高二数学《2.2 椭圆的标准方程》学案1
椭圆标准方程(1)学案

2013—2014学年度 第一学期 高二数学(文) 导学案 编号007 班级: 姓名: 学习小组: 层级编码: 组内评价: 教师评价: 数学是一种理性的精神,使人类的思维得以运用到最完善的程度.
主备人:王卫芳 审核:左彦虎 学科主任: 年级主任: 使用时间:2013.11 椭圆及其标准方程(1)
【学习目标】
1、 理解椭圆的定义;
2、会推导椭圆的标准方程. 【重点难点】
重点:椭圆的定义及其椭圆的标准方程。
难点:椭圆的标准方程的推导过程,椭圆的定义中对常数加以限制的原因。
【使用说明与学法指导】
1、 阅读教材P 25-27,自主学习,完成本节课的导学案;
2、 用红笔勾画出疑惑点,以便在课堂上通过合作讨论寻求解决方案; 3,提升题重点班C 层、平行班选作。
想一想: 在动手实践中,绳长与两定。
(导学案)2.2.1椭圆及其标准方程

2.1.1 椭圆及其标准方程(1) (导学案)【学习目标】(1)从具体情境中抽象出椭圆的模型;(2)掌握椭圆的定义,能用坐标法求椭圆的标准方程; (3)掌握椭圆的标准方程的推导及标准方程的形式。
【重点、难点】重点:椭圆的定义及其标准方程。
难点:椭圆标准方程的推导与化简。
【学习方法】探究、讨论、归纳、类比 一、【基础知识链接】1、曲线可以看作是适合某种条件的点的集合或轨迹。
求曲线方程的一般步骤是: → → → → 。
其中,建立坐标系一般应遵循 的原则。
2、平面内两点间的距离公式:设A (x 1,y 1),B (x 2,y 2),则︱AB ︱=二、【新知导学】 探究任务一:椭圆的定义 【教材导读】 预习课本P38的内容,动动手,做教材P38中的“探究”,并完成下列问题:(1)、设笔尖(动点)为M ,两个定点1F ,2F 的距离为2c ,绳长为2a ,当22a c >时,动点M 的轨迹是 ;当22a c =时,动点M 的轨迹是 ;当22a c <时,动点M 的轨迹是 。
(2)、椭圆的定义:把平面内动点M 与两个定点1F ,2F 的距离之和等于常数(2a大于 )的点的轨迹叫做 . 这两个定点叫做椭圆的 ,两焦点的距离(2c )叫做 .探究任务二:椭圆的标准方程【教材导读】 预习课本P38至P39的内容,并完成下列问题(1)、观察椭圆的形状,可以发现椭圆既是 对称图形,又是 对称图形。
(2)、怎样建立坐标系,才能使求出的椭圆方程最为简单?①、建系;以 为x 轴, 为y 轴,建立平面直角坐标系,则1F ,2F 的坐标分别为:. ②、设点并写出点集:设M ( , )为椭圆上任意一点,根据椭圆定义知:③、列方程:④、化简方程得:⑤、为使上述方程简单并具有对称美,引入字母 ,令 = a 2 - c 2,则方程可化为(3)、类似的,焦点在 轴上的椭圆的标准方程为 : ,其中焦点1F ,2F 的坐标为: .(4)点的位置?试一试:根据下列椭圆方程,写出,,a b c 的值,并指出焦点的坐标: (1)221169y x +=; (2) 2212516y x +=; (1)a = ;b = ;c = (2)a = ;b = ;c = 焦点坐标为: 焦点坐标为: 待课堂上与老师和同学探究解决。
2.2.2 第1课时 椭圆的几何性质学案(解析版)(1)

高二数学学案【题目】2.2.2椭圆的几何性质学案2.2.2 椭圆的几何性质 第1课时 椭圆的几何性质学习目标 1.掌握椭圆的几何性质,了解椭圆标准方程中a ,b ,c 的几何意义.2.会用椭圆的几何意义解决相关问题.知识点一 椭圆的几何性质知识点二 椭圆的离心率1.椭圆的焦距与长轴长的比e =ca称为椭圆的离心率.2.因为a >c ,故椭圆离心率e 的取值范围为(0,1),当e 越近于1时,椭圆越扁,当e 越近于0时,椭圆越圆.【编辑】 李静升 【审核】 孟德厚【使用时间】 2019/8/221.椭圆x 2a 2+y 2b 2=1(a >b >0)的长轴长是a .( × )2.椭圆的离心率e 越大,椭圆就越圆.( × )3.