新初中数学锐角三角函数的真题汇编含答案解析(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新初中数学锐角三角函数的真题汇编含答案解析(1)
一、选择题
1.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则⊙O的半径为()
A.3B.23C.3
2
D.
23
3
【答案】A
【解析】
连接OC,
∵OA=OC,∠A=30°,
∴∠OCA=∠A=30°,
∴∠COB=∠A+∠ACO=60°,∵PC是⊙O切线,
∴∠PCO=90°,∠P=30°,∵PC=3,
∴OC=PC•tan30°=3,
故选A
2.在△ABC中,a、b、c分别为角A、B、C的对边,若∠B=60°,则
c a
a b c b
+
++
的值为
()
A.1
2
B.
2
2
C.1 D2
【答案】C 【解析】
先过点A 作AD ⊥BC 于D ,构造直角三角形,结合∠B=60°,利用3sin60︒=,cos60°=12,可求13,,2DB c AD c ==把这两个表达式代入到另一个Rt △ADC 的勾股定理表达式中,化简可得即a 2+c 2=b 2+ac ,再把此式代入通分后所求的分式中,可求其值等于1.
【详解】 解:过A 点作AD ⊥BC 于D ,在Rt △BDA 中,由于∠B=60°, ∴13,,2DB c AD c == 在Rt △ADC 中,DC 2=AC 2﹣AD 2, ∴2221324a c b c ⎛⎫-=- ⎪⎝
⎭, 即a 2+c 2=b 2+ac ,
∴()()2222222 1.c a c cb a ab a c ab bc b ac ab bc a b c b a b c b ac ab bc b ac ab bc b
++++++++++====++++++++++ 故选C .
【点睛】
本题考查了特殊角的三角函数值、勾股定理的内容.在直角三角形中,两直角边的平方和等于斜边的平方.注意作辅助线构造直角三角形是解题的好方法.
3.如图,AB 是O e 的弦,直径CD 交AB 于点E ,若3AE EB ==,15C ∠=o ,则OE 的长为( )
A 3
B .4
C .6
D .33【答案】D
【解析】
【分析】 连接OA .证明OAB ∆是等边三角形即可解决问题.
如图,连接OA .
∵AE EB =,
∴CD AB ⊥,
∴»»AD BD
=, ∴230BOD AOD ACD ∠=∠=∠=o ,
∴60AOB ∠=o ,
∵OA OB =,
∴AOB ∆是等边三角形,
∵3AE =, ∴tan 6033OE AE =⋅=o ,
故选D .
【点睛】
本题考查圆周角定理,勾股定理,垂径定理,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
4.如图,某地修建高速公路,要从A 地向B 地修一条隧道(点A ,B 在同一水平面上).为了测量A ,B 两地之间的距离,一架直升飞机从A 地起飞,垂直上升1000米到达C 处,在C 处观察B 地的俯角为α,则AB 两地之间的距离约为( )
A .1000sin α米
B .1000tan α米
C .1000tan α米
D .1000sin α
米 【答案】C
【解析】
【分析】 在Rt △ABC 中,∠CAB=90°,∠B=α,AC=1000米,根据tan AC AB
α=
,即可解决问题. 【详解】 解:在Rt ABC ∆中,∵90CAB ∠=o ,B α∠=,1000AC =米,
∴tan
AC
AB α=,

