MEMS陀螺仪
MEMS陀螺仪精讲

MEMS陀螺仪的分类
1.振动式微机械陀螺仪 振动式微机械陀螺仪利用单晶硅或多晶硅制成的振动质 量,在被基带动旋转时的哥氏效应感测角速度。
2.转子式微机械陀螺仪 转子式微机械陀螺仪的转子由多晶硅制成,采用静电悬 浮,并通过力短再平衡回路测出角速度。从功能看,转 子式微机械陀螺仪属于双轴速率陀螺仪或双轴角速率传 感器。 3.微机械加速度计陀螺仪 微机械加速度计陀螺仪是由参数匹配的两个微机械加速 度计做反向高频抖动 而构成的多功能惯性传感器,兼 有测量加速度和角速度的双重功能。
2、日前,意法半导体(ST)新推出13款单轴和双轴陀螺 仪。这种陀螺仪有以下值得关注的地方: ①这种全新高性能角运动传感器 可运用于手势控制的游戏机和遥 控指向产品、数字摄像机或数码 相机的图像稳定功能,以及GPS 导航辅助系统。 ②意法半导体的陀螺仪包括关断模式 (当整个器件完全关断时)和睡眠模式, 部分电路在睡眠模式下被关断,不但 大幅降低功耗,并可快速唤醒,使电 源开关更加智能化。 ③意法半导体的高性能MEMS陀螺仪 拥有抗机械应力,并改进了内部自 检功能,使客户在组装后可以验证 传感器功能,无需在测试过程中移 动电路板。
MEMS陀螺仪的应用发展史
1.MEMS陀螺仪的第一波应用是1990年代的汽车安 全系统
2.MEMS陀螺仪第二波应用是始于2000年的消费电 子产品 3.MEMS陀螺仪的第三波应用将开始出现在医疗、工 业器械等领域
MEMS陀螺仪的军事应用优势
在现今的世界格局中,战争以 信息化战争的对抗为主,重点 是发展精确制导武器,MEMS陀 螺仪在其中发挥了重要作用。
整合MEMS加速计和陀螺仪地磁的模块 正在进入廉价的电子玩具市场,传感 器模块提供的动作感应功能可实现互 动的游戏体验,还能让更小的儿童上 网分享快乐:孩子们很快就能够用自 然的动作玩这些玩具,不再使用按钮 或键盘一类的东西。
MEMS陀螺仪概况介绍

1、微机械陀螺仪的工作原理MEMS陀螺仪利用科里奥利力(Coriolis force,又称为科氏力)现象。
科氏力是对旋转体系中进行直线运动的质点由于惯性相对于旋转体系产生的直线运动的偏移的一种描述。
科里奥利力来自于物体运动所具有的惯性,在旋转体系中进行直线运动的质点,由于惯性的作用,有沿着原有运动方向继续运动的趋势,但是由于体系本身是旋转的,在经历了一段时间的运动之后,体系中质点的位置会有所变化,而它原有的运动趋势的方向,如果以旋转体系的视角去观察,就会发生一定程度的偏离。
2、微机械陀螺仪的性能参数MEMS陀螺仪的重要参数包括:分辨率(Resolution)、零角速度输出(零位输出)、灵敏度(Sensitivity)和测量范围。
这些参数是评判MEMS陀螺仪性能好坏的重要标志,同时也决定陀螺仪的应用环境。
分辨率是指陀螺仪能检测的最小角速度,该参数与零角速度输出其实是由陀螺仪的白噪声决定。
这三个参数主要说明了该陀螺仪的内部性能和抗干扰能力。
对使用者而言,灵敏度更具有实际的选择意义。
测量范围是指陀螺仪能够测量的最大角速度。
不同的应用场合对陀螺仪的各种性能指标有不同的要求。
3、微机械陀螺仪的结构MEMS陀螺仪的设计和工作原理可能各种各样,但是主要都采用振动部件传感角速度的概念。
绝大多数的MEMS陀螺仪依赖于相互正交的振动和转动引起的交变科里奥利力。
图3所示为振动陀螺的动力学系统的简单结构示意图。
该系统为2-D的振动系统,有两个正交的振动模态。
其中一个振动模态为质量块在x 方向振动,振动频率为。
另一个振动模态为质量块在y方向振动,振动频率为。
与的值比较接近。
