高中数学 第一章 集合与函数概念 1.1.1 集合的含义与表示 第二课时 集合的表示 新人教A版必修

合集下载

高中数学第一章集合与函数概念1.1.1.2集合的表示课件新人教A版必修1

高中数学第一章集合与函数概念1.1.1.2集合的表示课件新人教A版必修1

[解析] 当k=0时,原方程变为-8x+16=0,解得x=2, 此时集合A={2};
当k≠0时,要使一元二次方程kx2-8x+16=0有一个实根, 需要Δ=64-64k=0,即k=1.
此时方程的解为x1=x2=4, 所以集合A={4},满足题意. 综上所述,实数k的值为0或1,即实数k构成的集合为 {0,1}.
第三十三页,共43页。
3.{(x,y)|x+y=6,x,y∈N}用列举法表示为_________. 答案:{(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}
4.已知集合A=x∈N6-8 x∈N
,试用列举法表示集合A.
解:由题意可知6-x是8的正约数,
当6-x=1时,x=5;当6-x=2时,x=4;当6-x=4时,x
第十六页,共43页。
解:(1)满足条件的数有3,5,7, 所以所求集合为{3,5,7}. (2)∵a≠0,b≠0, ∴a与b可能同号也可能异号,故 ①当a>0,b>0时,|aa|+|bb|=2; ②当a<0,b<0时,|aa|+|bb|=-2; ③当a>0,b<0或a<0,b>0时,|aa|+|bb|=0. 故所有值组成的集合为{-2,0,2}.
[巧归纳] 描述法表示集合的步骤 (1)确定集合中元素的特征. (2)给出其满足的性质. (3)根据描述法的形式,写出其满足的集合.
第二十三页,共43页。
[练习2]用适当的方法表示下列集合: (1)已知集合P={x|x=2n,0≤n≤2且n∈N}; (2)抛物线y=x2-2x与x轴的公共点的集合; (3)直线y=x上去掉原点的点的集合.
中所有元素之积为________.
(2)已知集合A={x|kx2-8x+16

高中数学必修一

高中数学必修一

必修一第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。

只要构成两个集合的元素是一样的,我们就成为这两个集合是相等的。

如果a是集合A的元素,就说a属于集合A,记作a;如果a不是集合A中的元素,就说a不属于集合A,记作a。

全体非负整数组成的集合称为非负整数集(或自然数集),记作N;所有正整数组成的集合称为正整数集,记作N*或N+;全体整数组成的集合称为整数集,记作Z;全体有理数集合的集合称为有理数集,记作Q;全体实数组成的集合称为实数集,记作R。

例举法:把集合的元素一一列举出来,并用花括号“”括起来表示集合的方法叫做例举法。

描述法:用集合所含元素的共同特征表示集合的方法称为描述法。

1.1.2 集合间的基本关系一般地,对于两个集合A,B如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集。

记作AB(或BA)读作“A含于B”(或“B含于A”)。

如果集合A是集合B的子集(AB),且集合B是集合A的子集(BA),此时,集合A与集合B中的元素是一样的,因此,集合A与集合B相等,记作A=B。

如果集合AB,但存在元素xB,且xA,我们称集合A是集合B的真子集,记作AB(或BA)。

我们把不含任何元素的集合叫做空集,记作,并规定:空集是任何集合的子集。

1.1.3 集合的基本运算并集一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A 与B的并集,记作AB(读作“A并B”),即AB=交集一般地,由属于集合A且属于集合B的所有元素组成的集合,称作A与B的交集,记作A(读作“A交B”),即A若A则A补集一般地,如果一个集合含有我们所研究问题中涉及到所有问题中涉及到所有元素,那么就称这个集合为全集,通常记作U。

对于一个集合A,由于全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作C U A,即C U A= (C U A C U B)=C U(C U A C U B)=C U1.2 函数及其表示1.2.1 函数的概念设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为集合A到集合B的一个函数,记作 y=f(x),x A其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合叫做函数的值域。

高中数学分章节全部知识点(含拓展内容)全面细致总结(必修必备版)

高中数学分章节全部知识点(含拓展内容)全面细致总结(必修必备版)

第一章集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集∅【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法(20)〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <,(前者可以不成立,为空集;而后者必须成立).(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →. ②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,-∞、)+∞上为增函数,分别在[、上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:yxo(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符当n 是偶数时,正数a 的正的n负的n次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m n n aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质(4〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a NaN =⑤log log (0,)b n a a n M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a=>≠且 【2.2.2】对数函数及其性质(5)对数函数(6)设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q pα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qpy x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a =-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a -+∞上递减,当2bx a =-时,2max 4()4ac b f x a-=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2⇔②x 1≤x 2<k ⇔③x 1<k <x 2⇔af (k )<0④k 1<x 1≤x 2<k 2⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k2⇔f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a=- ③若2b q a ->,则()m f q =①若02b x a -≤,则()M f q=②02x a->,则()M f p =xxx(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a=- ③若2b q a ->,则()M f q =①若02b x a -≤,则()m f q =②02b x a->,则()m f p =.第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