若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x 225+y 216=1.( × )4.设F 为椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点,M 为其上任一点,则|MF |的最大值为a +c (c 为椭圆的半焦距).( √)题型一 椭圆的几何性质例1 求椭圆m 2x 2+4m 2y 2=1(m >0)的长轴长、短轴长、焦点坐标、顶点坐标和离心率. 解 由已知得x 21m 2+y 214m 2=1(m >0),∵0<m 2<4m 2, ∴1m 2>14m 2, ∴椭圆的焦点在x 轴上,并且长半轴长a =1m ,短半轴长b =12m ,半焦距c =32m ,∴椭圆的长轴长2a =2m ,短轴长2b =1m ,焦点坐标为⎝⎛⎭⎫-32m ,0,⎝⎛⎭⎫32m ,0,顶点坐标为⎝⎛⎭⎫1m ,0,⎝⎛⎭⎫-1m ,0,⎝⎛⎭⎫0,-12m ,⎝⎛⎭⎫0,12m , 离心率e =c a =32m 1m=32.反思感悟 从椭圆的标准方程出发,分清其焦点位置,然后再写出相应的性质.跟踪训练1 已知椭圆C 1:x 2100+y 264=1,设椭圆C 2与椭圆C 1的长轴长、短轴长分别相等,且椭圆C 2的焦点在y 轴上.(1)求椭圆C 1的长半轴长、短半轴长、焦点坐标及离心率; (2)写出椭圆C 2的方程,并研究其性质.解 (1)由椭圆C 1:x 2100+y 264=1可得其长半轴长为10,短半轴长为8,焦点坐标为(6,0),(-6,0),离心率e =35.(2)椭圆C 2:y 2100+x 264=1.性质如下:①范围:-8≤x ≤8,-10≤y ≤10;②对称性:关于x 轴、y 轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e =35.题型二 椭圆几何性质的简单应用命题角度1 依据椭圆的几何性质求标准方程 例2 求满足下列各条件的椭圆的标准方程.(1)已知椭圆的中心在原点,焦点在y 轴上,若其离心率为12,焦距为8;(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为 3. 解 (1)由题意知,2c =8,c =4, ∴e =c a =4a =12,∴a =8,从而b 2=a 2-c 2=48,∴椭圆的标准方程是y 264+x 248=1.(2)由已知得⎩⎨⎧a =2c ,a -c =3,∴⎩⎨⎧a =23,c = 3.从而b 2=9, ∴所求椭圆的标准方程为x 212+y 29=1或x 29+y 212=1.反思感悟 在求椭圆方程时,要注意根据题目条件判断焦点所在的坐标轴,从而确定方程的形式;若不能确定焦点所在的坐标轴,则应进行讨论,然后列方程(组)确定a ,b .跟踪训练2 根据下列条件,求中心在原点,对称轴在坐标轴上的椭圆的标准方程: (1)长轴长是短轴长的2倍,且过点(2,-6);(2)焦点在x 轴上,一个焦点与短轴的两端点连线互相垂直,且半焦距为6. 解 (1)当焦点在x 轴上时,设椭圆方程为x 2a 2+y 2b2=1(a >b >0).依题意有⎩⎪⎨⎪⎧2b =a ,4a 2+36b2=1,解得⎩⎨⎧a =237,b =37,∴椭圆的标准方程为x 2148+y 237=1.同样地可求出当焦点在y 轴上时, 椭圆的标准方程为x 213+y 252=1.故所求椭圆的标准方程为x 2148+y 237=1或x 213+y 252=1.(2)依题意有⎩⎪⎨⎪⎧b =c ,c =6,∴b =c =6,∴a 2=b 2+c 2=72,∴所求椭圆的标准方程为x 272+y 236=1.命题角度2 最值问题例3 椭圆的中心是坐标原点,长轴在x 轴上,离心率e =32,已知点P ⎝⎛⎭⎫0,32到椭圆上的点的最远距离是7,求这个椭圆的方程.解 设所求椭圆方程为x 2a 2+y 2b 2=1(a >b >0).∵b a=a 2-c 2a 2=1-e 2=12,∴a =2b . ∴椭圆方程为x 24b 2+y 2b2=1.