工作时,驱动质量块使之在x轴上以接近于的频率(驱动频率)振动,如果振动系统以角速度绕Z轴转动,则会产生一个沿Y轴方向的科里奥利力,从而使得质量块在Y轴方向上产生频率为的振动响应,通过测试Y轴方向的运动就能完成角速度的检测。
一般的MEMS陀螺仪由梳齿结构的驱动部分(图4)和电容板形状的传感部分(图5)组成,基本结构如图6所示。
MEMS陀螺仪的原理与应用优势分析

MEMS陀螺仪的原理与应用优势分析MEMS陀螺仪(Micro-Electro-Mechanical Systems gyroscope)是一种利用微机电系统技术制造的陀螺仪。
它基于微机电系统(MEMS)的原理,采用微型的加速度传感器和补偿器,用于测量和检测设备的角速度和方向变化。
下面将对MEMS陀螺仪的原理和应用优势进行详细分析。
MEMS陀螺仪的原理主要基于角动量守恒定律。
当一个物体绕一个固定点旋转时,其角动量保持不变。
因此,MEMS陀螺仪通过测量和检测旋转物体围绕固定点的角动量变化来确定其角速度和方向。
在MEMS陀螺仪中,有两个主要的工作原理:电容效应和表面波效应。
首先,电容效应原理是利用固定的电容和可移动电容之间旋转的部分引起的电容变化来测量角速度。
这种原理利用了微机电系统中的微小工作间隙和电容结构,当设备旋转时,旋转的部分会引起电容间距的变化,从而产生电容变化,进而通过电路将电容变化转换为电压变化,最终测量出角速度。
其次,表面波效应原理是利用固定的波导和通过旋转感应器引起的表面波频率变化来测量角速度。
MEMS陀螺仪将固定波导和可旋转感应器相互排列,波导的表面波频率与波导材料和尺寸相关,而旋转感应器的旋转将改变波导的尺寸,进而影响表面波频率。
因此,通过测量表面波频率的变化,可以获取设备的角速度和方向信息。
MEMS陀螺仪具有许多应用优势。
首先,它具有小型化和集成化的特点。
MEMS陀螺仪利用微机电系统技术制造,可以实现微型化和集成化,从而在体积和重量上具有明显的优势。
这使得MEMS陀螺仪可以广泛应用于移动设备、汽车电子、航空航天等领域,提高产品的性能和可靠性。
其次,MEMS陀螺仪具有高精度和高灵敏度。
由于MEMS陀螺仪基于微型加速度传感器和补偿器,可以实现高精度的角速度测量和方向检测。
这使得MEMS陀螺仪在导航系统、姿态控制和稳定系统等方面具有重要应用,可以提供精确的角度信息。
此外,MEMS陀螺仪具有低功耗和低成本的特点。
mems陀螺仪原理

mems陀螺仪原理MEMS陀螺仪原理。
MEMS陀螺仪是一种微型的惯性传感器,它可以测量物体的旋转角速度。
它的原理基于微机电系统(MEMS)技术,利用微小的机械结构和电子器件来实现对旋转运动的测量。
在现代科技应用中,MEMS陀螺仪已经广泛应用于飞行器、导航系统、智能手机和运动控制等领域。
MEMS陀螺仪的工作原理主要基于角动量守恒定律和柯里奥利力效应。
当物体发生旋转运动时,其角动量会发生变化,而MEMS陀螺仪利用微小的振动结构来感知这种变化。
具体来说,MEMS陀螺仪包含一个微型的振动结构,当物体发生旋转时,振动结构会受到柯里奥利力的影响而产生微小的位移,通过测量这种位移的变化,就可以得到物体的旋转角速度。
MEMS陀螺仪通常由振动结构、传感器和信号处理电路组成。
振动结构可以是微型的悬臂梁或者石英振荡器,其主要作用是受到旋转运动的影响而产生微小的振动。
传感器则用来感知振动结构的位移变化,常见的传感器包括电容传感器和压阻传感器。
信号处理电路则负责对传感器采集到的信号进行放大、滤波和转换,最终得到旋转角速度的输出。