高中数学第1章集合与函数概念1.1.1集合的含义与表示(第2课时)集合的表示aa高一数学

高中数学第1章集合与函数概念1.1.1集合的含义与表示(第2课时)集合的表示aa高一数学

2021/12/8
第三十页,共三十二页。
2021/12/8
2021/12/8
第十六页,共三十二页。
集合表示方法的综合应用 [探究问题] 1.下面三个集合: ①{x|y=x2+1};②{y|y=x2+1};③{(x,y)|y=x2+1}. (1)它们各自的含义是什么? (2)它们是不是相同的集合?
2021/12/8
第十七页,共三十二页。
提示:(1)集合①{x|y=x2+1}的代表元素是 x,满足条件 y=x2+1 中的 x∈R, 所以实质上{x|y=x2+1}=R; 集合②的代表元素是 y,满足条件 y=x2+1 的 y 的取值范围是 y≥1,所以实质 上{y|y=x2+1}={y|y≥1}; 集合③{(x,y)|y=x2+1}的代表元素是(x,y),可以认为是满足 y=x2+1 的数对 (x,y)的集合,也可以认为是坐标平面内的点(x,y)构成的集合,且这些点的坐 标满足 y=x2+1,所以{(x,y)|y=x2+1}={P|P 是抛物线 y=x2+1 上的点}. (2)由(1)中三个集合各自的含义知,它们是不同的集合.
A.{x|y=3x+1}
B.{y|y=3x+1}
C.{(x,y)|y=3x+1} D.{y=3x+1}
C [该集合是点集,故可表示为{(x,y)|y=3x+1},选 C.] 4.不等式 4x-5<7 的解集为________. {x|4x-5<7} [用描述法可表示为{x|4x-5<7}.]
2021/12/8
2021/12/8
第十二页,共三十二页。
用描述法表示集合 例 2 用描述法表示下列集合: (1)比 1 大又比 10 小的实数的集合; (2)平面直角坐标系中第二象限内的点组成的集合; (3)被 3 除余数等于 1 的正整数组成的集合.