设椭圆上点M (x ,y )到点P ⎝⎛⎭⎫0,32的距离为d , 则d 2=x 2+⎝⎛⎭⎫y -322=4b 2⎝⎛⎭⎫1-y 2b 2+y 2-3y +94=-3⎝⎛⎭⎫y +122+4b 2+3, 令f (y )=-3⎝⎛⎭⎫y +122+4b 2+3. (1)当-b ≤-12,即b ≥12时,d 2max =f ⎝⎛⎭⎫-12=4b 2+3=7, 解得b =1,∴椭圆方程为x 24+y 2=1.(2)当-12<-b ,即0<b <12时,d 2max =f (-b )=7, 解得b =7-32>12,与b <12矛盾.综上所述,所求椭圆方程为x 24+y 2=1.反思感悟 求解椭圆的最值问题的基本方法有两种(1)几何法:若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.解题的关键是能够准确分析出最值问题所隐含的几何意义,并能借助相应曲线的定义及对称知识求解; (2)代数法:若题目的条件和结论能体现一种明确的函数,则可首先建立起目标函数,再根据函数式的特征选用适当的方法求解目标函数的最值.常用方法有配方法、判别式法、重要不等式法及函数的单调性法等. 跟踪训练3 已知点F 1,F 2是椭圆x 2+2y 2=2的左、右焦点,点P 是该椭圆上的一个动点,那么|PF 1→+PF 2→|的最小值是( )A .0B .1C .2D .2 2 答案 C解析 设P (x 0,y 0),则PF 1→=(-1-x 0,-y 0), PF 2→=(1-x 0,-y 0),∴PF 1→+PF 2→=(-2x 0,-2y 0), ∴|PF 1→+PF 2→|=4x 20+4y 20=22-2y 20+y 20=2-y 20+2.∵点P 在椭圆上,∴0≤y 20≤1,∴当y 20=1时,|PF 1→+PF 2→|取最小值2.故选C. 题型三 求椭圆的离心率例4 设椭圆的左、右焦点分别为F 1,F 2,过F 1作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,求椭圆的离心率.解 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0).∵F 1(-c,0),∴P (-c ,y p ),代入椭圆方程得c 2a 2+y 2p b 2=1,∴y 2p =b 4a2, ∴|PF 1|=b 2a =|F 1F 2|,即b 2a=2c ,又∵b 2=a 2-c 2,∴a 2-c 2a=2c ,∴e 2+2e -1=0,又0<e <1,∴e =2-1.反思感悟 求解椭圆的离心率,其实质就是构建a ,b ,c 之间的关系式,再结合b 2=a 2-c 2,从而得到a ,c 之间的关系式,进而确定其离心率.跟踪训练4 设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( ) A.36 B.13 C.12 D.33答案 D解析 由题意可设|PF 2|=m ,结合条件可知|PF 1|=2m ,|F 1F 2|=3m ,故离心率e =c a =2c 2a =|F 1F 2||PF 1|+|PF 2|=3m 2m +m =33.椭圆几何性质的应用典例 神舟五号飞船成功完成了第一次载人航天飞行,实现了中国人民的航天梦想.某段时间飞船在太空中运行的轨道是一个椭圆,地心为椭圆的一个焦点,如图所示.假设航天员到地球的最近距离为d 1,最远距离为d 2,地球的半径为R ,我们想象存在一个镜像地球,其中心在神舟飞船运行轨道的另外一个焦点上,上面住着一个神仙发射某种神秘信号,需要飞行中的航天员中转后地球人才能接收到,则传送神秘信号的最短距离为( )A .d 1+d 2+RB .d 2-d 1+2RC .d 2+d 1-2RD .d 1+d 2考点 椭圆的简单几何性质题点 椭圆的顶点、焦点、长短轴、对称性 答案 D解析 设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),半焦距为c ,两焦点分别为F 1,F 2,飞行中的航天员为点P ,由已知可得⎩⎪⎨⎪⎧d 1+R =a -c ,d 2+R =a +c ,则2a =d 1+d 2+2R ,故传送神秘信号的最短距离为|PF 1|+|PF 2|-2R =2a -2R =d 1+d 2.