MEMS陀螺仪相比于传统的机械陀螺仪具有体积小、重量轻、功耗低和成本低的优势,因此在航空航天、汽车导航和消费电子产品中得到了广泛的应用。
同时,由于MEMS技术的不断进步,其精度和稳定性也在不断提高,使得其应用范围不断扩大。
然而,MEMS陀螺仪也存在一些局限性,例如温度漂移、震动干扰和零点漂移等问题,这些都会影响其测量精度和稳定性。
因此,在实际应用中,需要通过精密的校准和补偿算法来提高其性能。
总的来说,MEMS陀螺仪利用微机电系统技术实现了对旋转角速度的测量,其原理基于角动量守恒和柯里奥利力效应。
它在航空航天、导航系统和消费电子产品中得到了广泛的应用,但也面临着一些挑战,需要不断改进和完善。
随着技术的不断进步,相信MEMS陀螺仪在未来会有更广阔的发展前景。
mems陀螺仪工作原理

mems陀螺仪工作原理mems陀螺仪是由microelectromechanical systems(简称MEMS)制成的一种传感器,它可以检测和记录来自环境的物理运动,如旋转、加速度和位移。
它可以用于航空航天、汽车、智能手机和其他电子设备,以及实时监控系统等领域。
本文将介绍mems陀螺仪的工作原理。
一、MEMS陀螺仪的结构MEMS陀螺仪是一种小型、低成本的传感器,一般由两个部分组成,分别是检测部分和控制部分。
检测部分由一个微机械的旋转轴组成,它的运动传感器可以检测旋转轴的角位移、角速度和角加速度。
控制部分负责检测部分的控制,它由多个电子元件和电路组成,包括放大器、滤波器、可编程逻辑控制器等。
二、MEMS陀螺仪的工作原理MEMS陀螺仪的工作原理是利用检测部分的运动传感器检测旋转轴的角位移、角速度和角加速度,然后将信号输入到控制部分。
控制部分对信号进行放大、滤波和编码,然后将指令发送给外部设备,以控制或检测物理运动。
三、MEMS陀螺仪的优点MEMS陀螺仪在小型化、低成本、低功耗等方面具有明显优势,能够满足许多应用场合的需求。
除此之外,它还具有良好的可靠性和可重复性,能够提供精确的测量结果。
四、MEMS陀螺仪的应用MEMS陀螺仪可以应用于航空航天、汽车、智能手机和其他电子设备,以及实时监控系统等领域。
在航空航天领域,MEMS陀螺仪可以用于飞行控制、导航和航空飞行模拟等应用;在汽车领域,MEMS陀螺仪可以用于车辆安全控制、车辆悬架系统和驾驶员辅助系统等应用;在智能手机和其他电子设备领域,MEMS陀螺仪可以用于游戏控制、虚拟现实系统和家居智能控制等应用;在实时监控系统领域,MEMS 陀螺仪可以用于机器人控制、运动检测和地面监控等应用。
五、结论MEMS陀螺仪作为一种小型、低成本、低功耗的传感器,可以应用于航空航天、汽车、智能手机和其他电子设备,以及实时监控系统等领域,具有良好的可靠性和可重复性,能够提供精确的测量结果,是一种非常有用的传感器。
MEMS陀螺仪概况介绍

MEMS陀螺仪概况介绍MEMS陀螺仪是一种运用微机电系统(Micro-Electro-Mechanical System,MEMS)技术制造的陀螺仪。
MEMS陀螺仪的发展与传统机械陀螺仪相比,具有体积小、重量轻、功耗低、精度高、成本低等优势,因此在无线通信、导航定位、智能手机、游戏机、航空航天等领域得到了广泛的应用。
从原理上来说,MEMS陀螺仪是利用陀螺效应进行测量的。
根据陀螺效应,当陀螺体受到力矩作用时,会产生旋转运动,并随着陀螺体的旋转方向发生改变。
MEMS陀螺仪利用微加工技术制造出微小的陀螺体结构,通过测量陀螺体旋转的角速度来反映外界的力矩。
MEMS陀螺仪的核心部件是微机电系统传感器芯片。
该芯片由陀螺体、补偿机构和信号处理器组成。
陀螺体采用微机电技术制造,通常由微小的旋转结构和驱动电极组成。