高中数学 第一章 集合与函数概念 1.1 集合 1.1.1 集合的含义与表示 第2课时 集合的表示学

高中数学 第一章 集合与函数概念 1.1 集合 1.1.1 集合的含义与表示 第2课时 集合的表示学

第2课时 集合的表示学习目标 1.掌握集合的两种表示方法:列举法和描述法(重点).2.能够运用集合的两种表示方法表示一些简单的集合(难点).知识点 集合的表示方法 (1)列举法:①定义:把集合的元素一一列举出来,并用花括号“{ }”括起来表示集合的方法叫做列举法;②形式:A ={a 1,a 2,a 3,…,a n }. (2)描述法:①定义:用集合所含元素的共同特征表示集合的方法称为描述法;②写法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征. 【预习评价】(1)集合{x ∈N *|x -4<2}的另一种表示形式是( ) A.{0,1,2,3,4} B.{0,1,2,3,4,5} C.{1,2,3,4}D.{1,2,3,4,5}(2)方程x 2-1=8的解集用列举法表示为________.解析 (1)由x -4<2得x <6,又x ∈N *,故x 的值为1,2,3,4,5,用列举法表示为{1,2,3,4,5}.(2)由x 2-1=8得x 2=9,即x =±3,故其解集用列举法表示为{-3,3}. 答案 (1)D (2){-3,3}题型一 用列举法表示集合 【例1】 用列举法表示下列集合: (1)15的正约数组成的集合; (2)不大于10的正偶数集;(3)方程组⎩⎪⎨⎪⎧2x +y +6=0,x -y +3=0的解集.解 (1)因为15的正约数为1,3,5,15, 所以所求集合可表示为{1,3,5,15}.(2)因为不大于10的正偶数有2,4,6,8,10, 所以所求集合可表示为{2,4,6,8,10}.(3)解方程组⎩⎪⎨⎪⎧2x +y +6=0,x -y +3=0,得⎩⎪⎨⎪⎧x =-3,y =0.所以所求集合可表示为{(-3,0)}. 规律方法 用列举法表示集合的三个注意点(1)用列举法表示集合时,首先要注意元素是数、点,还是其他的类型,即先定性. (2)当集合中元素个数较少时,用列举法表示集合比较方便.(3)搞清集合中元素是有限个还是无限个是选择恰当的表示方法的关键. 【训练1】 用列举法表示下列集合: (1)绝对值小于5的偶数组成的集合; (2)24与36的公约数组成的集合;(3)方程组⎩⎪⎨⎪⎧x +y =2,2x -y =1的解集.解 (1)绝对值小于5的偶数集为{-2,-4,0,2,4}. (2){1,2,3,4,6,12}.(3)由⎩⎪⎨⎪⎧x +y =2,2x -y =1,得⎩⎪⎨⎪⎧x =1,y =1.∴所求集合可表示为{(1,1)}.(1)正偶数集;(2)被3除余2的正整数组成的集合;(3)平面直角坐标系中坐标轴上的点组成的集合.解 (1)偶数可用式子x =2n ,n ∈Z 表示,但此题要求为正偶数,故限定n ∈N *,所以正偶数集可表示为{x |x =2n ,n ∈N *}.(2)设被3除余2的数为x ,则x =3n +2,n ∈Z ,但元素为正整数,故x =3n +2,n ∈N ,所以被3除余2的正整数集合可表示为{x |x =3n +2,n ∈N }.(3)坐标轴上的点(x ,y )的特点是横、纵坐标中至少有一个为0,即xy =0,故坐标轴上的点组成的集合可表示为{(x ,y )|xy =0}.【迁移1】 (变换条件)例2(3)改为“用描述法表示平面直角坐标系中位于第二象限的点组成的集合.”解 位于第二象限的点(x ,y )的横坐标为负,纵坐标为正,即x <0,y >0,故第二象限的点组成的集合为{(x ,y )|x <0,y >0}.【迁移2】 (变换条件)例2(3)改为“用描述法表示图中阴影部分的点(含边界)组成的集合.”解 本题是用图形语言给出的问题,要求把图形语言转换为符号语言.用描述法表示(即用符号语言表示)为{(x ,y )|-1≤x ≤32,-12≤y ≤1,且xy ≥0}.规律方法 用描述法表示集合的注意点 (1)“竖线”前面的x ∈R 可简记为x ; (2)“竖线”不可省略;(3)p (x )可以是文字语言,也可以是数学符号语言,能用数学符号表示的尽量用数学符号表示;(4)同一集合用描述法表示可以不唯一. 题型三 集合表示方法的综合应用【例3】 (1)用列举法表示集合A =⎩⎨⎧⎭⎬⎫x |x ∈Z ,且86-x ∈N =________. (2)集合A ={x ∈R |kx 2-8x +16=0},若集合A 中只有一个元素,试求实数k 的值,并用列举法表示集合A .(1)解析 ∵x ∈Z 且86-x ∈N ,∴1≤6-x ≤8,-2≤x ≤5.当x =-2时,1∈N ;当x =-1时,87∉N ;当x =0时,43∉N ;当x =1时,85∉N ;当x =2时,2∈N ;当x =3时,83∉N ;当x =4时,4∈N ;当x =5时,8∈N . 综上可知A ={-2,2,4,5}. 答案 {-2,2,4,5} (2)解 ①当k =0时, 原方程为16-8x =0. ∴x =2,此时A ={2}; ②当k ≠0时,∵集合A 中只有一个元素,∴方程kx 2-8x +16=0有两个相等实根. ∴Δ=64-64k =0,即k =1. 从而x 1=x 2=4, ∴A ={4}.综上可知,实数k 的值为0或1. 当k =0时,A ={2}; 当k =1时,A ={4}.规律方法 1.识别集合的两个步骤:一看代表元素:例如{x |p (x )}表示数集,{(x ,y )|y =p (x )}表示点集; 二看条件:即看代表元素满足什么条件(公共特性). 2.方程ax 2+bx +c =0的根的个数在涉及ax 2+bx +c =0的根的集合中,要讨论二次项的系数a 是否为0,当a =0时,方程为bx +c =0,再分b 是否为0两种情况讨论其根的个数;当a ≠0时,方程ax 2+bx +c =0为二次方程,结合判别式的符号判定其根的个数. 【训练2】 用列举法表示下列集合. (1)A ={y |y =-x 2+6,x ∈N ,y ∈N }; (2)B ={(x ,y )|y =-x 2+6,x ∈N ,y ∈N }. 解 (1)因为y =-x 2+6≤6,且x ∈N ,y ∈N , 所以x =0,1,2时,y =6,5,2,符合题意, 所以A ={2,5,6}.(2)(x ,y )满足条件y =-x 2+6,x ∈N ,y ∈N ,则应有⎩⎪⎨⎪⎧x =0,y =6,⎩⎪⎨⎪⎧x =1,y =5,⎩⎪⎨⎪⎧x =2,y =2,所以B ={(0,6),(1,5),(2,2)}.课堂达标1.用列举法表示集合{x |x 2-2x +1=0}为( ) A.{1,1} B.{1}C.{x =1}D.{x 2-2x +1=0}解析 集合{x |x 2-2x +1=0}实质是方程x 2-2x +1=0的解集,此方程有两相等实根,为1,故可表示为{1}.故选B. 答案 B2.下列各组集合中,表示同一集合的是( ) A.M ={(3,2)},N ={(2,3)} B.M ={3,2},N ={2,3}C.M ={(x ,y )|x +y =1},N ={y |x +y =1}D.M ={3,2},N ={(3,2)}解析 由于集合中的元素具有无序性,故{3,2}={2,3}. 答案 B3.