1000
tan tan
AC
AB
αα
==米.
故选:C.
【点睛】
本题考查解直角三角形的应用-仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.
5.在Rt△ABC中,∠C=90°,如果AC=2,cosA=2
3
,那么AB的长是()
A.3 B.4
3
C.5D.13
【答案】A 【解析】
根据锐角三角函数的性质,可知cosA=AC
AB
=
2
3
,然后根据AC=2,解方程可求得AB=3.
故选A.
点睛:此题主要考查了解直角三角形,解题关键是明确直角三角形中,余弦值
cosA=
A
∠的邻边
斜边
,然后带入数值即可求解.
6.菱形ABCD的周长为20cm,DE⊥AB,垂足为E,sinA=3
5
,则下列结论正确的个数有()
①DE=3cm; ②BE=1cm; ③菱形的面积为15cm2; ④BD=210cm.
A.1个B.2个C.3个D.4个【答案】C
【解析】
【分析】
根据菱形的性质及已知对各个选项进行分析,从而得到答案
【详解】
∵菱形ABCD的周长为20cm
∴AD=5cm
∵sinA=3 5
∴DE=3cm(①正确)
∴AE=4cm
∵AB=5cm
∴BE=5﹣4=1cm(②正确)
∴菱形的面积=AB×DE=5×3=15cm2(③正确)
∵DE=3cm,BE=1cm
∴BD=10cm(④不正确)
所以正确的有三个.
故选C.
【点睛】
本题考查了菱形的性质及锐角三角函数的定义,熟练掌握性质是解题的关键
7.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A与B 之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为()
A.(543+10) cm B.(542+10) cm C.64 cm D.54cm
【答案】C
【解析】
【分析】
过A作AE⊥CP于E,过B作BF⊥DQ于F,则可得AE和BF的长,依据端点A与B之间的距离为10cm,即可得到可以通过闸机的物体的最大宽度.
【详解】
如图所示,
过A作AE⊥CP于E,过B作BF⊥DQ于F,则
Rt △ACE 中,AE=12AC=12
×54=27(cm ), 同理可得,BF=27cm ,
又∵点A 与B 之间的距离为10cm , ∴通过闸机的物体的最大宽度为27+10+27=64(cm ),
故选C .
【点睛】
本题主要考查了特殊角的三角函数值,特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.
8.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为( )
A .π
B .2π
C .3π
D .31)π
【答案】C
【解析】
【分析】 3为2,据此即可得出表面积.
【详解】
3的正三角形. ∴正三角形的边长32==. ∴圆锥的底面圆半径是1,母线长是2,
∴底面周长为2π
∴侧面积为
12222
ππ⨯⨯=,∵底面积为2r ππ=, ∴全面积是3π.
故选:C .
【点睛】 本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.
9.如图,O e 是ABC V 的外接圆,AD 是O e 的直径,若O e 的半径是4,
1
sin
4
B=,则线段AC的长是().
A.2 B.4 C.3
2
D.6
【答案】A 【解析】【分析】
连结CD如图,根据圆周角定理得到∠ACD=90︒,∠D=∠B,则sinD=sinB=1
4
,然后在
Rt△ACD中利用∠D的正弦可计算出AC的长.【详解】
连结CD,如图,
∵AD是⊙O的直径,
∴∠ACD=90︒,
∵∠D=∠B,
∴sinD=sinB=1
4

在Rt△ACD中,∵sinD=AC
AD

1
4

∴AC=1
4
AD=
1
4
×8=2.
故选A.
【点睛】
本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.也考查了解直角三角形.
10.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 与灯塔P 之间的距离为( )
A .60海里
B .45海里
C .203海里
D .303海里
【答案】D
【解析】
【分析】 根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP 的长,求出答案.
【详解】
解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,
故AB=2AP=60(海里),
则此时轮船所在位置B 处与灯塔P 之间的距离为:BP=
22303AB AP -=(海里) 故选:D .
【点睛】
此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.
11.某同学利用数学知识测量建筑物DEFG 的高度.他从点A 出发沿着坡度为1:2.4i =的斜坡AB 步行26米到达点B 处,用测角仪测得建筑物顶端D 的仰角为37°,建筑物底端E 的俯角为30°,若AF 为水平的地面,侧角仪竖直放置,其高度BC=1.6米,则此建筑物的高度DE 约为(精确到0.1米,参考数据:3 1.73370.60sin ≈︒≈,,
370.80370.75cos tan ︒≈︒≈,)( )
A .23.0米
B .23.6米
C .26.7米
D .28.9米
【答案】C
【解析】
【分析】
如图,设CB⊥AF于N,过点C作CM⊥DE于M,根据坡度及AB的长可求出BN的长,进而可求出CN的长,即可得出ME的长,利用∠MBE的正切可求出CM的长,利用∠DCM 的正切可求出DM的长,根据DE=DM+ME即可得答案.
【详解】
如图,设CB⊥AF于N,过点C作CM⊥DE于M,
∵沿着坡度为1:2.4
i=的斜坡AB步行26米到达点B处,
∴BN1 AN 2.4
=,
∴AN=2.4BN,
∴BN2+(2.4BN)2=262,
解得:BN=10(负值舍去),∴CN=BN+BC=11.6,
∴ME=11.6,
∵∠MCE=30°,
∴CM=
ME
tan30︒
=11.63,
∵∠DCM=37°,
∴DM=CM·tan37°=8.73,
∴DE=ME+DM=11.6+8.73≈26.7(米),
故选:C.
【点睛】
本题考查解直角三角形的应用,正确构造直角三角形并熟练掌握三角函数的定义及特殊角的三角函数值是解题关键.
12.如图,菱形ABCD中,AC交BD于点O,DE⊥BC于点E,连接OE,∠DOE=120°,DE =1,则BD=()
A.
3
3
B.
23
3
C.63D.33
【答案】B
【解析】
【分析】
证明△OBE是等边三角形,然后解直角三角形即可.
【详解】
∵四边形ABCD是菱形,∴OD=OB,CD=BC.
∵DE⊥BC,∴∠DEB=90°,∴OE=OD=OB.
∵∠DOE=120°,∴∠BOE=60°,∴△OBE是等边三角形,∴∠DBC=60°.
∵∠DEB=90°,∴BD=
23 sin60
DE
=