补偿机构可以校正陀螺仪在使用过程中的误差,如温度漂移、震动干扰等。
信号处理器对传感器采集到的信号进行放大、滤波和数字化处理,最终输出测量结果。
MEMS陀螺仪主要应用于姿态控制、导航定位和惯性测量等领域。
在无人机、无线通信基站和汽车电子中,MEMS陀螺仪可以感知设备的姿态变化,并通过控制其他执行器实现稳定的定位和姿态控制。
在导航定位系统中,MEMS陀螺仪结合其他传感器如加速度计和磁力计,可以提供高精度的导航定位信息。
在惯性测量领域,MEMS陀螺仪可以用于测量物体的转动角速度,如飞行器的姿态角速度、旋转仪的角速度等。
然而,MEMS陀螺仪也存在一些挑战与局限性。
首先,由于微加工技术的限制,MEMS陀螺仪的测量范围和分辨率相对较小。
其次,由于设备内部结构的微小化,MEMS陀螺仪对温度变化和震动的敏感度较高,容易产生误差。
此外,MEMS陀螺仪在长时间运行过程中,由于不可避免的温度漂移和机械疲劳等因素,测量精度也会逐渐下降。
为了克服这些局限性,研究人员提出了一系列改进措施。
例如,通过增加补偿机构和算法优化,可以有效降低温度漂移和震动干扰对MEMS陀螺仪测量精度的影响。
MEMS陀螺仪简介分析

按检测方式
闭环模式
速率陀螺 按工作模式
速率积数
MEMS陀螺仪的重要参数包括:分辨率(Resolution) 、零角速度输出(零位输出)、灵敏度(Sensitivity)和测 量范围。这些参数是评判MEMS陀螺仪性能好坏的重要标 志,同时也决定陀螺仪的应用环境。 分辨率是指陀螺仪能检测的最小角速度,该参数与 零角速度输出其实是由陀螺仪的白噪声决定。这几个参 数主要说明了该陀螺仪的内部性能和抗干扰能力。对使 用者而言,灵敏度更具有实际的选择意义。测量范围是 指陀螺仪能够测量的最大角速度。不同的应用场合对陀 螺仪的各种性能指标有不同的要求。
MEMS 陀螺仪使用的输出噪声这个指标。并且一定要选定合适的带 宽,在能满足使用要求的前提下,尽量选择带宽较低的陀螺仪,因为带 宽越大,输出噪声越大。
2.5 MEMS陀螺仪的选用
⑵ 测量范围 选择陀螺仪的量程时,应注意:最大输入角速率——陀 螺仪正、反方向输入角速率的最大值,在此输入角速率范围内,陀螺仪 标度因数非线性满足规定要求。 ⑶ 阈值——陀螺仪能敏感的最小输入角速率。由该输入角速率产生的输 出至少应等于按标度因数所期望输出值的50%。 ⑷ 分辨率——陀螺仪在规定的输入角速率下,能敏感的最小输入角速 率增量,至少应等于按标度因数所期望输出增量的50%。选择陀螺仪的 测量范围时,最大的角速率是陀螺仪的量程的2/3,最小的角速率应该 高于阈值、分辨率。 ⑸ 标度因数——陀螺仪输出量与输入角速率的比值。 它是用某一特定 直线的斜率表示的,该直线是根据整个输入角速率范围内测得的输入、 输出数据,用最小二乘法拟合求得。 ⑹ 标度因数非线性度——在输入角速率范围内,陀螺仪输出量相对于最 小二乘法拟合直线的最大的偏差与最大输出量之比。
MEMS陀螺仪简介

3.1 MEMS陀螺仪的校准
1.消除零速率不稳定性
为修正导通-导通偏差不稳定性,在陀螺仪上电后,用户 可以采集50~100个输出数据样本,取这些样本的平均值作 导通零速率输出值 R0,假设该陀螺仪是静止ቤተ መጻሕፍቲ ባይዱ态。
如果物体在圆盘上没有径向运动,科里奥利力就不会产 生。因此,在MEMS陀螺仪的设计上,这个物体被驱动,不 停地来回做径向运动或者震荡,与此对应的科里奥利力就是 不停地在横向来回变化,并有可能使物体在横向作微小震荡, 相位正好与驱动力差90度。MEMS陀螺仪通常有两个方向的 可移动电容板。径向的电容板加震荡电压迫使物体作径向运 动(有点象加速度计中的自测试模式),横向的电容板测量 由于横向科里奥利运动带来的电容变化(就象加速度计测量 加速度)。因为科里奥利力正比于角速度,所以由电容的变 化可以计算出角速度。