设集合A ={1,2,3},B ={1,3,9},x ∈A ,且x ∉B ,则x =( ) A.1 B.2 C.3D.9解析 比较A 和B 中的元素可知x =2. 答案 B4.大于3并且小于10的整数组成的集合用描述法表示为________.解析 设该数为x ,由题意得3<x <10,且x ∈Z ,故集合是:{x |3<x <10,x ∈Z }. 答案 {x |3<x <10,x ∈Z } 5.选择适当的方法表示下列集合: (1)绝对值不大于3的整数组成的集合;(2)方程(3x -5)(x +2)=0的实数解组成的集合; (3)一次函数y =x +6图象上所有点组成的集合.解 (1)绝对值不大于3的整数是-3,-2,-1,0,1,2,3,共有7个元素,则用列举法表示为{-3,-2,-1,0,1,2,3}.(2)方程(3x -5)(x +2)=0的实数解仅有两个,分别是53,-2,用列举法表示为⎩⎨⎧⎭⎬⎫53,-2.(3)一次函数y =x +6图象上有无数个点,用描述法表示为{(x ,y )|y =x +6}.课堂小结1.集合表示的要求:(1)根据要表示的集合元素的特点,选择适当方法表示集合,一般要符合最简原则; (2)一般情况下,元素个数无限的集合不宜用列举法表示,描述法既可以表示元素个数无限的集合,也可以表示元素个数有限的集合. 2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合或其他形式;(2)元素具有怎样的属性.当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.基础过关1.下列集合中,不同于另外三个集合的是( ) A.{0} B.{y |y 2=0} C.{x |x =0}D.{x =0}解析 A 是列举法,C 是描述法,对于B 要注意集合的代表元素是y ,故与A ,C 相同,而D 表示该集合含有一个元素,即方程“x =0”.故选D. 答案 D2.方程组⎩⎪⎨⎪⎧x -y =3,2x +y =6的解集是( )A.{x =3,y =0}B.{3}C.{(3,0)}D.{(x ,y )|(3,0)}解析 方程组解的形式是有序实数对,故可排除A ,B ,而D 不是集合表示的描述法的正确形式,排除D. 答案 C3.下列集合中恰有2个元素的集合是( ) A.{x 2-x =0}B.{y |y 2-y =0}C.{x |y =x 2-x }D.{y |y =x 2-x }解析 选项A 中的集合只有一个元素为:x 2-x =0;集合{y |y 2-y =0}的代表元素是y ,则集合{y |y 2-y =0}是方程y 2-y =0根的集合,即{y |y 2-y =0}={0,1},故选B ;选项C ,D 中的集合中都有无数多个元素. 答案 B4.-5∈{x |x 2-ax -5=0},则集合{x |x 2-4x -a =0}中所有元素之和为________. 解析 由题意可知(-5)2-a ×(-5)-5=0,得a =-4,故方程x 2-4x +4=0的解为x 1=x 2=2,即{x |x 2-4x -a =0}={2},则其所有元素和为2. 答案 25.已知集合A ={(x ,y )|y =2x +1},B ={(x ,y )|y =x +3},若a ∈A ,a ∈B ,则a 为________.解析 由题知,a ∈A ,a ∈B ,所以a 是方程组⎩⎪⎨⎪⎧y =2x +1,y =x +3的解,解得⎩⎪⎨⎪⎧x =2,y =5,即a 为(2,5). 答案 (2,5)6.用适当的方法表示下列集合: (1)16与24的公约数组成的集合; (2)不等式3x -5>0的解构成的集合.解 (1)16与24的公约数组成的集合为{1,2,4,8}.(2)不等式3x -5>0的解集为{x |3x -5>0}或⎩⎨⎧⎭⎬⎫x |x >53.7.设y =x 2-ax +b ,A ={x |y -x =0},B ={x |y -ax =0},若A ={-3,1},试用列举法表示集合B .解 将y =x 2-ax +b 代入集合A 中的方程并整理得x 2-(a +1)x +b =0.因为A ={-3,1},所以方程x 2-(a +1)x +b =0的两根为-3,1.由根与系数的关系得⎩⎪⎨⎪⎧-3+1=a +1,-3×1=b ,解得⎩⎪⎨⎪⎧a =-3,b =-3.所以y =x 2+3x -3.将y =x 2+3x -3,a =-3代入集合B 中的方程并整理得x 2+6x -3=0, 解得x =-3±23,所以B ={-3-23,-3+23}.能力提升8.集合⎩⎨⎧⎭⎬⎫3,52,73,94,…可表示为( )A.⎩⎨⎧⎭⎬⎫x |x =2n +12n ,n ∈N *B.⎩⎨⎧⎭⎬⎫x |x =2n +3n ,n ∈N * C.⎩⎨⎧⎭⎬⎫x |x =2n -1n,n ∈N * D.⎩⎨⎧⎭⎬⎫x |x =2n +1n,n ∈N * 解析 ∵3=31,观察集合中的元素,不难发现,若令分母为n ,则分子为2n +1,且n ∈N *,∴集合为⎩⎨⎧⎭⎬⎫x |x =2n +1n,n ∈N *. 答案 D9.用描述法表示图中所示阴影部分的点(包括边界上的点)组成的集合是( )A.{-2≤x ≤0且-2≤y ≤0}B.{(x ,y )|-2≤x ≤0且-2≤y ≤0}C.{(x ,y )|-2≤x ≤0且-2≤y <0}D.{(x ,y )|-2≤x <0或-2≤y ≤0}解析 由阴影知,-2≤x ≤0且-2≤y ≤0,∴集合{(x ,y )|-2≤x ≤0,且-2≤y ≤0}表示阴影部分的点组成的集合. 答案 B10.若集合A ={-2,2,3,4},集合B ={x |x =t 2,t ∈A },用列举法表示集合B =________.解析 当t =-2,2,3,4时,x =4,4,9,16,故集合B ={4,9,16}. 答案 {4,9,16}11.定义集合A -B ={x |x ∈A ,且x ∉B },若集合A ={x |2x +1>0},集合B =⎩⎨⎧⎭⎬⎫x |x -23<0,则集合A -B =________.解析 易知A ={x |x >-12},B ={x |x <2},故A -B ={x |x ≥2}.答案 {x |x ≥2}12.用列举法表示下列集合:(1)由所有小于10的既是奇数又是素数的自然数组成的集合; (2)式子|a |a +|b |b(a ≠0,b ≠0)的所有值组成的集合.解 (1)满足条件的数有3,5,7,所以所求集合为:{3,5,7}. (2)∵a ≠0,b ≠0,∴a 与b 可能同号也可能异号,故 ①当a >0,b >0时,|a |a +|b |b =2;②当a <0,b <0时,|a |a+|b |b=-2; ③当a >0,b <0或a <0,b >0时,|a |a +|b |b=0.故所有的值组成的集合为{-2,0,2}.13.(选做题)已知集合S 满足若a ∈S ,则11-a ∈S .请解答下列问题:(1)求证:若a ∈S ,则1-1a∈S ;(2)在集合S 中,元素能否只有一个?若能,把它求出来,若不能,请说明理由. (1)证明 由题意可知a ≠1且a ≠0,由11-a ∈S ,得11-11-a∈S , 即11-11-a =1-a 1-a -1=1-1a ∈S . ∴若a ∈S ,则1-1a∈S .(2)解 集合S 中的元素不能只有一个.理由如下: 令a =11-a,即a 2-a +1=0. ∵Δ=(-1)2-4<0,∴此方程无实数解,∴a ≠11-a.因此集合S中不可能只有一个元素.。

