小学数学解题思路技巧(一、二年级用)-02

合集下载

【小学二年级数学】小学数学解题思路技巧(一、二年级用)

【小学二年级数学】小学数学解题思路技巧(一、二年级用)

奇怪的算式本系列贡献者知识要点根据推理的方法来确定算式中的数字分加法算式谜、减法算式谜、乘法算式谜几种。

范例解析例1 填出方框里的数。

分析9加几个位上是3十位上哪两个数相加得8。

解等。

例2 填出右边算式方框里的数。

分析18减几得9十位上24 661 7。

解例3 右面的算式中只有五个数字已些出补上其他的数字分析先填哪一个呢做这一类题目要善于发现问题的突破口。

从百位进位来看和的千位数只能是1从十位相加来看进位到百位也只能进1。

因此□2□的百位是9和的百位是0。

通过上面的分析就找到了这道题目的突破口。

再从1576 21121 8得出算式例4 在下面的加法算式中每个汉字代表一个数字相同的汉字代表的数字相同求这个算式分析千位上的“边”是进位得来所以“边” 1其次从个位知道“看”“看”的末位数字还是“看”所以“看” 0因此推出想想看想×110 算算看算×110 所以和数“边算边看”是11的倍数因而“算”2。

进而推出想想121-22 99。

所求的算式是990220 1210。

例5 下面的算式由01……9十个数字组成已写出三个数字补上其他数字。

分析这一算式有十个数字分别是01……9这十个数字因此这个算式中所有数字各不相同解题时要充分利用着一点为了说明的方便用英文字母A、B、C、D、E、F来表示要填的数字很明显A 1。

解题的突破口是确定BB可以是7或9因为F至少是3所以十位相加后一定要进位如果B是9C将是2就出现数字的重复因此B只能是7C是0。

现在还没有用上的数字是9653其中只有6是双数因此个位上D和E 必定是单数只能是D 9E 3因此也确定了F 6这个算式如右所示。

例6 如图是一个动物式子不同的动物? 聿煌 氖 智肽阆胍幌胨阋凰阏庑┒ 锔鞔 砟男┦ ?图3-15 分析这个式子从哪里下手解答呢根据两个一位数相加和只能满十的特点首先推出公鸡等于“1”。

