LC振荡器的实验报告
lc电容反馈三点式振荡器实验报告

lc电容反馈三点式振荡器实验报告LC电容反馈三点式振荡器实验报告引言振荡器是一种能够产生固定频率的信号的电路,它在无线通信、射频电路和其他电子设备中起着非常重要的作用。
LC电容反馈三点式振荡器是一种常见的振荡器电路,本实验旨在通过实验验证其工作原理和性能。
实验目的1. 了解LC电容反馈三点式振荡器的工作原理2. 掌握LC电容反馈三点式振荡器的实验方法3. 观察和分析LC电容反馈三点式振荡器的输出波形特性实验原理LC电容反馈三点式振荡器是由一个LC谐振回路和一个放大器构成的。
当LC回路和放大器达到一定的条件时,就会产生自激振荡。
在振荡器的输出端,通过反馈网络将一部分输出信号送回到输入端,从而维持振荡的持续。
实验器材1. 信号发生器2. 示波器3. 电阻、电感、电容等元件4. 电路板和连接线实验步骤1. 按照实验原理搭建LC电容反馈三点式振荡器电路2. 连接信号发生器和示波器3. 调节信号发生器的频率和幅度,观察示波器的输出波形4. 测量并记录振荡器的频率、幅度和波形实验结果通过实验观察和测量,我们得到了LC电容反馈三点式振荡器的频率为f,幅度为A,波形为正弦波。
在不同的频率和幅度下,振荡器都能够稳定地输出正弦波信号,验证了其工作原理和性能。
实验结论本实验通过搭建LC电容反馈三点式振荡器电路,观察和测量其输出波形特性,验证了其工作原理和性能。
振荡器是一种非常重要的电路,对于理解和应用振荡器电路具有重要意义。
结语通过本次实验,我们对LC电容反馈三点式振荡器有了更深入的了解,掌握了其工作原理和实验方法。
振荡器作为一种常见的电子设备,对于我们的学习和工作都具有重要的意义。
希望通过不断的实验和学习,我们能够更好地掌握振荡器电路的原理和应用。
lc电容反馈式三点式振荡器 实验报告

LC电容反馈式三点式振荡器实验报告引言振荡器是一种能够在无外部信号源的情况下产生自身振荡的电路。
在无线电通信、音频设备以及其他电子设备中,振荡器起着至关重要的作用。
本实验旨在研究并实现LC电容反馈式三点式振荡器。
此类振荡器由一个放大器和一个反馈回路组成,通过将一部分输出信号重新输入到放大器的输入端来实现自我激励。
实验器材•电源•LC电容反馈式三点式振荡器电路板•示波器•电压表和电流表实验步骤1. 连接电路首先,根据电路图将电路板上的元件正确连接。
请确保所有连接正确,电源极性正确。
2. 设置电源将电源的电压调整到合适的范围,以保证电路正常工作。
请注意遵循实验指导书中的建议。
3. 观察电路行为使用示波器观察电路的输出信号。
将示波器的探头正确连接到电路板上的指定位置。
4. 调整电路参数通过调整电路板上的电阻和电容值,以及根据示波器观察到的信号,调整电路参数,使得振荡器能够工作在期望的频率范围内。
5. 记录实验结果记录振荡器的工作频率、幅度以及稳定性。
请注意记录每次参数调整前后的实验结果。
6. 总结实验结果根据实验数据和观察结果,总结振荡器的性能,包括工作频率范围、稳定性以及幅度。
结论通过本实验,我们成功研究并实现了LC电容反馈式三点式振荡器。
我们通过调整电路参数,使得振荡器能够稳定地工作在我们所期望的频率范围内。
实验结果表明,该振荡器具有良好的稳定性和较大的幅度。
振荡器的应用非常广泛,特别是在无线通信和音频设备中。
通过进一步研究和优化,我们可以进一步提高振荡器的性能,并将其应用于更多领域。
参考文献(如果有任何参考文献,请在此处列出。
)。
正弦波振荡器(LC振荡器和晶体振荡器)实验

正弦波振荡器(LC 振荡器和晶体振荡器)实验一、实验目的1.掌握电容三点式LC 振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能; 2.掌握LC 振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;通过实验进一步了解调幅的工作原理。
4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。