新人教版高中数学必修一全册ppt课件精品

新人教版高中数学必修一全册ppt课件精品

第二章 基本初等函数(Ⅰ)
2.1 指数函数
2.1.1 指数与指数幂的运算2.2.1 对数与对数运算
2.1.2 指数函数及其性质 2.2.2 对数函数及其性质
第1课时 指数函数及其性 第1课时 对数函数及其
质(一)
性质(一)
第2课时 指数函数及其性 第2课时 对数函数及其
质(二)
性质(二)
2.2 对数函数
第一章 集合与函数概念
1.1 集合 1.1.1 集合的含义与表示 1.1.2 集合间的基本关系 1.1.3 集合的基本运算 第1课时 集合的交集、并集 第2课时 集合的全集、补集 1.2 函数及其表示 1.2.1 函数的概念
1.2.2 函数的表示法 1.3 函数的基本性质 1.3.1 单调性与最大(小)值 第1课时 函数的单调性 第2课时 函数的最大(小)值 1.3.2 奇偶性 本章总结提升
预习探究
知识点二 集合的表示法
1.列举法:把集合的元素一一列举出来,并用“___{___}__”括起来表示集合的方法叫作 列举法.(注意元素间要用“,”隔开,如{-1,0,1,2}) 2.描述法:用集合所含元素的_共__同__特__征_表示集合的方法称为描述法.(注意花括号内竖 线前面的部分为集合的元素)
预习探究
[讨论] (1)选择适当的方法表示下列集合:①方程(x-1)(x+2)=0 的实数根组成的集
合;②由直线 y=-x+4 上的横坐标和纵坐标都是自然数的点组成的集合.
(2)讨论下列说法是否正确.