然后又根据两熊猫相加和仍然是熊猫推出熊猫只能等于“0”。

人教版二年级数学下册小学数学解题思路大全 解题技巧

人教版二年级数学下册小学数学解题思路大全 解题技巧

1.想数码例如,1989年“从小爱数学”邀请赛试题6:两个四位数相加,第一个四位数的每一个数码都不小于5,第二个四位数仅仅是第一个四位数的数码调换了位置。

某同学的答数是16246。

试问该同学的答数正确吗?(如果正确,请你写出这个四位数;如果不正确,请说明理由)。

思路一:易知两个四位数的四个数码之和相等,奇数+奇数=偶数,偶数+偶数=偶数,这两个四位数相加的和必为偶数。

相应位数两数码之和,个、十、百、千位分别是17、13、11、15。

所以该同学的加法做错了。

正确答案是思路二:每个数码都不小于5,百位上两数码之和的11只有一种拆法5+6,另一个5只可能与8组成13,6只可能与9组成15。

这样个位上的两个数码,8+9=16是不可能的。

不要把“数码调换了位置”误解为“数码顺序颠倒了位置。

”2.尾数法例1比较 1222×1222和 1221×1223的大小。

由两式的尾数2×2=4,1×3=3,且4>3。

知 1222×1222>1221×1223例2二数和是382,甲数的末位数是8,若将8去掉,两数相同。

求这两个数。

由题意知两数的尾数和是12,乙数的末位和甲数的十位数字都是4。

由两数十位数字之和是8-1=7,知乙数的十位和甲数的百位数字都是3。

甲数是348,乙数是34。

例3请将下式中的字母换成适当的数字,使算式成立。

由3和a5乘积的尾数是1,知a5只能是7;由3和a4乘积的尾数是7-2=5,知a4是5;……不难推出原式为142857×3=428571。

3.从较大数想起例如,从1~10的十个数中,每次取两个数,要使其和大于10,有多少种取法?思路一:较大数不可能取5或比5小的数。

取6有6+5;取7有7+4,7+5,7+6;…………………………………………取10有九种 10+1,10+2,……10+9。

共为 1+3+5+7+9=25(种)。

思路二:两数不能相同。

如何快速解决小学数学应用题以及解题思路

如何快速解决小学数学应用题以及解题思路

如何快速解决小学数学应用题以及解题思路小学数学应用题是很多小朋友失分最多的题,但其实,小学数学的知识点也不是很多,所以,平时家长们可以多让孩子读题目,理解题意。

这里给大家分享一些小学数学应用题的解题思路,希望对大家有所帮助。

小学数学应用题解题思路1、简单应用题(1) 简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。

(2) 解题步骤:a 审题理解题意:了解应用题的内容,知道应用题的条件和问题。

读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。

也可以复述条件和问题,帮助理解题意。

b选择算法和列式计算:这是解答应用题的中心工作。

从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。

C检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。

如果发现错误,马上改正。

2、复合应用题(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。

(2)含有三个已知条件的两步计算的应用题。

求比两个数的和多(少)几个数的应用题。

比较两数差与倍数关系的应用题。

(3)含有两个已知条件的两步计算的应用题。

已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。

已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。

(4)解答连乘连除应用题。

(5)解答三步计算的应用题。

(6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。

答案:根据计算的结果,先口答,逐步过渡到笔答。

( 7 ) 解答加法应用题:a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。

b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。

小学数学应用题的解题技巧

小学数学应用题的解题技巧

小学数学应用题的解题技巧小学数学的应用题是小学教学过程中的重点和难点,但是很多同学并不了解应用题的解决技巧,从而导致成绩差。

这里跟大家分享一些小学数学应用题的解题技巧,希望对大家有所帮助。

小学数学应用题的解题技巧一、从多个角度思考小学数学应用题小学数学应用题具有灵活性的特点,所以在小学数学应用题的教学过程中,一种应用题类型存在着多样的解题思路和解题方法。

但是,由于小学生的年龄较小,思想发展还不成熟,对事物的思考还不是很全面,所以小学生很难充分合理的掌握小学数学应用题内容,并且对应用题的思考能力和解题能力也相对有限[1]。

因此,老师在培养小学生对应用题的解题技巧的过程中,要不断的发散小学生的大脑思维,引导小学生从多个不同的角度来思考应用题,促进小学生的思维意识,提高小学生对数学应用题的综合分析能力。

在多元化的应用题解题技巧中,老师要用多种不同的解题技巧和方法进行应用题解答。

例如,小学六年级的女生有20人,是六年级全班人数的,请问小学六年级共有多少个男生?老师在讲解这道应用题时,应该带领小学生分析解题方法,进而从多个角度找出这道题的解题方法。

如第一种方法,20(1-)=10(人);第二种方法,20-10=10(人)。

对于这一类应用题的解答,老师就要运用多样的解题方法,引导小学生从多角度进行思考和总结,培养小学生解决应用题的综合能力。

二、积极探索数学应用题中的已知条件在数学应用题教学过程中,老师应该根据解题的具体思路来进行应用题的解答,并且引导小学生在解题的过程中,养成独立思考的习惯,借助应用题中已知的条件来思考问题,分析有用的解题条件,找出正确的解题思路。

例如,三年级一班和四年级一班的教室分别在学校操场的两头,三年级一班离操场有40米,四年级一班离操场有55米,而学校的操场总长为400米,操场宽度为200米,请问三年级一班和四年级一班之间的距离是多少米?在针对这一应用题的解题过程中,老师要带领小学生对应用题内容进行全面分析,挖掘应用题中的已知内容,并且对三年级一班和四年级一班的教室位置进行分析和确定,从两个班级的教室在操场长度这边还是在操场宽度那边进行分析,找出解题的方法。

小学数学应用题解题技巧与思路

小学数学应用题解题技巧与思路

小学数学应用题解题技巧与思路“直接思路”是解题中的常规思路。

它一般是通过分析、综合、归纳等方法,直接找到解题的途径。

【顺向综合思路】从已知条件出发,根据数量关系先选择两个已知数量,提出可以解决的问题;然后把所求出的数量作为新的已知条件,与其他的已知条件搭配,再提出可以解决的问题;这样逐步推导,直到求出所要求的解为止。

这就是顺向综合思路,运用这种思路解题的方法叫“综合法”。

例1 兄弟俩骑车出外郊游,弟弟先出发,速度为每分钟200米,弟弟出发5分钟后,哥哥带一条狗出发,以每分钟250米的速度追赶弟弟,而狗以每分钟300米的速度向弟弟追去,追上弟弟后,立即返回,见到哥哥后又立即向弟弟追去,直到哥哥追上弟弟,这时狗跑了多少千米?分析(按顺向综合思路探索):(1)根据弟弟速度为每分钟200米,出发5分钟的条件,可以求什么?可以求出弟弟走了多少米,也就是哥哥追赶弟弟的距离。