[素养评析] 将太空中的轨迹与学过的椭圆建立起对应关系.利用椭圆的几何性质来解决航空航天问题,考查了学生运用所学知识解决实际问题的能力.1.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为2的椭圆的标准方程是( ) A.x 22+y 24=1 B .x 2+y 26=1C.x 26+y 2=1 D.x 28+y 25=1 答案 B解析 由已知得c =5,b =1,所以a 2=b 2+c 2=6, 故椭圆的标准方程为y 26+x 2=1.2.已知椭圆的方程为2x 2+3y 2=m (m >0),则此椭圆的离心率为( ) A.13 B.33 C.22 D.12 答案 B解析 由2x 2+3y 2=m (m >0),得x 2m 2+y 2m 3=1,∴c 2=m 2-m 3=m 6,∴e 2=13,∴e =33.3.若一个椭圆的长轴长、短轴长和焦距成等差数列,则该椭圆的离心率是( ) A.45 B.35 C.25 D.15 答案 B解析 由题意有2a +2c =2(2b ),即a +c =2b ,又c 2=a 2-b 2,消去b 整理得5c 2=3a 2-2ac ,即5e 2+2e -3=0,∴e =35或e =-1(舍去).4.已知点(m ,n )在椭圆8x 2+3y 2=24上,则2m +4的取值范围是________________. 答案 [4-23,4+23]解析 因为点(m ,n )在椭圆8x 2+3y 2=24上,即在椭圆x 23+y 28=1上,所以点(m ,n )满足椭圆的范围|x |≤3,|y |≤22,因此|m |≤3,即-3≤m ≤3, 所以2m +4∈[4-23,4+23].5.已知椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为________.答案(0,±69)解析由题意知椭圆焦点在y轴上,且a=13,b=10,则c=a2-b2=69,故焦点坐标为(0,±69).1.可以应用椭圆的定义和方程,把几何问题转化为代数问题,再结合代数知识解题.而椭圆的定义与三角形的两边之和联系紧密,因此,涉及线段的问题常利用三角形两边之和大于第三边这一结论处理.2.椭圆的定义式:|PF1|+|PF2|=2a(2a>|F1F2|),在解题中经常将|PF1|·|PF2|看成一个整体灵活应用.3.利用正弦、余弦定理处理△PF1F2的有关问题.4.椭圆上的点到一焦点的最大距离为a+c,最小距离为a-c.。
人教B版高中数学选修2-1《2.2.1椭圆的标准方程》教学设计

人教B版高中数学选修2-1《2.2.1椭圆的标准方程》教学设计
教材说明:人教B版普通高中课程标准实验教科书(选修2-1)
课题:2.2.1 椭圆的标准方程
课型:新授课
课时:1课时
教学目标:
知识目标:使学生理解椭圆的定义,掌握椭圆的标准方程的推导及标准方程。
能力目标:通过椭圆概念的引入与椭圆标准方程的推导过程,培养学生分析探索能力,熟练掌握解决解析几何问题的方法——坐标法。
情感目标:通过椭圆定义及标准方程的学习,渗透数形结合的思想,启发学生研究问题时,抓住问题本质,严谨细致思考,规范得出解答,体会运
动变化、对立统一的思想。
教学重点与教学难点:
教学重点:椭圆的定义和椭圆的标准方程。
教学难点:椭圆的标准方程的推导,椭圆的定义中常数加以限制的原因。
教学方法:从学生的认知规律出发进行启发、诱导、探索,运用讲授法、讨论法,等充分调动学生的积极性,发挥学生的主体作用。
在讲授过程中要善于解疑、设疑、激疑。
教学过程设计:
取一条一定长的细绳,把它的两端固定在画图板上的两点,
平面上到两定点,
以过两定点,的直线为
,.