{x

R|

1<x<2}



{y

R|

1<y<2}

高中数学开学第一周第一章集合与函数概念1.1.1集合的含义与表示第二课时集合的表示法教案数学教案

高中数学开学第一周第一章集合与函数概念1.1.1集合的含义与表示第二课时集合的表示法教案数学教案

1.1.1 集合的表示(第二课时)●三维目标1.知识与技能(1)掌握集合的表示方法——列举法和描述法;(2)能进行自然语言与集合语言间的相互转换.2.过程与方法(1)教学时不仅要关注集合的基本知识的学习,同时还要关注学生抽象概括能力的培养;(2)教学过程中应努力培养学生的思维能力,提高学生理解掌握概念的能力,训练学生分析问题和处理问题的能力.3.情感、态度与价值观培养数学的特有文化——简洁精练,体会从感性到理性的思维过程.●重点难点重点:用集合语言(描述法)表达数学对象或数学内容.难点:集合表示法的恰当选择.(1)重点的突破:以教材中的思考为切入点,让学生感知列举法表示集合不足的同时,顺其自然的引出集合的另一种方法——描述法,然后通过具体实例说明描述法的特点及书写形式,必要时可通过题组训练,让学生充分暴露用描述法表示集合时出现的各种疑点,教师给予适当点拨,从而化难为易;(2)难点的解决:本节课不仅要让学生学习两种表示法,同时还要让学生体会如何恰当选择表示法表示集合.为此,可通过实例多角度启发学生关注知识间的联系与区别,并借助两种方法表示集合的优缺点总结出表示法选择的规律——在元素不太多的情况下,宜采用列举法;在元素较多时,宜采用描述法表示.设集合M是小于5的自然数构成的集合,集合M中的元素能一一列举出来吗?【提示】能.0,1,2,3,4.列举法的定义:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.1.“绝对值小于2的实数”构成的集合,能用列举法表示吗?【提示】不能.2.设x为该集合的元素,x有何特征?【提示】|x|<2.3.如何表示该集合?【提示】 {x ∈R ||x |<2}1.定义:用集合所含元素的共同特征表示集合的方法叫描述法. 2.具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.互动探究:类型1 用列举法表示集合例1 用列举法表示下列集合:(1)方程x 2-1=0的解构成的集合;(2)由单词“book”的字母构成的集合;(3)由所有正整数构成的集合;(4)直线y =x 与y =2x -1的交点组成的集合.【思路探究】 先分别求出满足要求的所有元素,然后用列举法表示集合.【自主解答】 (1)方程x 2-1=0的解为-1,1,所求集合为{-1,1};(2)单词“book”有三个互不相同的字母,分别为“b”、“o”、“k”,所求集合为{b ,o ,k};(3)正整数有1,2,3,…,所求集合为{1,2,3,…};(4)方程组⎩⎪⎨⎪⎧ y =x ,y =2x -1的解是⎩⎪⎨⎪⎧ x =1,y =1,所求集合为{}1,1.规律方法1.用列举法表示集合,要分清是数集还是点集,如本例(1)是数集,本例(4)是点集.2.使用列举法表示集合时应注意以下几点:(1)在元素个数较少或有(无)限但有规律时用列举法表示集合,如集合:{1,2,3},{1,2,3,…,100},{1,2,3,…}等.(2)“{}”表示“所有”的含义,不能省略,元素之间用“,”隔开,而不能用“、”;元素无顺序,满足无序性.变式训练用列举法表示下列集合.(1)我国现有直辖市的全体.(2)绝对值小于3的整数集合.(3)方程组⎩⎪⎨⎪⎧y =x -1y =-23x +43的解集. 【解】 (1){北京,上海,天津,重庆}; (2){-2,-1,0,1,2};(3)方程组⎩⎪⎨⎪⎧ y =x -1,y =-23x +43的解是⎩⎪⎨⎪⎧ x =75,y =25, 所求集合为72,55⎧⎫⎛⎫⎨⎬ ⎪⎝⎭⎩⎭.例(1)不等式3x -2≥0的解构成的集合;(2)偶数集;(3)平面直角坐标系中,第一象限内的点的集合.【思路探究】 找准集合的代表元素→说明元素满足的条件→用描述法表示相应集合【自主解答】 (1)A ={x |3x -2≥0}或A =⎩⎨⎧⎭⎬⎫x |x ≥23; (2)B ={x |x =2k ,k ∈Z };(3){(x ,y )|x >0,y >0,且x ,y ∈R }.规律方法1.用描述法表示集合,首先应弄清楚集合的属性,是数集、点集还是其他的类型.一般地,数集用一个字母代表其元素,而点集则用一个有序实数对来代表其元素.2.若描述部分出现元素记号以外的字母时,要对新字母说明其含义或指出其取值范围,如本例(2).互动探究把本例(2)换成“{2,4,6,8,10}”如何求解?【解】 该集合用描述法表示为B ={x |x =2k,1≤k ≤5且k ∈Z }.例(1)方程组⎩⎪⎨⎪⎧ 2x -3y =14,3x +2y =8的解集;(2)1000以内被3除余2的正整数所组成的集合;(3)所有的正方形;(4)抛物线y =x 2上的所有点组成的集合.【思路探究】 依据集合中元素的个数,选择适当的方法表示集合.【自主解答】 (1)解方程组⎩⎪⎨⎪⎧ 2x -3y =14,3x +2y =8,得⎩⎪⎨⎪⎧ x =4,y =-2,故解集为{(4,-2)};(2)集合的代表元素是数x ,集合用描述法表示为{x |x =3k +2,k ∈N 且x <1000};(3)集合用描述法表示为{x |x 是正方形},简写为{正方形};(4)集合用描述法表示为{(x ,y )|y =x 2}.规律方法1.本例(1)在集合的表示时,常因不明白方程组解的含义,导致出现以下两种错误表示:{4,-2}和{x =4,y =-2}.2.当集合的元素个数很少(很容易写出全部元素)时,常用列举法表示集合;当集合的元素个数较多(不易写出全部元素)时,常用描述法表示.对一些元素有规律的无限集,也可以用列举法表示,如正偶数集也可写成{2,4,6,8,10,…}.变式训练有下面六种表示方法:①{x =-1,y =2};②错误!; ③{-1,2};④(-1,2);⑤{(-1,2)};⑥{x ,y |x =-1或y =2}.其中能正确表示方程组⎩⎪⎨⎪⎧ 2x +y =0,x -y +3=0的解集的是________,(把所有正确的序号都填在横线上)【解析】 ∵方程组⎩⎪⎨⎪⎧ 2x +y =0,x -y +3=0的解为⎩⎪⎨⎪⎧ x =-1,y =2, ∴该方程组的解集应为点集,其正确形式是②⑤.【答案】 ②⑤思想方法技巧分类讨论思想在集合表示法中的应用典例 (12分)集合A ={x |kx 2-8x +16=0},若集合A 只有一个元素,试求实数k 的值,并用列举法表示集合A .【思路点拨】 明确集合A 的含义→对k 加以讨论→求出k 值→写出集合A【规范解答】 (1)当k =0时,原方程变为-8x +16=0,x=2.2分此时集合A={2}.4分(2)当k≠0时,要使一元二次方程kx2-8x+16=0有两个相等实根.6分只需Δ=64-64k=0,即k=1.8分此时方程的解为x1=x2=4,集合A={4},满足题意.10分综上所述,实数k的值为0或1.当k=0时,A={2};当k=1时,A={4}.12分1.解答与描述法有关的问题时,明确集合中代表元素及其共同特征是解题的切入点.2.本题因kx2-8x+16=0是否为一元二次方程而分k=0和k≠0而展开讨论,从而做到不重不漏.3.集合与方程的综合问题,一般要求对方程中最高次项的系数的取值进行分类讨论,确定方程的根的情况,进而求得结果.需特别关注判别式在一元二次方程的实数根个数的讨论中的作用.小结:1.表示一个集合可以用列举法,也可以用描述法,一般地,若集合元素为有限个,常用列举法,集合元素为无限个多用描述法.2.处理描述法给出的集合问题时,首先要明确集合的代表元素,特别要分清数集和点集;其次要确定元素满足的条件是什么.。