(2)根据弟弟速度为每分钟200米,哥哥速度为每分钟250米,可以求什么?可以求出哥哥每分钟能追上弟弟多少米。

(3)通过计算后可以知道哥哥追赶弟弟的距离为1000米,每分钟可追上的距离为50米,根据这两个条件,可以求什么?可以求出哥哥赶上弟弟所需的时间。

(4)狗在哥哥与弟弟之间来回不断奔跑,看起来很复杂,仔细想一想,狗跑的时间与谁用的时间是一样的?狗跑的时间与哥哥追上弟弟所用的时间是相同的。

(5)已知狗以每分钟300米的速度,在哥哥与弟弟之间来回奔跑,直到哥哥追上弟弟为止,和哥哥追上弟弟所需的时间,可以求什么?可以求出这时狗总共跑了多少距离?这个分析思路可以用下图(图2.1)表示。

例2 下面图形(图2.2)中有多少条线段?分析(仍可用综合思路考虑):我们知道,直线上两点间的一段叫做线段,如果我们把上面任意相邻两点间的线段叫做基本线段,那么就可以这样来计数。

(1)左端点是A的线段有哪些?有AB AC AD AE AF AG共6条。

(2)左端点是B的线段有哪些?有BC、BD、BE、BF、BG共5条。

小学数学应用题解题思路及方法

小学数学应用题解题思路及方法

例2 爸爸比儿子大27岁,今年,爸爸的 年龄是儿子年龄的4倍,求父子二人今年各 是多少岁?
解 (1)儿子年龄=27÷(4-1)=9(岁) (2)爸爸年龄=9×4=36(岁)
答:父子二人今年的年龄分别是36岁和9岁。
例3 商场改革经营管理办法后,本月盈利比上 月盈利的2倍还多12万元,又知本月盈利比上月 盈利多30万元,求这两个月盈利各是多少万元?
解 由于每天运出的小麦和玉米的数量相等,所以剩下 的数量差等于原来的数量差(138-94)。把几天后 剩下的小麦看作1倍量,则几天后剩下的玉米就是3 倍量,那么,(138-94)就相当于(3-1)倍, 因此
剩下的小麦数量=(138-94)÷(3-1)=22(吨) 运出的小麦数量=94-22=72(吨) 运粮的天数=72÷9=8(天) 答:8天以后剩下的玉米是小麦的3倍。
答:东库存粮280吨,西库存粮200吨。
例3 甲站原有车52辆,乙站原有车32辆,若每天 从甲站开往乙站28辆,从乙站开往甲站24辆,几天 后乙站车辆数是甲站的2倍?
解 每天从甲站开往乙站28辆,从乙站开往甲站24辆, 相当于每天从甲站开往乙站(28-24)辆。把几天 以后甲站的车辆数当作1倍量,这时乙站的车辆数 就是2倍量,两站的车辆总数(52+32)就相当于 (2+1)倍,那么,几天以后甲站的车辆数减少 为 (52+32)÷(2+1)=28(辆)
解 如果把上月盈利作为1倍量,则(30-12)万元 就相当于上月盈利的(2-1)倍,因此
上月盈利=(30-12)÷(2-1)=18(万元) 本月盈利=18+30=48(万元) 答:上月盈利是18万元,本月盈利是48万元。
例4 粮库有94吨小麦和138吨玉米,如果每天运出 小麦和玉米各是9吨,问几天后剩下的玉米是小麦的 3倍?