焦点是(
a=4,c= -2,。
椭圆的标准方程(1)

学科数学级部高二班级姓名_ 使用时间 2015 年_10月 10 日编号 015两个焦点之间的距离叫做椭圆c轴的椭圆的标准方程为2.a=4,c=.椭圆的定义,应注意什么问题?椭圆的标准方程跟踪练习1.椭圆的两个焦点分别是()18,0F -,()28,0F ,且椭圆上一点到两个焦点的距离之和是20,则椭圆的方程为 ( )A22136100x y += B 221400336x y += C 22110036x y += D 2212012x y += 2椭圆9x 2 + 16y 2-144 = 0的两焦点坐标为 ( )A .)0,7(±B .(±5,0)C .)7,0(±D .(0,±53已知椭圆的方程为222116x y m += ,焦点在x 轴上,则m 的取值范围( ) A 44m m o -≤≤≠且 B 44m m o -<<≠且 C 44m m ><-或. D. 04m <<4.已知A ,B 两点的坐标分别为()0,5-, ()0,5,直线MA 与 MB 的斜率之积为49-, 则M 的轨迹方程为( )A221100259x y += B 221100259x y +=(5)x ≠± C 221225254x y += D 221225254x y +=()0x ≠ 5已知三点P (5,2)、1F (-6,0)、2F (6,0)求以1F 、2F 为焦点且过点P 的椭圆的标准方程。
6.如图所示,点P 是椭圆 22154x y +=上的一点,1F 和2F 是焦点,且∠F 1PF 2=30 ,求△F 1PF 2 的面积。
(高二数学教案)椭圆及其标准方程1高中二年级教案

椭圆及其标准方程1高中二班级教案教学目标1.把握椭圆的定义,把握椭圆标准方程的两种形式及其推导过程;2.能依据条件确定椭圆的标准方程,把握运用待定系数法求椭圆的标准方程;3.通过对椭圆概念的引入教学,培育同学的观看力量和探究力量;4.通过椭圆的标准方程的推导,使同学进一步把握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的力量;5.通过让同学大胆探究椭圆的定义和标准方程,激发同学学习数学的乐观性,培育同学的学习爱好和创新意识.教学建议教材分析1.学问结构2.重点难点分析重点是椭圆的定义及椭圆标准方程的两种形式.难点是椭圆标准方程的建立和推导.关键是把握建立坐标系与根式化简的方法.椭圆及其标准方程这一节教材整体来看是两大块内容:一是椭圆的定义;二是椭圆的标准方程.椭圆是圆锥曲线这一章所要争辩的三种圆锥曲线中首先遇到的,所以教材把对椭圆的争辩放在了重点,在双曲线和抛物线的教学中稳固和应用.先讲椭圆也与第七章的圆的方程连接自然.学好椭圆对于同学学好圆锥曲线是格外重要的.〔1〕对于椭圆的定义的理解,要抓住椭圆上的点所要满足的条件,即椭圆上点的几何性质,可以比照圆的定义来理解.另外要留意到定义中对“常数〞的限定即常数要大于.这样规定是为了防止消灭两种特殊状况,即:“当常数等于时轨迹是一条线段;当常数小于时无轨迹〞.这样有利于集中精力进一步争辩椭圆的标准方程和几何性质.但讲解椭圆的定义时留意不要忽视这两种特殊状况,以保证对椭圆定义的精确性.〔2〕依据椭圆的定义求标准方程,应留意下面几点:①曲线的方程依靠于坐标系,建立适当的坐标系,是求曲线方程首先应当留意的地方.应让同学观看椭圆的图形或依据椭圆的定义进行推理,发觉椭圆有两条相互垂直的对称轴,以这两条对称轴作为坐标系的两轴,不但可以使方程的推导过程变得简洁,而且也可以使最终得出的方程形式整齐和简洁.②设椭圆的焦距为,椭圆上任一点到两个焦点的距离为,令,这些措施,都是为了简化推导过程和最终得到的方程形式整齐、简洁,要让同学认真领悟.③在方程的推导过程中遇到了无理方程的化简,这既是我们今后在求轨迹方程时经常遇到的问题,又是同学的难点.要留意说明这类方程的化简方法:①方程中只有一个根式时,需将它单独留在方程的一侧,把其他项移至另一侧;②方程中有两个根式时,需将它们分别放在方程的两侧,并使其中一侧只有一项.