应用随机过程word版本
(完整word版)随机过程试题及答案(word文档良心出品)

一.填空题(每空2分,共20分)1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为it (e -1)eλ。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为1(sin(t+1)-sin t)2ωω。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为1λ的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从Γ分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e t t X ,,3)(,则 这个随机过程的状态空间212t,t,;e,e 33⎧⎫⎨⎬⎩⎭。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为(n)n P P =。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为(n)ji ij i Ip (n)p p ∈=⋅∑。
8.在马氏链{}n X ,n 0≥中,记 {}(n)ij v n 0f P X j,1v n-1,X j X i ,n 1,=≠≤≤==≥(n)ij ij n=1f f ∞=∑,若ii f 1<,称状态i 为非常返的。
9.非周期的正常返状态称为遍历态。
10.状态i 常返的充要条件为(n)iin=0p∞=∑∞。
二.证明题(每题6分,共24分)1.设A,B,C 为三个随机事件,证明条件概率的乘法公式:P(BC A)=P(B A)P(C AB)。
证明:左边=P(ABC)P(ABC)P(AB)P(C AB)P(B A )P(A)P(AB)P(A)===右边2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
《应用随机过程》A卷及其参考答案

,求
E
X
X
c;
2、(15 分,选做一题)(1)设 Xi E i , i 1, 2 ,且 X1, X 2 独立,试
由条件数学期望的一般定义以及初等条件概率定义的极限分别求
E IX1X2 X1 X 2 t P X1 X 2 X1 X 2 t ,t 0 ;(2)设 X1, X 2 , , X n 独
T 2 t dt 0
,令
Z
t
exp
t
0
u
dW
u
1 2
t 0
2
u
du
,则
dZ
t
t
Z
t
dW
t
,
从而Z t ,0 t T 是一个连续鞅。
1
三、计算证明题(共 60 分)
得分
1、(13 分)假设 X~E ,给定 c 0 ,试分别由指数分布的无记忆性、
条件密度和 E X
A
E
P
XI A
A
x
0
,且
q
x
dx
1
;(b)存在
a
0
,使得
p q
x x
a(当
p
x
0
时),令 r x a qpxx(当 p x 0 时,规定 r x 0 );又记 M U r X ,
3
试证明:
P
X
z
M
z
q
x dx
,即
X
在
M
发生的条件下的条件密度
函数恰是 q x ;(2)设有 SDE:dXt (aXt b
(2) ___________________________________________________;
(完整word版)应用随机过程教学大纲

(完整word版)应⽤随机过程教学⼤纲《应⽤随机过程A》课程教学⼤纲课程编号: L335001 课程类别:专业限选课适⽤专业:统计学专业学分数:3学分学时数: 48学时应修(先修)课程:数学分析、概率统计、微分⽅程、⾼等代数⼀、本课程的地位和作⽤应⽤随机过程是数学与应⽤数学专业的专业限选课程,是统计学专业的专业课程之⼀。
随机过程是研究客观世界中随机演变过程规律性的学科,随机过程的研究对象为随时间变化的随机现象,即随时间不断变化的随机变量,通常被视为概率论的动态部分。