高中数学必修一第一章 集合与函数的概念 第一章 1.1.1 第2课时课件

高中数学必修一第一章 集合与函数的概念 第一章 1.1.1 第2课时课件

反思与感悟
解析答案
跟踪训练2 用描述法表示下列集合: (1)方程x2+y2-4x+6y+13=0的解集; 解 方程x2+y2-4x+6y+13=0可化为(x-2)2+(y+3)2=0, 解得x=2,y=-3. 所以方程的解集为{(x,y)|x=2,y=-3}.
解析答案
(2)二次函数y=x2-10图象上的所有点组成的集合. 解 “二次函数y=x2-10图象上的所有点”用描述法表示为 {(x,y)|y=x2-10}.
解析答案
类型二 用描述法表示集合 例2 试分别用列举法和描述法表示下列集合: (1)方程x2-2=0的所有实数根组成的集合; 解 设方程x2-2=0的实数根为x,并且满足条件x2-2=0, 因此,用描述法表示为A={x∈R|x2-2=0}. 方程 x2-2=0 有两个实数根 2,- 2,
因此,用列举法表示为 A={ 2,- 2}.
1 23 45
答案
5.下列集合不等于由所有奇数构成的集合的是( A ) A.{x|x=4k-1,k∈Z} B.{x|x=2k-1,k∈Z} C.{x|x=2k+1,k∈Z} D.{x|x=2k+3,k∈Z}
1 23 45
答案
1.在用列举法表示集合时应注意:
规律与方法
(1)元素间用分隔号“,”;(2)元素不重复;(3)元素无顺序;(4)列举法
解析答案
(2)式子|aa|+|bb|(a≠0,b≠0)的所有值组成的集合. 解 ∵a≠0,b≠0, ∴a 与 b 可能同号也可能异号,故①当 a>0,b>0 时,|aa|+|bb|=2; ②当 a<0,b<0 时,|aa|+|bb|=-2; ③当 a>0,b<0 或 a<0,b>0 时,|aa|+|bb|=0. 故所有的值组成的集合为{-2,0,2}.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A)
4.(列举法)方程组
x x
y y
2, 0
的解构成的集合是
.
答案:{(1,1)}
5.(两种表示方法的转化)集合 A={x∈N| 6 ∈N}用列举法表示为
.
ห้องสมุดไป่ตู้6x
答案:{0,3,4,5}
课堂探究·素养提升
题型一 用列举法表示集合 【例1】 用列举法表示下列集合: (1)小于10的所有自然数组成的集合; (2)方程x2=x的所有实数根组成的集合; (3)由1~20以内的所有质数组成的集合;
用集合所含元素的 共同特征表示集合的方法.
}”括起来
探究:我们知道,R表示全体实数集合,那么R={全体实数集}={R}={x|x∈R}
是否正确?
答案:不正确,由于R表示全体实数构成的集合,而“{ }”这个符号已经
含有“所有”的含义了,如果将全体实数集表示为{全体实数集}就是重复
表述,应改为{实数},而{R}表示只含有实数集的集合,它也可以理解为该
想一想 导入二中哪些能构成集合?通过阅读课本我们能否表示出这些集合? (能构成集合的有(1),(2),(3),分别表示为{6,7,8,9},{x∈R|5<x<10}, {(x,y)|y=x2+2x+1})
知识探究
1.列举法
列举法:把集合的元素
一一列举 出来,并用花括号“{
表示集合的方法.
2.描述法
解:(4)只有当 2x-1=0 且 y+1=0 同时成立时,等式才成立,
所以
x
y
1, 2 1
为方程的解,即
D={(
1 2
,-1)}.
(5){14,16,18,20,…}.
误区警示 用列举法表示集合时,必须注意如下几点:①元素与元素之间必 须用“,”隔开;②集合的元素必须是明确的;③不必考虑元素出现的先后 顺序;④集合的元素不能重复;⑤集合的元素可以表示任何事物,如人、物、 地点、数等;⑥对含有较多元素的集合,如果构成该集合的元素具有明显 的规律,也可用列举法表示,但是必须把元素间的规律显示清楚后,才能用 省略号表示,如N+={1,2,3,…},所有正偶数组成的集合可写成{2,4,6,8,…}.
自我检测
1.(列举法)下列集合中,不是方程(x-1)x(x+1)=0解集的集合是(
(A){1,0,-1}
(B){0,-1,1}
(C){x|x(x+1)(x-1)=0} (D){(-1,0,1)}
D)
解析:{(-1,0,1)}表示是一个有序数组的集合,该集合只含一个元素,不是 方程(x-1)x(x+1)=0的解集.
第二课时 集合的表示
目标导航
课标要求
1.掌握集合的表示方法——列举法和描述法. 2.能进行自然语言与集合语言间的相互转换.
素养达成
通过本节内容的学习使学生能选择不同的语言来描述 不同的具体问题,提高学生的逻辑推理能力.
新知探求 课堂探究
新知探求·素养养成
【情境导学】 导入一 上节课我们学习了用大写字母表示常用的几个数集,但是这不能 体现出集合中的具体元素是什么,并且还有大量的非数集不能用大写字母 表示,事实上表示一个集合关键是确定它包含哪些元素,为此,我们有必要 学习集合的表示方法还有哪些?分别适用于什么情况? 导入二 (1)大于5且小于10的整数; (2)大于5且小于10的实数; (3)函数y=x2+2x+1上的点; (4)漂亮的花儿.