④教科书上对椭圆标准方程的推导,实际上只给出了“椭圆上点的坐标都适合方程“而没有证明,〞方程的解为坐标的点都在椭圆上〞.这实际上是方程的同解变形问题,难度较大,对同学们不作要求.〔3〕两种标准方程的椭圆异同点中心在原点、焦点分别在轴上,轴上的椭圆标准方程分别为:,.它们的相同点是:外形相同、大小相同,都有,.不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同.椭圆的焦点在轴上标准方程中项的分母较大;椭圆的焦点在轴上标准方程中项的分母较大.另外,形如中,只要,,同号,就是椭圆方程,它可以化为.〔4〕教科书上通过例3介绍了另一种求轨迹方程的常用方法——中间变量法.例3有三个作用:第一是教给同学利用中间变量求点的轨迹的方法;其次是向同学说明,假如求得的点的轨迹的方程形式与椭圆的标准方程相同,那么这个轨迹是椭圆;第三是使同学知道,一个圆按某一个方向作伸缩变换可以得到椭圆.教法建议〔1〕使同学了解圆锥曲线在生产和科学技术中的应用,激发同学的学习爱好.为激发同学学习圆锥曲线的爱好,体会圆锥曲线学问在实际生活中的作用,可由实际问题引入,从中提出圆锥曲线要争辩的问题,使同学对所要争辩的内容心中有数,如书中所给的例子,还可以启发同学查找身边与圆锥曲线有关的例子。
高二数学《椭圆的标准方程》教案、导学案

椭圆的标准方程教学设计一、教材分析《椭圆标准方程》是人教B版选修2-1第二章第二节,是本章所研究的三种圆锥曲线的重点,高考中多以压轴题出现。
本章是在学生学习了直线和圆的方程基础上,进一步学习用坐标法研究曲线。
通过学习,培养学生用代数方法解几何问题的能力,同时培养学生的代数运算和等价变形能力,强化培养学生的数形转换能力。
二、学生分析:学生已经学习了《圆》的有关知识,上节课又学习了《曲线与方程》。
所以学生对求轨迹方程问题已经有了一定的基础,但是学生的代数运算能力还有待于提高,尤其是本节有关带根式的方程化简是个难点。
三、设计思想基于对以上几点分析,我这节课的设计主要突出以下几点:一是对椭圆的定义的引入,通过借助天体运动轨迹,让学生从感性认识入手,再通过实验探究,进行小组合作互助画出椭圆图像,这样一方面提高学生学习兴趣,又让学生上升到理性认识,形成正确的概念。
二是通过问题式探究,学生进行椭圆标准方程的推导。
注重学生自我的探究能力、运算能力、处理数据能力。
学会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问题来思考,培养学生的数形结合的思想方法。
培养学生用对称的美学思维来体现数学的和谐美。
而教师起到指导性作用,整个课堂做到以学生为主体。
三是通过学生阅读课本的探索与研究,使学生自己认识到焦点在y轴上的椭圆的标准方程,通过对比探索出两种标准方程的异同点。
并总结提升形成理论。
四、教学目标1、通过实验探究,总结出椭圆的定义,并通过练习1、2、3能指出椭圆的定义满足的条件,并能把文字语言转换成符号语言;2、探究出标准方程的推导方法,能写出标准方程,并能够说出三个量a, b,c 之间的关系;3、会由标准方程求焦点及a,b,c;4、根据已知的条件,会求椭圆的标准方程,并能总结出求标准方程的步骤。
五、教学重点与难点:教学重点:椭圆的定义和椭圆的标准方程教学难点:椭圆标准方程的推导过程及化简无理方程的常用的方法。
高中数学 2.2.2 椭圆及其标准方程学案 新人教A版选修21

高中数学 2.2.2 椭圆及其标准方程学案 新人教A 版选修21 学习目标:1、掌握点的轨迹的求法;2、进一步掌握椭圆的定义标准方程。
一、复习回顾:(1)椭圆221169x y +=的焦点坐标为 ,焦距是 ,若CD 为过左焦点1F 的弦,则2F CD ∆的周长为 。
(2)椭圆22110064x y +=上一点P 到焦点1F 的距离等于8,则点P 到另一个焦点2F 的距离是 。
(3)动点P 到两定点1(4,0)F -,2(4,0)F 的距离和是8,则动点P 的轨迹为 。
(4)方程2241x ky +=的曲线是焦点在y 轴上的椭圆,则k 的取值范围是 。