随着科学技术的发展,它已⼴泛地应⽤于通信、控制、⽣物、地质、经济、管理、能源、⽓象等许多领域,国内外许多⾼等⼯科院校在研究⽣中设此课程,⼤量⼯程技术⼈员对随机分析的⽅法也越来越重视。
通过本课程的学习,使学⽣初步具备应⽤随机过程的理论和⽅法来分析问题和解决问题的能⼒。
⼆、本课程的教学⽬标使学⽣掌握随机过程的基本知识,通过系统学习,学⽣的概率理论数学模型解决随机问题的能⼒得到更加进⼀步的提⾼,特别在经济应⽤上,通过本课程的学习,可以让数学专业的学⽣很⽅便地转向在⾦融管理、电⼦通讯等应⽤领域的研究。
三、课程内容和基本要求”记号标记既(⽤“*”记号标记难点内容,⽤“?”记号标记重点内容,⽤“*是重点⼜是难点的内容。
)第⼀章预备知识1.教学基本要求(1)掌握概率空间, 随机变量和分布函数, 矩母函数和特征函数的概念和相关性质。
(2)掌握条件概率, 条件期望和独⽴性的概念和相关性质。
(3)了解概率中收敛性的概念和相互关系。
2.教学内容(1)概率空间(2)▽随机变量和分布函数(3)▽*数字特征、矩母函数和特征函数(4)▽*条件概率、条件期望和独⽴性(5)收敛性第⼆章随机过程的基本概念和类型1.教学基本要求(1)掌握随机过程的定义。
(2)了解有限维分布族和Kolmogorov定理。
(3)掌握独⽴增量过程和独⽴平稳增量过程概念。
2.教学内容(1)基本概念(2)▽*有限维分布和Kolmogorov定理(3)▽随机过程的基本类型第三章 Poisson过程1.教学基本要求(1)了解计数过程的概念。
应用随机过程期末复习题

1、设在底层乘电梯的人数服从均值5λ=的泊松分布,又设此楼共有N+1层。
每一个乘客在每一层楼要求停下来离开是等可能的,而且与其余乘客是否在这层停下是相互独立的。
求在所有乘客都走出电梯之前,该电梯停止次数的期望值。
2、设齐次马氏链{(),0,1,2,}X n n = 的状态空间{1,2,3}E =,状态转移矩阵1102211124412033P=(1)画出状态转移图;(2)讨论其遍历性;(3)求平稳分布;(4)计算下列概率: i ){(4)3|(1)1,(2)1};P X X X === ii ){(2)1,(3)2|(1)1}P X X X ===.3、设顾客以泊松分布抵达银行,其到达率为λ,若已知在第一小时内有两个顾客抵达银行,问:(1)此两个顾客均在最初20分钟内抵达银行的概率是多少? (2)至少有一个顾客在最初20分钟抵达银行的概率又是多少?4、设2()X t At Bt C ++,其中A , B , C 是相互独立的标准正态随机变量,讨论随机过程{(),}X t t −∞<<+∞的均方连续、均方可积和均方可导性.5、设有实随机过程{(),}X t t −∞<<+∞,加上到一短时间的时间平均器上作它的输入,如下图所示,它的输出为1(),()()d tt TY t Y t X u u T −=∫,其中t 为输出信号的观测时刻,T 为平均器采用的积分时间间隔。
若()cos X t A t =,A 是(0, 1)内均匀分布的随机变量。
(1)求输入过程的均值和相关函数,问输入过程是否平稳? (2)证明输出过程()Y t 的表示式为sin 2()cos()22T T Y t A t T=⋅−.(3)证明输出的均值为sin 12[()]cos()222T T E Y t t T =−,输出相关函数为12(,)R t t = 2sin 1232T T12cos()cos()22T Tt t −−,问输出是否为平稳过程?6、甲、乙两人进行比赛,设每局比赛甲胜的概率为p ,乙胜的概率为q ,和局的概率为R ,1p q r ++=,设每局比赛后胜者记“1”,分负者记“-1”分,和局记“0”分。
应用随机过程 综述

2.查阅相关的文献,理解Markov链在工程的应用。
3.对相关的文献进行总结,归纳出Markov链在工程的应用的作用和意义。
工作计划安排:
1.2009-09~2008-10:查找相关的资料,对Markov链的基本定义进行一定的了解
2.2009-10~2009-12:对相关的文献进行总结,归纳出Markov链在工程的应用。