故选B.
【点睛】
本题考查了解直角三角形,菱形的性质,等边三角形的判定和性质,直角三角形斜边的中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
13.“奔跑吧,兄弟!”节目组,预设计一个新的游戏:“奔跑”路线需经A、B、C、D四地.如图,其中A、B、C三地在同一直线上,D地在A地北偏东30°方向、在C地北偏西45°方向.C地在A地北偏东75°方向.且BD=BC=30m.从A地到D地的距离是()
A.3B.5C.2m D.6m
【答案】D
【解析】
分析:过点D作DH垂直于AC,垂足为H,求出∠DAC的度数,判断出△BCD是等边三角形,再利用三角函数求出AB的长,从而得到AB+BC+CD的长.
详解:过点D作DH垂直于AC,垂足为H,由题意可知∠DAC=75°﹣30°=45°.∵△BCD是
等边三角形,∴∠DBC=60°,BD=BC=CD=30m,∴DH 3
3,∴
AD26m.故从A地到D地的距离是6m.故选D.
点睛:本题考查了解直角三角形的应用﹣﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.
14.如图,在扇形OAB中,120
∠=︒,点P是弧AB上的一个动点(不与点A、B
AOB
CD=,则扇形AOB的面积为()重合),C、D分别是弦AP,BP的中点.若33
A.12πB.2πC.4πD.24π
【答案】A
【解析】
【分析】
如图,作OH⊥AB于H.利用三角形中位线定理求出AB的长,解直角三角形求出OB即可解决问题.
【详解】
解:如图作OH⊥AB于H.
∵C、D分别是弦AP、BP的中点.
∴CD是△APB的中位线,
∴AB=2CD=63
∵OH⊥AB,
∴BH=AH=33
∵OA=OB,∠AOB=120°,
∴∠AOH=∠BOH=60°,
在Rt △AOH 中,sin ∠AOH
=AH AO , ∴AO
=336sin 3
2
AH AOH ==∠, ∴扇形AOB 的面积为:2
120612360
ππ=g g , 故选:A .
【点睛】
本题考查扇形面积公式,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
15.在一次数学活动中,嘉淇利用一根拴有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD .如图,嘉淇与假山的水平距离BD 为6m ,他的眼睛距地面的高度为1.6m ,嘉淇的视线经过量角器零刻度线OA 和假山的最高点C ,此时,铅垂线OE 经过量角器的60︒刻度线,则假山的高度CD 为( )
A .()23 1.6m +
B .()22 1.6m +
C .()43 1.6m +
D .23m
【答案】A
【解析】
【分析】 根据已知得出AK=BD=6m ,再利用tan30°=
6
CK CK AK =,进而得出CD 的长. 【详解】
解:如图,过点A 作AK ⊥CD 于点K
∵BD=6米,李明的眼睛高AB=1.6米,∠AOE=60°,
∴DB=AK ,AB=KD=1.6米,∠CAK=30°,
∴tan30°=6
CK CK AK =,
解得:CK=23
即CD=CK+DK=23+1.6=(23+1.6)m.
故选:A.
【点睛】
本题考查的是解直角三角形的应用,根据题意构造直角三角形,解答关键是应用锐角三角函数定义.
16.如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,BF⊥AM于点F,连接BE,若AF=1,四边形ABED的面积为6,则∠EBF的余弦值是()
A
213
B
313
C.
2
3
D
13
【答案】B
【解析】
【分析】
首先证明△ABF≌△DEA得到BF=AE;设AE=x,则BF=x,DE=AF=1,利用四边形ABED的面积等于△ABE的面积与△ADE的面积之和得到
1
2
•x•x+•x×1=6,解方程求出x得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE,最后利用余弦的定义求解.
【详解】
∵四边形ABCD为正方形,
∴BA=AD,∠BAD=90°,
∵DE⊥AM于点E,BF⊥AM于点F,
∴∠AFB=90°,∠DEA=90°,
∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,
∴∠ABF=∠EAD,
在△ABF和△DEA中
BFA DEA
ABF EAD
AB DA
∠=∠


