分式方程的增根与无解
分式方程的增根和无解

分式方程的增根和无解
增根和无解是分式方程中常见的两种情况。
增根是指分式方程化为整式方程后,产生的使分式方程的分母为$0$的根。
分式方程的增根问题是分式方程去分母的过程中,方程两边同乘了一个能使最简公分母为零的整式,致使未知数的取值范围扩大。
无解是指分式方程本身就是一个矛盾等式,不论未知数取何值都不能使方程两边的值相等。
分式方程无解包括两种情况:一种情况是分式方程变形后,整式方程本身无解;另一种情况是整式方程有解,但这个解使原方程的分母为$0$,即为分式方程的增根,所以原分式方程无解。
总的来说,分式方程的增根和无解是两个不同的概念,增根是分式方程的一种特殊情况,而无解则是分式方程的一种极端情况。
分式方程的增根与无解详解(最新整理)

x-2 (x-3)=m
整理得:
x=6-m
∵原方程有解,故 6-m 不是增根。
∴6-m≠3 即 m≠3
∵x>0
∴m<6
由此可得答案为 m 的取值范围是 m<6 且 m≠3。 一、分式方程有增根,求参数值
2
x2 4xa 例 7 a 为何值时,关于 x 的方程 x 3 =0 有增根?
解:原方程两边同乘以(x-3)去分母整理,得 x2-4x+a=0(※) 因为分式方程有增根,增根为 x=3,把 x=3 代入(※)得,9-12+a=0 a=3
整理得(a-1)x=-10
②
1
若原方程无解,则有两种情形: (1)当 a-1=0(即 a=1)时,方程②为 0x=-10,此方程无解,所以原方程无解。 (2)如果方程②的解恰好是原分式方程的增根,那么原分式方程无解.原方程若有增根,增根为 x=2 或-2,把 x=2 或-2 代入方程②中,求出 a=-4 或 6. 综上所述,a=1 或 a=一4或 a=6 时,原分式方程无解. 例 5:(2005 扬州中考题)
入(※)得 m=-2
3 所以 m=- 2 或-2 时,原分式方程有增根
k
2
点评:分式方程有增根,不一定分式方程无解(无实根),如方程 x 1 +1= ( x 1)( x 2) 有增根,可求得 k=-
2
8
3 ,但分式方程这时有一实根 x= 3 。
二、分式方程是无实数解,求参数值
x2 m 例 9 若关于 x 的方程 x 5 = x 5 +2 无实数,求 m 的值。
整理得:
m(x+1)=7-x2
当 x= -1 时,此时 m 无解;
当 x=1 时,解得 m=3。
分式方程的增根与无解教师版

分式方程的增根与无解分式方程的增根与无解是分式方程中常见的两个概念,同学们在学习分式方程后,常常会对这两个概念混淆不清,认为分式方程无解和分式方程有增根是同一回事,事实上并非如此.分式方程有增根,指的是解分式方程时,在把分式方程转化为整式方程的变形过程中,方程的两边都乘了一个可能使分母为零的整式,从而扩大了未知数的取值范围而产生的未知数的值;而分式方程无解则是指不论未知数取何值,都不能使方程两边的值相等.它包含两种情形:(一)原方程化去分母后的整式方程无解;(二)原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根,从而原方程无解.现举例说明如下:例1 解方程2344222+=---x x x x . ① 解:方程两边都乘以(x+2)(x-2),得2(x+2)-4x=3(x-2).