3.2马尔可夫链在经济领域的应用
(1)利用马氏链可以对股票的价格进行分析和预测。经过检验我们发现:不仅单支股票价格变化的时间序列可以看作是一个马尔可夫过程,而且单支股票的预期收益时间序列、整个证券市场的股指、证券组合的综合价格与预期收益时间序列都符合马氏性。因此,针对我国股市波动幅度较大,受较多不规范因素的影响而表现出极强的随机性,我们可以考虑将马尔可夫链引入到上述的各方面,探讨更加切合我国证券市场实际的投资策略。把证券市场的市价和各种收益的变化的时间序列视为马尔可夫链,则可按转移概率,根据当前的状态预测以后的状态,从而采取相应的策略,这就是运用马尔可夫链的方法进行股市分析的基本思想。
应用随机过程

应用随机过程引言随机过程是一种数学模型,用于描述随机事件在不同时间点上的演变过程。
它在很多领域中有重要的应用,例如金融、统计学、生物学等。
本文将介绍随机过程的概念、性质以及在一些实际问题中的应用。
随机过程的定义和性质随机过程是一族随机变量的集合,这些变量依赖于某个参数,通常是时间。
随机过程可以用于描述随机事件随时间的演变。
具体来说,假设我们有一个随机过程{X(t), t ∈ T},其中X(t)是在时间t上的一个随机变量,T为参数的取值范围。
随机过程可以分为离散时间和连续时间两种情况。
对于离散时间的随机过程,参数t的取值范围是一组离散的时间点。
我们可以用{X₁, X₂, …, Xₙ}来表示随机过程在每一个时间点上的取值。
而连续时间的随机过程,则比较复杂,其参数t的取值范围是一个连续的时间域。
随机过程的性质主要包括两方面:两点分布和一点分布。
两点分布指的是随机过程在不同时间点上的取值之间的关系,一点分布则是指随机过程在某一固定时间点上取值的概率分布。
通过研究随机过程的这两个性质,我们可以了解随机事件随时间的演变规律。
应用举例:金融领域中的随机过程模型随机过程在金融领域中有广泛的应用,尤其是在期权定价和风险管理方面。
其中,著名的布莱克-斯科尔斯期权定价模型就是基于随机过程的。
在布莱克-斯科尔斯模型中,假设股票价格的对数收益率服从几何布朗运动,即随机过程满足以下随机微分方程:dS(t) = μS(t)dt + σS(t)dW(t)其中,S(t)表示股票价格在时间t的取值,μ是预期收益率,σ是波动率,W(t)是布朗运动。
利用随机微分方程,可以推导出期权的定价公式。
布莱克-斯科尔斯模型假设市场是无套利的,通过构建一个复制组合,可以得到一个偏微分方程来解决期权的定价问题。
除了布莱克-斯科尔斯模型,随机过程还可以用于建立其他的金融模型,例如随机波动率模型、随机利率模型等。
这些模型在金融衍生品定价和风险管理中都有重要的应用。
《应用随机过程》教学大纲

《应用随机过程》教学大纲应用随机过程教学大纲一、课程简介《应用随机过程》是一门应用性较强的数学课程,主要介绍了随机过程及其在实际问题中的应用。
随机过程是对随机变量的研究,是概率论的一个重要分支。
通过本课程的学习,学生可以了解随机过程的基本概念、性质和常见的应用领域,并能够运用所学知识解决实际问题。
二、教学目标1.掌握随机过程的基本概念、性质和常用模型。
2.学会应用随机过程解决实际问题,如排队论、信号处理等。
3.培养学生的数学建模能力和分析问题的能力。
三、教学内容1.随机过程的基本概念1.1随机过程的定义1.2随机过程的分类1.3随机过程的性质2.随机过程的常见模型2.1马尔可夫链2.2马尔可夫过程2.3泊松过程2.4随机游动3.应用随机过程解决实际问题3.1排队论3.1.1M/M/1模型3.1.2M/M/s模型3.1.3M/M/1队列的平稳分析3.2信号处理3.2.1随机信号的表示3.2.2自相关函数与功率谱密度3.2.3高斯过程与线性系统四、教学方法1.理论讲解:通过课堂讲解,介绍随机过程的基本概念、性质和常见模型。
2.实例分析:针对不同应用实际问题,引导学生运用所学知识解决实际问题。
3.课堂讨论:设置讨论环节,鼓励学生主动参与,提出问题并进行交流和讨论。
4.课后作业:布置随堂练习和课后作业,巩固学生对所学内容的理解和运用能力。
