离公式:34、向量的平行与垂直:设=,=,,则:(交叉相乘差为零)(对应相乘和为零)35 、线段的定比分公式:设,是线段的分点,是实数,且,则36、三角形的重心坐标公式:三个顶点的坐标分别为则的重心的坐标是.37、三角形五“心”向量形式的充要条件:设为所在平面上一点,角所对边长分别为,则38、常用不等式:39、极值定理:已知都是正数,则有(1)若xy积是定值P,则当x=y时和有最小值;(2)若x+y和是定值S,则当x=y时积有xy最大值.(3)已知,若则有(4)已知,若则有40、一元二次不等式,如果a与同号,则其解集在两根之外;如果a与异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.即:.41 、含有绝对值的不等式:当a> 0时,有.42、斜率公式:43 、直线的五种方程:(1)点斜式:(直线).(2)斜截式:(b为直线在y轴上的截距).(3)两点式:两点式的推广:(无任何限制条件!)(4)截距式:(分别为直线的横、纵截距,)(5)一般式:(其中A、B不同时为0).直线的法向量:,方向向量:44 、夹角公式:45 、到的角公式:46、点到直线的距离:(点,直线:).47、圆的四种方程:(1)圆的标准方程:(2)圆的一般方程:(>0).(3)圆的参数方程:(4)圆的直径式方程:(圆的直径的端点是48、点与圆的位置关系:点与圆的位置关系有三种:若49、直线与圆的位置关系:直线与圆的位置关系有三种50 、两圆位置关系的判定方法:设两圆圆心分别为O1,O2,半径分别为r1,r2,,则:.51 、椭圆的参数方程是.离心率,准线到中心的距离为,焦点到对应准线的距离(焦准距)。
过焦点且垂直于长轴的弦叫通经,其长度为:.52、椭圆焦半径公式及两焦半径与焦距构成三角形的面积:53、椭圆的的内外部 :54、椭圆的切线方程:55 、双曲线的离心率,准线到中心的距离为,焦点到对应准线的距离(焦准距)。
过焦点且垂直于实轴的弦叫通经,其长度为:.焦半径公式,两焦半径与焦距构成三角形的面积。
56 、双曲线的方程与渐近线方程的关系:(1)若双曲线方程为渐近线方程:(2)若渐近线方程为双曲线可设为.(3)若双曲线与有公共渐近线,可设为(,焦点在x轴上,,焦点在y轴上).(4) 焦点到渐近线的距离总是b。
57、双曲线的切线方程:.58、抛物线的焦半径公式:抛物线焦半径过焦点弦长.59、二次函数的图象是抛物线:(1)顶点坐标为;(2)焦点的坐标为;(3)准线方程是60 、直线与圆锥曲线相交的弦长公式 :或(弦端点,由方程消去y得到为直线的倾斜角,为直线的斜率61、证明直线与平面的平行的思考途径:(1)转化为直线与平面无公共点;(2)转化为线线平行;(3)转化为面面平行.62、证明直线与平面垂直的思考途径:(1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面。
63、证明平面与平面的垂直的思考途径:(1)转化为判断二面角是直二面角;(2)转化为线面垂直;(3) 转化为两平面的法向量平行。
64、向量的直角坐标运算:65、夹角公式:设则66 、异面直线间的距离:(是两异面直线,其公垂向量为,C,D是上任一点,d为间的距离).67、点到平面的距离:(为平面的法向量,,是的一条斜线段).68、球的半径是R,则其体积,其表面积.69、球的组合体:(1)球与长方体的组合体: 长方体的外接球的直径是长方体的体对角线长.(2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长,正方体的外接球的直径是正方体的体对角线长.(3)球与正四面体的组合体: 棱长为的正四面体的内切球的半径为(正四面体高,外接球的半径为(正四面体高70 、分类计数原理(加法原理):.分步计数原理(乘法原理):.71、排列数公式:72 组合数公式:组合数的两个性质:73 、二项式定理:二项展开式的通项公式:的展开式的系数关系:74 、互斥事件A,B分别发生的概率的和:P(A+B)=P(A)+P(B).个互斥事件分别发生的概率的和:P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).75 、独立事件A,B同时发生的概率:P(A·B)= P(A)·P(B).n个独立事件同时发生的概率:P(A1· A2·…· An)=P(A1)· P(A2)·…· P(An).76、 n次独立重复试验中某事件恰好发生k次的概率:77、数学期望:数学期望的性质(1).(2)若则.(3) 若服从几何分布,且78、方差:标准差:方差的性质:(1);(2)若(3) 若服从几何分布,且方差与期望的关系:79、正态分布密度函数:式中的实数是参数,分别表示个体的平均数与标准差.对于,取值小于x的概率:.80 、处的导数(或变化率):.81 、函数在点处的导数的几何意义:函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是.82、几种常见函数的导数:83、导数的运算法则:84、判别是极大(小)值的方法:当函数f(x)在点处连续时,85 、复数的相等:86、复数的模(或绝对值)87、复平面上的两点间的距离公式:88、实系数一元二次方程的解实系数一元二次方程③若,它在实数集内没有实数根;在复数集内有且仅有两个共轭复数根.。