二、实验仪器1.100M 示波器 一台2.高频信号源 一台3.高频电子实验箱 一套三、实验电路原理1.基本原理振荡器是指在没有外加信号作用下的一种自动将直流电源的能量变换为一定波形的交变振荡能量的装置。
正弦波振荡器在电子技术领域中有着广泛的应用。
在信息传输系统的各种发射机中,就是把主振器(振荡器)所产生的载波,经过放大、调制而把信息发射出去的。
在超外差式的各种接收机中,是由振荡器产生一个本地振荡信号,送入混频器,才能将高频信号变成中频信号。
振荡器的种类很多。
从所采用的分析方法和振荡器的特性来看,可以把振荡器分为反馈式振荡器和负阻式振荡器两大类。
此实验只讨论反馈式振荡器。
根据振荡器所产生的波形,又可以把振荡器分为正弦波振荡器与非正弦波振荡器。
此实验只介绍正弦波振荡器。
常用正弦波振荡器主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。
按照选频网络所采用元件的不同,正弦波振荡器可分为LC 振荡器、RC 振荡器和晶体振荡器等类型。
(1)反馈型正弦波自激振荡器基本工作原理以互感反馈振荡器为例,分析反馈型正弦波自激振荡器的基本原理,其原理电路如图2-1所示。
b V bE cE -1L 2L f V bV '+-图 2-1反馈型正弦波自激振荡器原理电路当开关K 接“1”时,信号源b V 加到晶体管输入端,构成一个调谐放大器电路,集电极回路得到了一个放大了的信号F V 。
当开关K 接“2”时,信号源b V 不加入晶体管,输入晶体管是F V 的一部分b V '。
lc三点式电容反馈振荡器实验报告

LC三点式电容反馈振荡器实验报告引言振荡器是电子电路中常见的一种电路,其功能是产生稳定的交流信号。
本实验报告介绍了LC三点式电容反馈振荡器的设计和实验过程。
实验目的本实验的目的是通过搭建LC三点式电容反馈振荡器电路,掌握振荡器的基本工作原理和设计方法。
实验原理LC三点式电容反馈振荡器是一种基础的振荡器电路,由电感(L)、电容(C)和放大器组成。
其工作原理如下:1.电感和电容组成谐振电路,形成特定频率的谐振回路。
2.在谐振频率下,电路会自激振荡,产生稳定的交流信号。
3.放大器负责放大电路的输出信号,以保持振荡器的稳定性。
实验材料本实验使用的材料和设备如下:•电感(L):1个•电容(C):2个•放大器:1个•示波器:1个•多用途实验板:1个•连接线:若干根实验步骤以下是LC三点式电容反馈振荡器的搭建步骤:1.将一个电容连接到实验板的电感端口上,另一个电容连接到放大器的输入端口上。
2.将电感的另一端连接到放大器的输出端口上。
3.连接示波器的探头到振荡器电路的输出端口上。
4.打开示波器和放大器,并适当调节放大器的增益和频率。
5.观察示波器上的输出波形,并记录振荡器的频率和振幅。
实验结果根据实验步骤进行操作后,观察到示波器上显示出了稳定的振荡波形。
记录下实验结果如下:•振荡器频率:1000Hz•振荡器振幅:5V结论通过本次实验,我们成功搭建了LC三点式电容反馈振荡器,并观察到了稳定的振荡信号。
实验结果表明,该振荡器在特定的频率下能够自激振荡并输出稳定的交流信号。
实验总结本次实验通过搭建LC三点式电容反馈振荡器电路,对振荡器的工作原理和设计方法有了更深入的了解。
同时,我们还学习了使用示波器观察和测量振荡器的输出信号。
在实验过程中,我们注意到振荡器的频率和振幅可以通过调节电容和电感的数值进行调整。
此外,振荡器的稳定性还受到放大器的影响,因此需要适当调节放大器的增益和频率以获得良好的振荡效果。
总的来说,本次实验对于进一步理解振荡器的原理和应用具有重要意义,并为我们今后的学习和实践提供了基础。
LC实验报告

实验一 LC 与晶体振荡器实验报告一、实验目的1、了解三点式振荡器和晶体振荡器的基本电路及工作原理。
2、比较静态工作点和动态工作点,了解工作点对振荡波形的影响。
3、测量振荡器的反馈系数等参数。
4、比较LC 与晶体振荡器的频率稳定度。
二、实验原理三点式振荡器包括电感三点式振荡器(哈脱莱振荡器)和电容三点式振荡器(考毕兹振荡器),其交流等效电路如图1-1。