② 解这个方程,得x=2.经检验:当x=2时,原方程无意义,所以x=2是原方程的增根. 所以原方程无解.【说明】显然,方程①中未知数x 的取值范围是x ≠2且x ≠-2.而在去分母化为方程②后,此时未知数x 的取值范围扩大为全体实数.所以当求得的x 值恰好使最简公分母为零时,x 的值就是增根.本题中方程②的解是x =2,恰好使公分母为零,所以x =2是原方程的增根,原方程无解.例2 解方程22321++-=+-xx x x . 解:去分母后化为x -1=3-x +2(2+x ).整理得0x =8.因为此方程无解,所以原分式方程无解.【说明】此方程化为整式方程后,本身就无解,当然原分式方程肯定就无解了.由此可见,分式方程无解不一定就是产生增根.例3(2019湖北荆门)若方程32x x --=2m x -无解,则m=——————. 解:原方程可化为32x x --=-2m x -. 方程两边都乘以x -2,得x -3=-m .解这个方程,得x=3-m .因为原方程无解,所以这个解应是原方程的增根.即x=2,所以2=3-m ,解得m=1.故当m=1时,原方程无解.【说明】因为同学们目前所学的是能化为一元一次方程的分式方程,而一元一次方程只有一个根,所以如果这个根是原方程的增根,那么原方程无解.但是同学们并不能因此认为有增根的分式方程一定无解,随着以后所学知识的加深,同学们便会明白其中的道理,此处不再举例.例4当a 为何值时,关于x 的方程223242ax x x x +=--+①会产生增根? 解:方程两边都乘以(x+2)(x-2),得2(x +2)+ax =3(x -2) 整理得(a -1)x =-10 ②若原分式方程有增根,则x =2或-2是方程②的根.把x =2或-2代入方程②中,解得,a =-4或6.【说明】做此类题首先将分式方程转化为整式方程,然后找出使公分母为零的未知数的值即为增根,最后将增根代入转化得到的整式方程中,求出原方程中所含字母的值.若将此题“会产生增根”改为“无解”,即:当a 为何值时,关于x 的方程223242ax x x x +=--+①无解? 此时还要考虑转化后的整式方程(a -1)x =-10本身无解的情况,解法如下:解:方程两边都乘以(x+2)(x-2),得2(x +2)+ax =3(x -2) 整理得(a -1)x =-10 ②若原方程无解,则有两种情形:(1)当a -1=0(即a =1)时,方程②为0x =-10,此方程无解,所以原方程无解。
分式方程中无解与增根有什么区别,做题时有什么不同的

分式方程中无解与增根有什么区别,做题时有什么不同的
解分式方程一般都要去分母化为整式方程,而整式方程只有:有解与无解二种情况.
当整式方程无解时,那么原来的分式方程也一定无解.
当整式方程有解时,原来的分式方程就不一定也有解,因为分式方程有产生增根的可能,
若整式方程的解代入原分式方程的所有分母中,只要有一个分母为0,
这个整式方程的解就不是原分式方程的根,它是一个增根.
若整式方程的解代入原分式方程的所有分母中全不为0,这个整式方程的解
才是原分式方程的解.
若整式方程的所有解都不是原分式方程的根(即都是增根),这时才能说
此分式方程无解.
无解与增根的关系不太大,有增根不一定无解,无解也不一定是因为有了增根才无解的.