五、教学评价1.平时成绩:包括作业完成情况、课堂表现等。
2.期中考试:考查学生对基本概念和性质的掌握。
3.期末考试:综合考查学生对整个课程的理解和应用能力。
六、参考教材1. Sheldon M. Ross,《随机过程学》2.吴建平,李荣华,李云龙,《随机过程与应用》七、教学时长本课程共计48学时,其中理论课程36学时,实践课程12学时。
《随机过程》课程大纲

其它
(More)
备注
(Notes)
备注说明:
1.带*内容为必填项。
2.课程简介字数为300-500字;课程大纲以表述清楚教学安排为宜,字数不限。
课堂教学
习题二
完成要求
书面作业
第3章
Poisson过程
6
课堂
教学
习题三
完成要求
书面作
业
第4章
Markov过程
15
课堂
教学
习题四
完成要求
ቤተ መጻሕፍቲ ባይዱ书面作
业
第5章
经典鞅论
7
课堂
教学
习题五
完成要求
书面作
业
第6章 布朗
运动
4
课堂
教学
习题六
完成要求
书面作
业
第7章 随机
分析
12
课堂
教学
习题七
完成要求
书面作
业
第8章 平稳
过程
(1)要能根据实际问题分析它的齐次性和马氏性;(A5,B1,B2,C2)
(2) 掌握Q(qij)的求法和概率含义;(A5,B1,B2,B3,C2,C4)
(3)对生灭过程,要能根据前进方程和后退方程,求解其转移概率pij(t); (A5,B1,B2,B3,C2)
(4) 熟练掌握平稳分布的求法。(A5,B1,B2,B3,C2,C4)
在本课程中,我们将讨论生活中的许多非常有趣而又十分重要的随机过程,如每天光顾一家大型超市的人数、排队系统、生灭过程等,金融中常用的布朗运动与连续鞅,以及工程中和控制系统中经常遇到的一类随机过程——平稳过程,通过对它们的分析,可以使学生进一步巩固已学过概率论基础,结合实际问题学习随机过程可以提高学生的学习兴趣,从而提高他们分析和处理实际问题的能
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
事件 { : I A ( ) 0} A
2020/4/10
应用随机过程讲义 第一讲
11
用示性函数的关系及运算来 表示相关事件的关系及运算
min( a , b ) a b ,取下端 max( a , b ) a b ,取上端
I A B ( ) I A ( ) I B ( ) I A B ( ) I A ( ) I B ( ) 若 A B , 则 I A- B ( ) I A ( )- I B ( ) A B I A ( ) I B ( ) A B I A ( ) I B ( ) ,
应用随机过程
清华大学数学科学系
林元烈 主讲
教材:《应用随机过程》(第三次印刷)
林元烈,清华大学出版社
学习要求
• 不仅是掌握知识,更重要的是掌握思想 • 学会把抽象的概率和实际模型结合起来
2020/4/10
应用随机过程讲义 第一讲
2
学习重点
1. 用随机变量表示事件及其分解——基本理 论
2. 全概率公式——基本技巧
2 .几何概型
P(A)
A 点集的面积 点集的面积
隐含了等可能条件
2020/4/10
应用随机过程讲义 第一讲
17
概率是满足 1) 非负性; 2) 归一性; 3) 可列可加性; 的集函数。
可测集 粗略地说,可以定义长度(面积、体积)的 点集即为可测集;反之称为不可测集。
2020/4/10
应用随机过程讲义 第一讲
事件的关系与运算
2020/4/10
应用随机过程讲义 第一讲
8
事件序列 { A, n 1}
若 An An1 , 称之为单调不减序列。
n 1
An
lim
n
An
若 An1 An , 称之为单调不增序列。
n 1
An
lim
n
An
2020/4/10
应用随机过程讲义 第一讲
9
(
n 1 k n
Ak
)
lim
5. P (A B ) P (A ) P (B ) P (A )B
6. 若 A B ,则 P (A )P (B )
2020/4/10
应用随机过程讲义 第一讲
20
7. Ak,1kn,n2,
n
n