小学数学解题思路技巧及例题解析

小学数学解题思路技巧及例题解析

(4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样 会使重点不突出。
(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一 个符号就决定了比较结论的对或错。
例 3:填空:0.75 的最高位是(),这个数小数部分的最高位是(); 十分位的数 4 与十位上的数 4 相比,它们的()相同,()不同,前者比后 者小了()。
必须知道:实际生产多少天,和实际生产多少件,这两个条件题中都已 知。
五、分类法 根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分 类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大 的类,又依据差异点将较大的类再分为较小的类。 分类即要注意大类与小类之间的不同层次,又要做到大类之中的各 小类不重复、不遗漏、不交叉。 例 7:自然数按约数的个数来分,可分成几类? 答:可分为三类。(1)只有一个约数的数,它是一个单位数,只有 一个数 1;(2)有两个约数的,也叫质数,有无数个;(3)有三个约数的, 也叫合数,也有无数个。 六、综合法 把对象的各个部分或各个方面或各个要素联结起来,并组合成一个 有机的整体来研究、推导和一种思维方法叫做综合法。 用综合法解数学题时,通常把各个题知看作是部分(或要素),经过 对各部分(或要素)相互之间内在联系一层层分析,逐步推导到题目要 求,所以,综合法的解题模式是执因导果,也叫顺推法。这种方法适用 于已知条件较少,数量关系比较简单的数学题。 例 8:两个质数,它们的差是小于 30 的合数,它们的和即是 11 的倍数又是小于 50 的偶数。写出适合上面条件的各组数。 思路:11 的倍数同时小于 50 的偶数有 22 和 44。
(2)分数的分子和分母同乘以或同除以一个相同的数,分数大小不 变。(错)
十、特例法 对于涉及一般性结论的题目,通过取特殊值或画特殊图或定特殊位 置等特例来解题的方法叫做特例法。特例法的逻辑原理是:事物的一般 性存在于特殊性之中。 例 15:大圆半径是小圆半径的 2 倍,大圆周长是小圆周长的()倍, 大圆面积是小圆面积的()倍。 可以取小圆半径为 1,那么大圆半径就是 2。计算一下,就能得出 正确结果。 例 16:正方形的面积和边长成正比例吗? 如果正方形的边长为 a,面积为 s。那么,s:a=a(比值不定) 所以,正方形的面积和边长不成正比例。,依靠对数学知识的理解、 记忆、辨识、再现、迁移来解题的方法叫做对照法。 这个方法的思维意义就在于,训练孩子对数学知识的正确理解、牢 固记忆、准确辨识。 例 1:三个连续自然数的和是 18,则这三个自然数从小到大分别 是多少? 对照自然数的概念和连续自然数的性质可以知道:三个连续自然数 和的平均数就是这三个连续自然数的中间那个数。 例 2:判断题:能被 2 除尽的数一定是偶数。

小学数学常用的十一种解题思路

小学数学常用的十一种解题思路

小学数学常用的十一种解题思路(1)智乐园科技2017—11-30 14:10:12一、直接思路“直接思路"是解题中的常规思路。

它一般是通过分析、综合、归纳等方法,直接找到解题的途径.【顺向综合思路】从已知条件出发,根据数量关系先选择两个已知数量,提出可以解决的问题;然后把所求出的数量作为新的已知条件,与其他的已知条件搭配,再提出可以解决的问题;这样逐步推导,直到求出所要求的解为止.这就是顺向综合思路,运用这种思路解题的方法叫“综合法”。

例1 兄弟俩骑车出外郊游,弟弟先出发,速度为每分钟200米,弟弟出发5分钟后,哥哥带一条狗出发,以每分钟250米的速度追赶弟弟,而狗以每分钟300米的速度向弟弟追去,追上弟弟后,立即返回,见到哥哥后又立即向弟弟追去,直到哥哥追上弟弟,这时狗跑了多少千米?分析(按顺向综合思路探索):(1)根据弟弟速度为每分钟200米,出发5分钟的条件,可以求什么?可以求出弟弟走了多少米,也就是哥哥追赶弟弟的距离。

(2)根据弟弟速度为每分钟200米,哥哥速度为每分钟250米,可以求什么?可以求出哥哥每分钟能追上弟弟多少米。

(3)通过计算后可以知道哥哥追赶弟弟的距离为1000米,每分钟可追上的距离为50米,根据这两个条件,可以求什么?可以求出哥哥赶上弟弟所需的时间。

(4)狗在哥哥与弟弟之间来回不断奔跑,看起来很复杂,仔细想一想,狗跑的时间与谁用的时间是一样的?狗跑的时间与哥哥追上弟弟所用的时间是相同的。

(5)已知狗以每分钟300米的速度,在哥哥与弟弟之间来回奔跑,直到哥哥追上弟弟为止,和哥哥追上弟弟所需的时间,可以求什么?可以求出这时狗总共跑了多少距离.这个分析思路可以用下图(图2。

1)表示。

例2 下面图形(图2。

2)中有多少条线段?分析(仍可用综合思路考虑):我们知道,直线上两点间的一段叫做线段,如果我们把上面任意相邻两点间的线段叫做基本线段,那么就可以这样来计数.(1)左端点是A的线段有哪些?有AB AC AD AE AF AG共6条。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