这与解题毫无关系.。
(完整版)分式方程的增根与无解详解

分式方程的增根与无解讲解2 4x 3例1解方程上 二—.①x 2 x 4 x 2解:方程两边都乘以(x+2) (x-2 ),得2 (x+2) -4x=3 (x-2 ).② 解这个方程,得x=2 .经检验:当x=2时,原方程无意义,所以 x=2是原方程的增根.所以原方程无解.x 13 x 例2解方程2 .x 22 x解:去分母后化为 x — 1 = 3- x + 2 (2 + x ). 整理得0x = 8.因为此方程无解,所以原分式方程无解.例3 (2007湖北荆门)若方程 口 = 旦 无解,则m 二——x 2 2 x解:原方程可化为方程两边都乘以 x — 2,得x — 3=— m. 解这个方程,得x=3 — m因为原方程无解,所以这个解应是原方程的增根.即 x=2 ,所以2=3 — m,解得m=1 故当m=1时,原方程无解.2例4当a 为何值时,关于x 的方程 ---------x 2解:方程两边都乘以(x+2) (x-2 ),得 2 (x + 2) + ax = 3 (x — 2) 整理得(a — 1) x = — 10②若原分式方程有增根,则 x = 2或—2是方程②的根. 把x = 2或一 2代入方程②中,解得,a = — 4或6. 若将此题“会产生增根”改为“无解” ,即:此时还要考虑转化后的整式方程(a — 1) x =— 10本身无解的情况,解法如下:解:方程两边都乘以(x+2) (x-2 ),得 2 (x + 2) + ax = 3 (x — 2)2当a 为何值时,关于x 的方程门 axx 2 4①无解?axx 2 4①会产生增根?整理得(a—1) x = —10 ②若原方程无解,则有两种情形:(1 )当a - 1 = 0 (即a = 1)时,方程②为Ox = - 10,此方程无解,所以原方程无解。
(2)如果方程②的解恰好是原分式方程的增根,那么原分式方程无解•原方程若有增根,增根为 =2或一2,把x = 2或一2代入方程②中,求出 a =- 4或6.综上所述,a = 1或a =—4或a = 6时,原分式方程无解. 例5: (2005扬州中考题)A 、0B 、1C 、-1D 、1 或-1 分析:使方程的最简公分母 (x+1)(x-1)=0 则x=-1或x=1,但不能忽略增根除满足最简公分母为零须是所化整式方程的根。
分式方程的无解与增根课件

关于这道题,有位同学作出如下解答:
解:去分母得,2x+a=-x+2.
化简,得 3x=2-a.
故
x= 2 a
3
因为方程的解为正数,所以
222333aaa0
0
,得a<2. 且a≠-4
2
所以,当a<2且a≠-4时,方程 2x a 1 的解是正数.
x2
课堂小结
复习完本课后你有哪些收获?
课后作业:
1、已知关于 x的方程 2x m x-2
应用升华
1.如果 1 +3= 1- x
x -2 2-x
有增根,那么增根是___X_=__2____.
2.关于x的方程
x
2 2
k x2 4
3 x
2
有增根,
那么增根可能是____X_=__2__或___x_=__-__2__.
则k的值可能为__K_=_-_8_或__k_=_-_1_2__
方法总结:1、化为整式方程。2、确定增根。 3、把增根代入整式方程求出字母的值。
3的解为正数,
则的范围是
2、若关于 x的方程
x x
k
1
x
k
1
1的解为负数,
则k的取值范围是
1 5
m 10 2x
无解,m=__。
3、关于x的分式方程
x x
-
a
1
3
x
1无解,则a
__。
提高题:
4、若方程 2x a 1 的解是正数,求a的取值范围. x2
想一想
若方程 2x a 1的解是正数,求a的取值范围. x2
展示交流☞
若方程 2x a 1的解是正数,求a的取值范围. x2
无解≠增根
陈峰
分式方程的无解和增根令许多初学分式 增根和整式方程无解这两种情况讨论。
方程的同学头疼,无解是不是一定意味着这个
解 :将 方 程 两 边 同 时 乘 x(x-1),得 x
方程有增根?本文试通过几道例题来谈谈它 (x-a)-3(x-1)=x(x-1),
们的差别。
整理方程,得(a+2)x=3。
又∵分式方程无解,∴x=1 即为增根。
不能等于 1,而对于变形后的方程来说,x=1。
当增根为 1 时,得 a+2=3,解得 a=1。