1、起振条件1)相位平衡条件:Xce 和Xbe 必需为同性质的电抗,Xcb 必需为异性质的电抗,且它们之间满足下列关系:2)幅度起振条件:LCX X X X Xc oC L cebe 1 |||| )(=-=+-=ω,即'ie 1*()AuL m oe q Fu q qq >++式中:qm ——晶体管的跨导, FU ——反馈系数, AU ——放大器的增益,qie ——晶体管的输入电导, qoe ——晶体管的输出电导, q'L ——晶体管的等效负载电导, FU 一般在0.1~0.5之间取值。
2、电容三点式振荡器1)电容反馈三点式电路——考毕兹振荡器图1-2是基本的三点式电路,其缺点是晶体管的输入电容Ci 和输出电容Co 对频率稳定度的影响较大,且频率不可调。
2)串联改进型电容反馈三点式电路——克拉泼振荡器电路如图1-3所示,其特点是在L 支路中串入一个可调的小电容C3,并加大C1和C2的容量,振荡频率主要由 C3和L 决定。
C1和C2主要起电容分压反馈作用,从而大大减小了Ci 和Co 对频率稳定度的影响,且使频率可调。
L1L13)并联改进型电容反馈三点式电路——西勒振荡器 电路如图1-4所示,它是在串联改进型的基础上,在L1两端并联一个小电容C4,调节C4可改变振荡频率。
西勒电路的优点是进一步提高电路的稳定性,振荡频率可以做得较高,该电路在短波、超短波通信机、电视接收机等高频设备中得到非常广泛的应用。
本实验箱所提供的LC 振荡器就是西勒振荡器。
电子电路综合实验-LC正弦波振荡器报告

LC 正弦波振荡(虚拟实验)1、 电容三点式(1)121100,400,10C nF C nF L mH ===示波器频谱仪(2)121100,400,5C nF C nF L mH ===示波器频谱仪(3)121100,1,5C nF C F L mH μ===示波器频谱仪数据表格: (C1, C2, L1) (C 1,C 2,L 1) O U •i U •增益A 相位差 谐振频率f 0 测量值 理论值 测量值 理论值 (100nF,400nF,10mH )5.972V1.486V44.0191806.025kHz5.627(100nF,400nF,5mH ) 4.698V 1.161V 4 4.047 180 7.995 kHz 7.958 (100nF,1uF,5mH )7.116V711.458mV1010.0021807.897 kHz7.465实验数据与理论值间的差异分析:增益差别不大但谐振频率差别较大, 主要是由于读数是的精度有限造成的。
由于游标以格为单位, 因此读数时选取的幅值最大的点可能与实际有差, 因而谐振频率的测量也有误差。
2、 电感三点式(1)1225,100,200L mH L H C nF μ===示波器频谱仪(2)1225,100,100L mH L H C nF μ===示波器频谱仪(3)1222,100,100L mH L H C nF μ===示波器频谱仪数据表格:(L1, L2, C2)(L1,L2,C2)OU•(V)iU•(mV)增益A 相位差谐振频率f0测量值理论值测量值(kHz)理论值(kHz)(5mH,100uH,200nF) 4.497V 89.938mV 50.001 50 180 5.039kHz 4.983 (5mH,100uH,100nF) 4.504V 90.070 mV 50.005 50 180 7.010kHz7.047(2mH,100uH,100nF) 4.483V 224.150mV 20.000 20 180 10.951kHz10.983实验数据与理论值间的差异分析:误差均较小, 主要由于电路不够稳定以及读数精度造成。
实验十三LC正弦波振荡器

实验十三 LC 正弦波振荡器一、实验目的1、 掌握变压器反馈式LC 正弦波振荡器的调整和测试方法2、 研究电路参数对LC 振荡器起振条件及输出波形的影响 二、实验原理LC 正弦波振荡器是用L 、C 元件组成选频网络的振荡器,一般用来产生1MHz 以上的高频正弦信号。