二、典例分析:〖例1〗:(1)如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作垂线段PP ',求线段PP '中点M 的轨迹。
(2)如图,设,A B 的坐标分别为()5,0-,()5,0。
直线AM ,BM 相交于点M ,且它们的斜率之积为49-,求点M 的轨迹方程。
〖例2〗:已知圆C :22(1)25x y ++=,及点(1,0)A ,Q 为圆上一动点,AQ 的垂直平分线交CQ 于点M ,求点M 的轨迹方程。
〖例3〗:一动圆与圆22650x y x +++=外切,同时与圆226910x y x +--=内切,求动圆圆心M 的轨迹方程,并说明它是什么样的曲线?〖例4〗:已知椭圆22143x y +=,试确定m 的值,使得在此椭圆上存在不同两点关于直线4y x m =+对M P ′P 2-2xO y称。
三、课后作业:1、椭圆22213x y m m+=-的一个焦点为()0,1,则m 的值为( )A 、1B 、12-±C 、2-或1D 、2-或1或12- 2、若方程()220,0ax by c ab c +=≠>表示焦点在x 轴上的椭圆,则( )A 、0a b >>B 、0,0a b >>C 、0b a >>D 、a b c c> 3、椭圆2214x y m +=的焦距为2,则m 的值为( ) A 、5 B 、5或8 C 、3或5 D 、204、若圆229x y +=上每一个点的横坐标不变,纵坐标缩短为原来的,则所得的曲线的方程为A 、221916x y +=B 、2219144x y +=C 、2216199x y +=D 、22199x y += 5、21,F F 是椭圆17922=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则Δ12AF F 的面积为( ) A 、7 B 、47 C 、27 D 、257 6、设P 是椭圆22194x y +=上一动点,21,F F 是椭圆的两个焦点,则12cos F PF ∠的最小值是( ) A 、12 B 、19 C 、59- D 、19- 7、已知定点()1,0A ,Q 为椭圆1422=+y x 上的动点,则AQ 中点M 的轨迹方程为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学《2.2 椭圆的标准方程》学案1
2、2、1 椭圆的标准方程(1)
一、教学目标:
1、理解椭圆的定义;理解椭圆标准方程的推导、
2、掌握椭圆的标准方程,会根据条件求椭圆的标准方程,会根据椭圆的标准方程求焦点坐标,能用标准方程判定是否是椭圆、
二、教学重难点:
1、椭圆定义的理解
2、椭圆标准方程的推导
3、根据条件求椭圆的标准方程
三、学习过程:
1、动手试验:
2、探究新知:(1)椭圆的定义:
(2)焦点:
(3)焦距:
3、推导椭圆的标准方程(1)如何建立适当的坐标系?(原则:尽可能使图像关于坐标轴对称)(2)根据建立的坐标系写出焦点的坐标:
,设动点坐标(3)根据椭圆的定义列等式:
(4)化简上述等式:
4、椭圆的标准方程:(1)焦点在x轴上时,方程焦点坐标,a,b,c的关系(2)焦点在y轴上时,方程焦点坐标,a,b,c的关系
四、典型例题例1 下列方程中哪些是椭圆方程?若是,指出焦点在哪个坐标轴上,并求出焦点坐标例2求适合下列条件的椭圆的标准方程(1)a=4,b=3,焦点在x轴上(2)b=1,c=,焦点在y轴上(3)焦点为F1(0,-1),F2(0,1),且b=1 (4)焦点为F1(-3,0),F2(3,0),且过点(0,2)(5)焦点为F1(-2,0),F2(2,0),且过点
五、归纳总结
1、椭圆的定义:(用文字描述)(用图形和数学等式描述):
2、椭圆的标准方程:(1)焦点在x轴上时,方程焦点坐标,a,b,c的关系(2)焦点在y轴上时,方程焦点坐标,a,b,c的关系
3、能根据条件求椭圆的标准方程。
六、巩固练习
1、写出下列椭圆的焦点坐标
2、已知椭圆上一点P到椭圆左焦点单位距离为7,则点P到右焦点的距离为拓展练习:已知椭圆过点P(-2,0),Q (2,),求椭圆的标准方程。