因此 x=1 是在去分母过程中“增加”的根,这个
综上所述,当 a=-2 或 a=1 时,该分式方程
根原本是不存在的,这样的根就是增根。
无解。
例1
若方程
x x-3
-2=
m x-3
二、无解可能出现增根,也可能真没解
分式方程的根如果是增根,则分式方程无
解。反之却不一定成立。如果分式方程无解,
还有可能是化为整式方程后,整式方程就是无
解的。
例2
若关于 x 的分式方程
x-a x-1
-
3 x
=
1
无解,则 a=
。
【分析】分式方程无解,需要分分式方程有
技巧点评:已知分式方程无解,可先考虑
去分母,将它们化成整式方程,然后讨论是整
x=
k
5
3
。
因为
x<0,所以
k
5
3
<
k
5
3
≠-3,所以 k≠-12。
所以当 k<3 且 k≠-12 时,原分式方程的解
为负数。
(作者单位:海安高新区仁桥初级中学)
46 策略方法
分式方程的增根与无解详解
分 式 方 程 的 增 根 与 无 解 讲 解例1解方程—24x 3•①x 2 x 4 x 2解:方程两边都乘以(x+2) (x-2 ),得2 (x+2) -4x=3 (x-2 ).②解这个方程,得x=2.经检验:当x=2时,原方程无意义,所以x=2是原方程的增根.所以原方程无解.例2解方程x 13 x2 .x 22 x解:去分母后化为x — 1 = 3— x + 2 (2+ x ).整理得0x = 8.因为此方程无解,所以原分式方程无解.例3 (2007湖北荆门)若方程 王卫二―丄无解,则m= ------------ .x 22 x解:原方程可化为x 3二—m.x 2 x 2方程两边都乘以x — 2,得x — 3=— m解这个方程,得x=3— m因为原方程无解,所以这个解应是原方程的增根.即 x=2,所以2=3— m 解得m=1.故当m=1时,原方程无解.ax例4当a为何值时,关于x的方程齐厂齐①会产生增根?解:方程两边都乘以(x+2) (x-2 ),得 2 (x + 2)+ ax= 3 (x —2)整理得(a—1) x = —10若原分式方程有增根,则x= 2或-2是方程②的根.把x = 2或一2代入方程②中,解得,a = —4或6.若将此题“会产生增根”改为“无解”,即:2 ax 3当a为何值时,关于x的方程厂2 厂门①无解?此时还要考虑转化后的整式方程(a—1)x二—10本身无解的情况,解法如下:解:方程两边都乘以(x+2) (x-2 ),得 2 (x + 2)+ ax= 3 (x —2)整理得(a—1) x = —10若原方程无解,则有两种情形:(1)当a—1 = 0 (即a= 1)时,方程②为0x =一10,此方程无解,所以原方程无解。
(2)如果方程②的解恰好是原分式方程的增根,那么原分式方程无解•原方程若有增根,增根为x = 2或一2,把x = 2或一2代入方程②中,求出a= —4或6.综上所述,a= 1或a = —4或a=6时,原分式方程无解.例5: (2005扬州中考题)6A 、0B 、1C 、-1D 、1 或-1分析:使方程的最简公分母(x+1)(x-1)=0 则x=-1或x=1,但不能忽略增根除满足最简公 分母为零,还必须是所化整式方程的根。
分式方程有增根或无解
例4 若分式方程 2x a 1的解是正数,求
x2
a 的取值范围.
解:解方程得
且x≠2
由题意得不等式组:
解得:
且
思考1.若此方程解为非正数呢?答案是多少? 2.若此方程无解a的值是多少?
方法总结:1.化整式方程求根,但是 不能是增根.2.根据题意列不等式组.
例1 解方程:
xx11x2N41o1 Image (1) 增根是使最简公分母值为零的未知数
的值. (2) 增根是整式方程的根但不是原分式方 程的.所. 以解分式方程一定要验根.
例2 解关于x的方程 2 ax 3
x2 x24 x2
产生增根,则常数a= 。
解:化整式方程得
由题意知增根
x=2或-2是 整式方程的根. 把x=2代入得2a-2 =
复习回顾
1.解分式方程的思路是:
分式 方程
去分母 转化整式Biblioteka 方程2.解分式方程的一般步骤
(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程.
(2)解这个整式方程. (3)把整式方程的根代入最简公分母,看结果是不是为零,使最 简公分母为零的根是原方程的增根,必须舍去. (4)写出原方程的根.