①中含两个元素,且都是式子,而方程组的解集中只有一 个元素,是一个点
② 能 ②代表元素是点的形式,且对应值与方程组解相同


③中含两个元素,是数集,而方程组的解集是点集,且只有 一个元素
④ 否 ④没有用花括号“{ }”括起来,不表示集合
⑤能 答案:②⑤
⑥否
⑤中只含有一个元素,是点集且与方程组解对应相等
4
即时训练1-1:已知集合A={x∈Z|3 x ∈Z}, (1)用列举法表示集合A; (2)求集合A的所有元素之和.
解:(1)由 4 ∈Z,得3-x=±1,±2,±4.解得x=-1,1,2,4,5,7.
3 x
又因为x∈Z, 所以A={-1,1,2,4,5,7}. (2)由(1)得集合A中的所有元素之和为-1+1+2+4+5+7=18.
2.(描述法)下列集合中,不同于另外三个集合的是( (A){x|x=1} (B){x|x2=1} (C){1} (D){y|(y-1)2=0}
B)
3.(两种表示方法的转化)集合{1,3,5,7,9}用描述法表示应是( (A){x|x是不大于9的非负奇数} (B){x|x≤9,x∈N} (C){x|1≤x≤9,x∈N} (D){x|0≤x≤9,x∈Z}
⑥中代表元素与方程组解的一般形式不符,须加小括号( ),条件中“或”也要改为“且”
题型二 用描述法表示集合
集合只有一个元素;因此R≠{R}.而{x|x∈R}表示全体实数构成的集合,因

R
=
{x|x∈R},但表述不如R简单,因此表示实数集时常用R而不用{x|x∈R}.
【拓展延伸】 区分数集与点集 以数或点为元素的集合分别叫作数集和点集,这是我们研究的主要对象.因 此,研究集合必须搞清构成集合的元素是什么.如,对于集合A={x|y=x22x+5,0≤x≤3},B={y|y=x2-2x+5,0≤x≤3},C={(x,y)|y=x2-2x+5,0≤x ≤3},集合A是函数y=x2-2x+5,0≤x≤3中自变量x组成的集合,集合B则是 上述函数的函数值y组成的集合,集合C则是上述函数图象上的点组成的集 合.
【备用例 1】 有下面六种表示方法
①{x=-1,y=2};②{(x,y)|
x
y
1, 2
};③{-1,2};
④(-1,2);⑤{(-1,2)};⑥
{x,y|x=-1,或 y=2}.
其中,能正确表示方程组
2x
x
y
y 3
0,
0
的解集的是
号填在空格上).
(把所有正确答案的序
解析:
序号 判断
原因分析
解:(1)设小于10的所有自然数组成的集合为A,那么A={0,1,2,3,4,5,6, 7,8,9}. (2)设方程x2=x的所有实数根组成的集合为B,那么B={0,1}. (3)设由1~20以内的所有质数组成的集合为C,那么C={2,3,5,7,11,13, 17,19}.
(4)方程 2 x 1 +|y+1|=0的解集D; (5)大于12的偶数构成的集合.
相关文档
最新文档