∠=

⎪=

∴△ABF≌△DEA(AAS),
∴BF=AE;
设AE=x,则BF=x,DE=AF=1,
∵四边形ABED 的面积为6, ∴111622x x x ⋅⋅+⋅⨯=,解得x 1=3,x 2=﹣4(舍去), ∴EF =x ﹣1=2, 在Rt △BEF 中,222313BE =+=, ∴313cos 13
BF EBF BE ∠=
==. 故选B .
【点睛】
本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形.
17.如图,等边ABC V 边长为a ,点O 是ABC V 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE V 形状不变;②ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE V 周长的最小值为1.5a .上述结论中正确的个数是( )
A .4
B .3
C .2
D .1
【答案】A
【解析】
【分析】 连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和3OE ,然后三角形的面积公式可得S △ODE 32,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC 23即可判断②和③;求出BDE V 的周长=a +DE ,求出DE 的最小值即可判断④.
【详解】
解:连接OB 、OC
∵ABC V 是等边三角形,点O 是ABC V 的内心,
∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB
∴∠OBA=∠OBC=12∠ABC=30°,∠OCA=∠
OCB=12
∠ACB=30° ∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120° ∵120FOG ∠=︒
∴∠=FOG ∠BOC
∴∠FOG -∠BOE=∠BOC -∠BOE
∴∠BOD=∠COE
在△ODB 和△OEC 中
BOD COE BO CO
OBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩
∴△ODB ≌△OEC
∴OD=OE
∴△ODE 是顶角为120°的等腰三角形,
∴ODE V 形状不变,故①正确;
过点O 作OH ⊥DE ,则DH=EH
∵△ODE 是顶角为120°的等腰三角形
∴∠ODE=∠OED=12
(180°-120°)=30° ∴OH=OE·
sin ∠OED=12OE ,EH= OE·cos ∠OED=3OE ∴DE=2EH=3OE
∴S △ODE =12DE·OH=34
OE 2 ∴OE 最小时,S △ODE 最小,
过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值
∴BE ′=
12BC=12
a 在Rt △OBE ′中
OE′=BE′·tan ∠OBE ′=
12a ×3=6a
∴S △ODE 22 ∵△ODB ≌△OEC
∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =12BC·OE′=212
∵248
=14×212a ∴S △ODE ≤14
S 四边形ODBE 即ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确;
∵S 四边形ODBE 2 ∴四边形ODBE 的面积始终不变,故③正确;
∵△ODB ≌△OEC
∴DB=EC
∴BDE V 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE
∴DE 最小时BDE V 的周长最小
∵OE
∴OE 最小时,DE 最小
而OE 的最小值为
∴DE =12a ∴BDE V 的周长的最小值为a +
12a =1.5a ,故④正确; 综上:4个结论都正确,
故选A .
【点睛】
此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.
18.如图,在Rt △ABC 内有边长分别为a ,b ,c 的三个正方形.则a 、b 、c 满足的关系式是( )
A .b=a+c
B .b=ac
C .b 2=a 2+c 2
D .b=2a=2c
【答案】A
【解析】
【分析】 利用解直角三角形知识.在边长为a 和b 两正方形上方的两直角三角形中由正切可得a b c b a c
-=-,化简得b =a +c ,故选A. 【详解】
请在此输入详解!
19.在Rt △ABC 中,∠C=90°,AC=3,BC=4,那么cosA 的值是( )
A .45
B .35
C .43
D .34
【答案】B
【解析】
【分析】
根据勾股定理,可得AB 的长,根据锐角的余弦等于邻边比斜边,可得答案.
【详解】
解:在Rt △ABC 中,∠C=90°,AC=3,BC=4,
由勾股定理,得22AC BC + cosA=
AC AB =35
故选:B .
【点睛】 本题考查锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.
20.如图,四边形ABCD 内接于O e ,AB 为直径,AD CD =,过点D 作DE AB ⊥于点E ,连接AC 交DE 于点F .若3sin 5
CAB ∠=,5DF =,则AB 的长为( )
A .10
B .12
C .16
D .20
【答案】D
【解析】
【分析】 连接BD ,如图,先利用圆周角定理证明ADE DAC ∠=∠得到5FD FA ==,再根据正弦的定义计算出3EF =,则4AE =,8DE =,接着证明ADE DBE ∆∆∽,利用相似比得到16BE =,所以20AB =.
【详解】
解:连接BD ,如图,
AB Q 为直径,
90ADB ACB ∴∠=∠=︒,
AD CD =Q ,
DAC DCA ∴∠=∠,
而DCA ABD ∠=∠,
DAC ABD ∴∠=∠,
DE AB ∵⊥,
90ABD BDE ∴∠+∠=︒,
而90ADE BDE ∠+∠=︒,
ABD ADE ∴∠=∠,
ADE DAC ∴∠=∠,
5FD FA ∴==,
在Rt AEF ∆中,3sin 5
EF CAB AF ∠=
=Q , 3EF ∴=, 22534AE ∴-=,538DE =+=,
ADE DBE ∠=∠Q ,AED BED ∠=∠,
ADE DBE ∴∆∆∽,
::DE BE AE DE ∴=,即8:4:8BE =,
16BE ∴=,
∴=+=.
AB
41620
故选:D.
【点睛】
本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.也考查了解直角三角形.。

相关文档
最新文档