“一化二解三检验四结论”
(
)
A.-1
B. 1 C. ±1 D.-2
• 5、若分式方程
m x 1 x 1
• 有增根,则m的值为 -1 。
• 6、分式方程
1 m
•
x 2 x 1
• 有增根,则增根为( C )
•
A、2
B、-1
•
分式方程的增根和无解
分式方程的增根和无解黄石市白马山学校 胡优武知识重点:同学们在平时解答分式方程时,经常对分式方程的增根和无解混淆不清,容易错解、漏解。
为了学生好区分这两个概念,特制定以下例子加以说明。
(一)所求出的根使分式方程分母为零,这个根叫增根。
假定分母为零的值不一定是分式方程的增根。
例1:若解关于x 的分式方程234222+=-+-x x mx x 会产生增根,求m 的值. 解:方程两边都乘最简公分母(x+2)(x-2),得2(x+2)+mx=3(x-2)∵最简公分母为(x+2)(x-2),∴原方程增根为x=±2,∴把x=2代入整式方程,得m=-4.把x=-2代入整式方程,得m=6.综上,可知m=-4或6.本例具有常规性,一般学生都可以看出增根是x=±2,从而求出两个m 的值。
例2:关于分式方程xx x x x +=-+-2227163增根的情况,说法正确的是( ) A .有增根是0和-1 B .有增根是0和1、-1C .有增根是-1D .有增根是1一般的学生会假定最简公分母x(x+1)(x-1)=0,得出B 选项,那么就错了。
大家先看看解答过程。
解:方程两边乘以最简公分母为x (x+1)(x-1),得3(x+1)-6x=7(x-1),x=1;当x=1时,x (x+1)(x-1)=0,x=1是增根.原方程无解故选D .以上说明面对分式方程增根时,不能通过假定分母为零的所有x 的值是方程增根,必须动手计算。
(二)分式方程得的无解,要从两个角度分析,①无解:使分式方程分母为零的根叫增根,此时分式方程无解。
②无解:分式方程化成整式方程ax=b , 当 a=0 ,b ≠0时,方程无解。
例3:若关于x 的分式方程131=---xx m x 无解,求m 的值. 解:方程两边同时乘以x (x-1)得,x (x-m )-3(x-1)=x (x-1),整理得 (m+2)x=3①当x=0时原分式方程无解,此时0=3,无意义;②当x=1时原分式方程无解,此时解得m=1.③当m+2=0时,即m=-2时,整式方程(m+2)x=3无解,即原分式方程无解.故m=1或-2.上面的第③步,是学生最容易遗漏的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程的增根与无解
分式方程的求解通常是采取去分母的方法转化为整式方程来完成的,由于分母的去除,原本分母不为0的限制在整式方程中消失,往往此整式方程的解恰好会使原分式方程的某个分母为0,从而产生增根,舍去,因而分式方程求解中的检验必不可少。
增根还会导致分式方程无解,但无解又未必全是由于增根引起,具体缘由,请见下文。
一、分式方程的验根。
二、使分母为0的x的取值是否就是增根呢?
首先要厘清,增根会使某个分母为0,但能使某个分母为0的x的取值未必是分式方程
的增根。
其次,要知增根存在的条件:(1)必须是去分母后的整式方程的根,(2)此根会使原
分式方程的某个分母为0。
检验x=0是原方程的根,是不会产生增根x=2的。
三、若分式方程一定有增根,某个分母为0的x的取值,将有成为增根的可能。
综上所述,运用转化思想将分式方程转变成整式方程,在简化了解题过程的同时,也带来了增根的危险,检验就成了最后一道“防火墙”,不可忽视。
我们可从分母为0中估测可能出现的增根,但是否存在,要看是否为去分母之后的整式方程的根方能确定。
增根与无解
既有联系又有区别,考虑问题须全面缜密。