根据LC 调谐回路的不同连接方式,LC 正弦波振荡器又可分为变压器反馈式(或称互感耦合式)、电感三点式和电容三点式三种。
图13-1为变压器反馈式LC 正弦波振荡器的实验电路。
其中晶体三极管T 1组成共射放大电路,变压器T r 的原绕组 L 1(振荡线圈)与电容C 组成调谐回路,它既做为放大器的负载,又起选频作用,副绕组L 2为反馈线圈,L 3为输出线圈。
该电路是靠变压器原、副绕组同名端的正确连接(如图中所示),来满足自激振荡的相位条件,即满足正反馈条件。
在实际调试中可以通过把振荡线圈L 1或反馈线圈L 2的首、末端对调,来改变反馈的极性。
而振幅条件的满足,一是靠合理选择电路参数,使放大器建立合适的静态工作点,其次是改变线圈L 2的匝数,或它与L 1之间的耦合程度,以得到足够强的反馈量。
稳幅作用是利用晶体管的非线性来实现的。
由于LC 并联谐振回路具有良好的选频作用,因此输出电压波形一般失真不大。
振荡器的振荡频率由谐振回路的电感和电容决定式中L 为并联谐振回路的等效电感(即考虑其它绕组的影响)。
振荡器的输出端增加一级射极跟随器,用以提高电路的带负载能力。
图13-1 LC 正弦波振荡器实验电路三、实验设备与器件1、 +12V 直流电源2、双踪示波器3、 交流毫伏表4、直流电压表5、 频率计6、振荡线圈7、 晶体三极管 3DG6×1(9011×1)LC2π1f 03DG12×1(9013×1)电阻器、电容器若干。
四、实验内容按图13-1连接实验电路。
电位器R W置最大位置,振荡电路的输出端接示波器。
lc振荡器 实验报告

lc振荡器实验报告LC振荡器实验报告引言:LC振荡器作为一种常见的电子电路,具有广泛的应用。
它以电感和电容构成的振荡回路为基础,通过正反馈使得系统产生自激振荡。
本实验旨在通过搭建LC 振荡器电路并观察其振荡特性,深入理解其工作原理。
实验目的:1. 理解LC振荡器的基本原理;2. 学习搭建LC振荡器电路并调节参数以实现稳定的振荡;3. 通过实验验证理论计算结果。
实验器材:1. 电感器;2. 电容器;3. 电阻器;4. 信号发生器;5. 示波器;6. 电压表;7. 万用表。
实验步骤及结果:1. 搭建基本的LC振荡器电路,将电感器和电容器连接成串联回路;2. 将信号发生器连接到电路的输入端,设置合适的频率和幅度;3. 使用示波器观察输出信号,并通过调节电容器的值来调整振荡频率;4. 测量电路中的电感器和电容器的值,并记录下来;5. 使用万用表测量电路中的电流和电压,并计算出电感器和电容器的阻抗;6. 分析实验结果,与理论计算结果进行比较。
实验原理:LC振荡器的工作原理基于振荡回路中的正反馈。
当电路中的电容器充电时,电流通过电感器,导致磁场的储能。
当电容器放电时,磁场的能量被释放,电流继续流过电感器,使电容器再次充电。
这种周期性的充放电过程导致电路产生自激振荡。
实验结果分析:通过实验观察到的振荡现象,我们可以确定LC振荡器的工作正常。
通过调节电容器的值,我们成功地改变了振荡频率。
此外,测量得到的电流和电压值与理论计算结果相符,验证了实验的准确性。
实验应用:LC振荡器在实际应用中具有广泛的用途。
例如,在无线电通信中,它常用于产生稳定的射频信号。
此外,LC振荡器还可以用于时钟电路、频率合成器等领域。
实验总结:通过本次实验,我们深入了解了LC振荡器的基本原理和工作机制。
通过实际搭建电路并观察振荡现象,我们对LC振荡器的性能和参数调节有了更深入的认识。
实验结果与理论计算结果相符,验证了实验的准确性。
通过实验,我们还了解到LC振荡器在无线电通信等领域的重要应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河海大学计算机与信息学院高频电子电路课程实践报告西勒高频振荡器的制作
指导老师: 朱昌平、张秀平、殷明授课班号: 202601
姓名: 陈强
学号: 1062310211
我先通过上网寻找资料,找相关的原理图,再通过书本上的原理,进行一定的改进,电路除了采用两个将达的电容C3、C9以外,还把基本型的电容反馈线路集电极——基极支路改用LC并联回路再与C4串联,从而叫做西勒电路。