余数的妙用
本系列贡献者:与你的缘[知识要点]
1.被除数=除数×商+余数;
2.余数要比除数小;
3.会解有余数除法的应用题。

[范例解析]
例1如图1-1。

把14个乒乓球平均分给三个班,每班分得几个?还余下几个?
解 14÷3 = 4余2
每班分得4个还余2个。

例2下面三个竖式,哪个对?哪个不对?为什么不对?
解第一个竖式不对,它的余数8比除数5还大,还可商1,即商应为8;
第二个竖式也不对,因商和除数的积不能大于被除数;
第三个竖式是对的,余数3小于除数5。

说明计算有余数的除法,余数一定要比除数小。

这时被除数、除数、商和余数的关系是:
被除数 = 除数×商+余数
被除数-余数 = 除数×商
例3把11、12、13、14、15、16、17分别除以3时,各得哪些余数?
解 11÷3 = 3余2; 12÷3 = 4余0; 13÷3 = 4余1; 14÷3 = 4余2;
15÷3 = 5余0; 16÷3 = 5余1; 17÷3 = 5余2。

说明一串连续数除以同一个数,因为它们的余数小于除数,所以余数重复出现。

“余数”在我们生活中还有不少的用处呢!
例4国庆节挂彩灯,用六种颜色的灯泡,按红、黄、蓝、白、绿、紫的次序装配,总共要装50只灯,每种颜色的灯泡各需要多少只?
解可以这样想,六种颜色的灯泡作为一组,50只灯泡可以分成
50÷6 = 8(组)余2(只)
于是,其中有四种颜色的灯泡各配8只,另两种颜色的灯泡各配9只。

例5今天是星期三,再过20天是星期几?
解今天是星期三,因为一个星期有7天,以星期一为星期的第一天计算,因已经过了3天。

所以有
(20+3)÷7 = 3余2
即再过20天是星期二。

例6把4、7、18、2四个数填入下式的括号中。

()÷() = ()余()
分析第一个括号是被除数,它必须填最大的一个数18。

其次,除数比余数要大,因此,第二个括号中的数必须比最后一个括号中的数要大,但是7×4大于18,所以最后
一个括号中只能填数4。

即题中式子填数如下:
( 18 )÷( 7 ) = ( 2 )余( 4 )
[思路技巧]
1.正确理解余数的性质,是正确解决有关余数问题的关键。

2.计算有余数的除法,余数一定要比除数小。

[习题精选]
1.看图填数。

⑴ 11÷3 = ______( 根 )……______(根)
⑵ 14÷4 = ______( 份 )……______(个)
14÷3 = ______( 个 )……______(个)
2.下面各题的计算对吗?把不对的改过来。

⑴ 38÷5 = 6......8 49÷6 = 7......7 49÷8 = 5 (9)
33÷4 = 8......1 2÷1 = 1......1 17÷3 = 5 (2)
3.()里最大能填几?
()×8<55 ()×5<19 ()×7<33
()×9<62 ()×6<50 ()×4<14
4.55除以7,商几余几?除以8呢?除以9呢?
5.
被4除没有余数的:________________
被9除没有余数的:________________
6.⑴用下面各数除以2时,得到哪些余数?除以4时,得到哪些余数?
11、13、14、15、17、19
⑵用下面各数分别除以5、6时,各得到哪些余数?
11、12、13、14、15、16、17
7.把23、7、3、2填入两个式子中,使它们的余数相同。

()÷() = ()……()
()÷() = ()……()
8.下面三个算式的被除数相同,你能填出来吗?
()÷7 = () (1)
()÷6 = () (5)
()÷5 = () (4)
9.在□里填上适当的数。

10.在机场上停着20架飞机,准备每3架编为一组起飞,可以编成几组?还声几架?11.⑴把16张风景画片平均分给5个同学,每人分得几张?还剩几张?
⑵把16张风景画片分给同学,每人分得5张,可以分给几个同学?还剩几张?
12.⑴一件衬衣前面要钉5个纽扣,袖口要钉2个纽扣,一共要钉几个纽扣?
⑵现有45个纽扣,每件钉7个,够钉几件衬衣?还剩几个纽扣?
13.有30千克水果糖,每盒装4千克,剩下的装在纸袋里,纸袋里装多少千克糖?
14.一个星期有7天,十月份有31天,十月份里有几个星期零几天?
15.⑴学校开会庆“六一”,有9面彩旗,平均插在会场两边,每边插几面?还剩几面?
⑵学校开会庆“六一”,有9面彩旗,会场两边各插4面旗,中间插1面旗,共插了
几面旗?。

相关文档
最新文档