P( Ak) P(Ak) P(AiAj) P(AiAjAk)
k1
k1
1ijn
1ijn
.. . (1)n1P(A1A2..A .n)
8. 可列次可加性
P(Ak)P(Ak)
k1
k1
9. 概率连续性
若{An,
n
P(An)
2020/4/10
应用随机过程讲义 第一讲
21
这部分的详细讨论可以参见
《随机数学引论》
林元烈,清华大学出版社
2020/4/10
应用随机过程讲义 第一讲
22
• Buffon试验:最早用随机试验的方法求 某个未知的数。
以上集类和A生成相同的σ-代数,都是上面提到的一 维Borelσ-代数,即
( )( k )( 1 , k 5 )
2020/4/10
应用随机过程讲义 第一讲
25
• 直观地说,()中包含一切开区间,闭区间,
半开半闭区间,半闭半开区间,单个实数,以及 由它们经可列次并交运算而得出的集类。
2020/4/10
应用随机过程讲义 第一讲
26
2020/4/10
18
概率的性质
1. P()0
显然= 有 .., .P()P(), k1
由概率非负性即得
2. P(A)1P(A)
3. 有限可加性
由P() 0及完全(可列)可即加得性
若A1,A2,..A.n,且AA =(ij),则
n
n
P(Ak)P(Ak)
k1
k1
2020/4/10
应用随机过程讲义 第一讲
19
4. A, B P(A \ B) P(A) P(AB) 若B A P(A B) P(A) P(B)
n
An
lim n
sup
An
(
n 1 k n
Ak )
lim
n
An
lim n
inf
An
如果
lim
n
An
lim
n
A
,
n
则定义
lim
n
An
lim
n
An
lim
n
An .
2020/4/10
应用随机过程讲义 第一讲
10
示性函数
1, A I A ( ) 0, A
是最简单的随机变量
事件 { : I A ( ) 1} A 用随机变量来表示事件
概率空间 ( , , P )
:集合,样本空间 :集类, 代数 P :完全可加的集函数, A : 的元素,事件 P ( A ):事件的概率
概率
2020/4/10
应用随机过程讲义 第一讲
16
1 .古典概型
A
P(A)
(A) ( )
A 中的样本点数目 中的样本点数目
隐含了等可能条件
2020/4/10
应用随机过程讲义 第一讲
12
公理化定义
集类 粗略地说 ,的由子集作为元素的构集成合的 称为集类。 {,}是最简单的集类。
2020/4/10
应用随机过程讲义 第一讲
13
No Image
2020/4/10
应用随机过程讲义 第一讲
14
概率
2020/4/10
应用随机过程讲义 第一讲
15
3. 数学期望和条件数学期望——基本概念
2020/4/10
应用随机过程讲义 第一讲
3
第一讲
2020/4/10
应用随机过程讲义 第一讲
4
随机事件与概率
随机试验
2020/4/10
应用随机过程讲义 第一讲
5
要点:
• 在相同条件下,试验可重复进行;
• 试验的一切结果是预先可以明确的,但每 次试验前无法预先断言究竟会出现哪个结 果。
2020/4/10
应用随机过程讲义 第一讲
6
样本点 对于随机试验E,以ω表示它的一个可能 出现的试验结果,称ω为E的一个样本点。
样本空间 样本点的全体称为样本空间,用Ω表示。 Ω ={ω}
2020/4/10
应用随机过程讲义 第一讲
7
随机事件 粗略地说,样本空间Ω的子集就是随机事件,
用大写英文字母A、B、C等来表示。
• 测度:满足非负性、可列可加性的集函 数。
2020/4/10
应用随机过程讲义 第一讲
23
设集类 {[a,b],a,bR,ab}
则由 生成的代数( ) 称为 一维Bore l 代数.
,称为一维Bore可 l 测集.
2020/4/10
应用随机过程讲义 第一讲
24
实际上,设集类
1= {a [,b)a ,,bR,ab} , 2= {a (,b]a ,,bR,ab}, 3= {a (,b)a ,,bR,ab} , = {r(1,r2)r,1,r2为有}理 , 5= {G:G 为 R中开 } 集