运用Multisim软件进行仿真,刚开始只出来8M左右的波形,后来我通过调节相应电容C5和电感L1的大小,提高了频率大小。
最高可以达到22M左右,但同时导致的后果是电压幅值变小。
再提高,就会出现波形失真。
对于这个问题,
请教了老师与学长,到目前为止还没有解决。
对于电路图的绘制,由于我大一时就学习了Protel ,所以上手很快,仿照仿真图,把原理图规则清楚的画出来(见上图),对于西勒振荡器里面的一些元器件,都是很常见的,所以免去了自己画封装的步骤。
然后转换成PCB ,通过排版,调整,设计,主要问题是对于贴片的处理,之前没有做过贴片的板子,所以问了学长如何处理,知道了这方面的知识。
画板子的总体速度比较快。
以上是最后得到的PCB 。
三.电路硬件制作与调试
元器件列表:LED、单排针、双排针、单插排、9V直流电源
贴片电阻:10K、47Ω、1K、4.7K、100K
电位器:503、102
贴片电容:103P、102P、104P、1PF、220PF、510PF
电解电容:47μF
三极管:9018NPN
电感:1μH定值电感、绕制电感
首先用油纸打印PCB,接着轧板子,打孔;然后对照着原理图和PCB焊接电路板。
个人觉得最容易出错的一步是焊接贴片,电容贴片没有标注大小,特别容易错,所以一定要特别小心。
由于我之前有过焊板子的经历,这一步骤相对比较顺利。
焊好板子后,就进行电路板的初步调试,用万用表依次测试板子的通断,排除虚短续断的出现,确保之后调试的成功。
通过调试发现必须要把电位器102调成0Ω,即顺时针旋转调节集电极偏置电阻R20,听到有滑丝声(即电阻值为0Ω)时停止。
然后就可以接通电源,进行下一步的调试——电压。
插入1μH 电感,测集电极电压应该与电源电压大小相近,接着测试基极偏置电压,通过不断的调节发现,在电压值为5-6V左右时达到三极管9018的放大区工作点。
所以需要旋转基极偏置电阻R2,调节基极偏置电压,用万用表测量,使其电压达到5-6V,这样,就可以用示波器测量输出端P21是否有高频振荡信号。
四.电路输出结果
下面是我焊制的电路板正反面,以及出现的波形图。
刚开始用1μH电感时,出来的波形频率只有9M左右,之后利用网上下载到的绕制电感计算公式,自己用铜丝绕制了电感,经过不断的调节,减小电感L2,使频率达到将近20M。
再放大,由于幅值的相应减小,导致波形不起振。
下面附有我板子输出的波形图。
五.经验总结与反思
对于这次制作西勒振荡器,我作为我们二班的负责人,学到了很多东西。
我做的第一块板子是以失败告终的。
这和我们团队寻找的电路图,以及之后我个人对电路板的制作和调试有关系,我尝试了很多种修改的方向,但最后还是没有出现仿真中出现的预想波形,对于失败我有些失落。
但后来,在同学的建议与老师的指导下,修改了原理图,重新进行仿真,画板子,制作和调试。
这一次同样存在第一次出现的问题,但经过查资料,分析,测试各个端口的电压值,最终调试成功了。
并调到了仿真时的频率。
在我自己的板子成功之后,就开始负责带领大家一起制作。
这很好的锻炼了我的组织协调能力。
我和龚润航一起去了电子市场买元器件,了解了购买时的一些注意事项;然后开始组织大家一起制作。
我开始给大家打印了PCB,教大家轧板子,跑板子,打孔,这几个步骤我们班的十几位同学都很好的完成了。
接下来是焊接电路板,我向张老师申请了603教室以及电烙铁等工具。
通过先焊接小器件,最后焊接大器件的步骤,一步步焊接,特别在焊接贴片电容电感时,我放慢了大家的步骤,一片一片给大家分发元件,避免元器件的焊接错误。
整体过程比较顺利,因为我们的电路板子排版清楚,间隙适中,没有跳线,容易焊接。
最后给大家展示调试的过程,先测试电路板的通断,然后调节集电极电阻为0Ω,插上元器件和电源,测试集电极和基极电压,调节基极偏置电阻,使基极偏置电压达到5V以上。
最后利用
示波器,通过输出端测试输出波形,以及如何调节波形和复制。
通过这次实验,让同学们对于制作电路板的基本流程有了清晰的了解,并且培养了我的自我学习和组织能力。
使我们都收获了很多。