校准陀螺仪还可以选用步进电机旋转测量台,用一台 个人电脑控制步进电机旋转测量台。
3.1 MEMS陀螺仪的校准
3.使用数字罗盘确定灵敏度
如果没有角速率测量台,可以使用数字罗盘代替角速率 测量台。 在校准陀螺仪前,需要校准数字罗盘的倾斜度, 然后将其置于周围没有干扰磁场的平台上。合并在固定采样 间隔内采集的数字罗盘相对方向信息和陀螺仪输出数据,按 公式校准陀螺仪的灵敏度。
体积微小的微机械陀螺仪
现在广泛使用的MEMS陀螺仪可应用于航空、航天、航海、 兵器、汽车、生物医学、环境监控等领域。并且MEMS陀螺仪 相比传统的陀螺仪有明显的优势:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MEMS陀螺仪(gyroscope)的工作原理
传统的陀螺仪主要是利用角动量守恒原理,因此它主要是一个不停转动的物体,它的转轴指向不随承载它的支架的旋转而变化。
但是MEMS陀螺仪(gyroscope)的工作原理不是这样的,因为要用微机械技术在硅片衬底上加工出一个可转动的结构可不是一件容易的事。
MEMS陀螺仪利用科里奥利力——旋转物体在有径向运动时所受到的切向力。
下面是导出科里奥利力的方法。
有力学知识的读者应该不难理解。
在空间设立动态坐标系(图一)。
用以下方程计算加速度可以得到三项,分别来自径向加速、科里奥利加速度和向心加速度。
(图一)
如果物体在圆盘上没有径向运动,科里奥利力就不会产生。
因此,在MEMS陀螺仪的设计上,这个物体被驱动,不停地来回做径向运动或者震荡,与此对应的科里奥利力就是不停地在横向来回变化,并有可能使物体在横向作微小震荡,相位正好与驱动力差90度。
(图二)MEMS陀螺仪通常有两个方向的可移动电容板。
径向的电容板加震荡电压迫使物体作径向运动(有点象加速度计中的自测试模式),横向的电容板测量由于横向科里奥利运动带来的电容变化(就象加速度计测量加速度)。
因为科里奥利力正比于角速度,所以由电容的变化可以计算出角速度。
(图二)
MEMS陀螺仪(gyroscope)的结构
MEMS陀螺仪(gyroscope)的设计和工作原理可能各种各样,但是公开的MEMS陀螺仪均采用振动物体传感角速度的概念。
利用振动来诱导和探测科里奥利力而设计的MEMS陀螺仪没有旋转部件、不需要轴承,已被证明可以用微机械加工技术大批量生产。
绝大多数MEMS 陀螺仪依赖于由相互正交的振动和转动引起的交变科里奥利力。
振动物体被柔软的弹性结构
悬挂在基底之上。
整体动力学系统是二维弹性阻尼系统,在这个系统中振动和转动诱导的科里奥利力把正比于角速度的能量转移到传感模式。
(图一)
(图一)
通过改进设计和静电调试使得驱动和传感的共振频率一致,以实现最大可能的能量转移,从而获得最大灵敏度。
大多数MEMS陀螺仪驱动和传感模式完全匹配或接近匹配,它对系统的振动参数变化极其敏感,而这些系统参数会改变振动的固有频率,因此需要一个好的控制架构来做修正。
如果需要高的品质因子(Q),驱动和感应的频宽必须很窄。
增加1%的频宽可能降低20%的信号输出。
还有阻尼大小也会影响信号输出。
(图二)
(图二)
一般的MEMS陀螺仪由梳子结构的驱动部分(图三)和电容板形状的传感部分组成。
(图五)有的设计还带有去驱动和传感耦合的结构。
(图六)
(图三)
(图四)
(图五)
(图六)。