海洋环境下低合金钢腐蚀行为研究_谷美邦

海洋环境下低合金钢腐蚀行为研究_谷美邦
海洋环境下低合金钢腐蚀行为研究_谷美邦

大气腐蚀环境分类

大气腐蚀环境分类 材料在不同大气环境中的腐蚀破坏程度差异很大,例如,距海24.3米处的钢腐蚀速度为距海243.8米处的大约12倍。试验表明,若以Q235钢板在我国拉萨市大气腐蚀速率为1,则青海察尔汉盐湖大气腐蚀速率为4.3,广州城市为23.9,湛江海边为29.4,相差近30倍。因此,在防腐蚀工程设计和制定产品环境适应性指标时,均需按大气腐蚀环境分类进行。 大气环境分类一般有两种方法,一种是按气候特征划分,即自然环境分类;另一种是按环境腐蚀严酷性划分。后者更接近于应用实际而被普遍采用。国际标准ISO9223~9226便是根据金属标准试片在环境中自然暴露试验获得的腐蚀速率及综合环境中大气污染物浓度和金属表面润湿时间进行分类。将大气按腐蚀性高低分为5类,即: C1:很低 C2:低 C3: 中 C4:高 C5:很高 在涂料界,国际标准化组织又颁布了更有针对性的标准:ISO12944-1~ 8:1998 《色漆和清漆─保护漆体系对钢结构的防腐保护》(Paints and varnishes ─ Corrosion protection of steel structures by protective paint systems)[。这是一部在国际防腐界通行的、权威的防护涂料与涂装技术指导性国际标准。目前,在国内涂料、涂装行业、腐蚀与防护行业及相关设计研究院所、高等学校,在重大防腐工程设计、招投标及施工过程中都使用到这一综合性标准。标准共分八个部分: 第1部分总则 第2部分环境分类 第3部分设计上的考虑 第4部分表面类型与表面处理 第5部分保护漆体系、 第6部分试验方法 第7部分涂漆工艺 第8部分新工程和维护工作规范的制定。

海洋腐蚀环境与换热器表面处理选型

海洋腐蚀环境 海洋腐蚀环境包括海洋大气腐蚀环境和海水腐蚀环境, 1﹑海水腐蚀环境 海水是一种复杂的多组分水溶液,海水中各种元素都以一定的物理化学形态存在。海水是一种含盐量相当大的腐蚀性介质,表层海水含盐量一般在3.20%-3.75%之间,随水深的增加,海水含盐量略有增加。盐分中主要为氯化物,占总盐量的88.7%.由于海水总盐度高,所以具有很高的电导率,海水中pH值通常为8.1-8.2,且随海水深度变化而变化。若植物非常茂盛,CO2减少,溶解氧浓度上升,pH值可接近10;在有厌氧性细菌繁殖的情况下,溶解氧量低,而且含有H2S,此时pH值常低于7。海水中的氧含量是海水腐蚀的主要影响因素之一,正常情况下,表面海水氧浓度随水温大体在5~10mg/L范围内变化。海水温度一般在-2℃-35℃之间,热带浅水区可能更高。海水中氯离子含量约占总离子数的55%,海水腐蚀的特点与氯离子密切相关。氯离子可增加腐蚀活性,破坏金属表面的钝化膜。 2﹑海洋大气腐蚀环境 大气腐蚀一般被分成乡村大气腐蚀,工业大气腐蚀和海洋大气腐蚀。乡村地区的大气比较纯净;工业地区的大气中则含有SO2,H2S, NH2和NO2等。大气中盐雾含量较高,对金属有很强的腐蚀作用。 海洋环境对金属腐蚀同其它环境中的大气腐蚀一样是由于潮湿的

气体在物体表面形成一个薄水膜而引起的。这种腐蚀大多发生在海上的船只、海上平台以及沿岸码头设施上,腐蚀现象是非常严重的,除了在强风暴的天气中,在距离海岸近的大气中的金属材料也强烈的受到海洋大气的影响。海洋大气中相对湿度较大,同时由于海水飞沫中含有氯化钠粒子,空气的相对湿度都高于它的临界值。空气中所含杂质对大气腐蚀影响很大,海洋大气中富含大量的海盐粒子,这些盐粒子杂质溶于铜带表面的水膜中,使这层水膜变为腐蚀性很强的电解质,加速了腐蚀的进行,与干净大气的冷凝水膜比,被海雾周期饱和的空气能使铜的腐蚀速度增加几倍。 海洋环境对金属腐蚀的影响因素 1﹑盐度 盐度是指100克海水中溶解的固体盐类物质的总克数。一般在相通的海洋中总盐度和各种盐的相对比例并无明显改变,在公海的表层海水中,其盐度范围为3.20%~3.75%,这对一般金属的腐蚀无明显的差异。但海水的盐度波动却直接影响到海水的比电导率,比电导率又是影响金属腐蚀速度的一个重要因素,同时因海水中含有大量的氯离子,破坏金属的钝化,所以很多金属在海洋环境中遭到严重腐蚀。 2﹑含氧量 海洋环境对金属腐蚀是以阴极氧去极化控制为主的腐蚀过程。 海水中的含氧量是影响海洋环境对金属腐蚀性的重要因素。氧在海

海洋平台腐蚀与防护1

第一章前言 1.1 国内外海洋平台事故 近30年来,海洋腐蚀向人类敲响的警钟。1980年3月,在北海艾克菲斯油田上作业的“亚历山大·基定德”号钻井平台,在8级大风掀起的高6∽8m的海浪的反复冲击下,5根巨大的桩腿中的D号桩腿因6根主撑管先后断裂而发生剪切断裂,万余吨重的平台在25min 内倾倒,使123人遇难,造成近海石油钻探史上罕见的灾难。挪威事故调查委员会检查报告表明,D号桩腿上的D-6主撑管首先断裂。该主撑管曾经开过一个直径325mm的孔,并焊上一个法兰,准备安装平台定位声纳装置,实际上后来并未安装,开裂就是从这个法兰角的6mm焊缝处开始的,裂纹在海浪与荷载的反复作用下不断扩展,最后导致平台沉没。 2010年9月7日23时,山东东营胜利油田位于渤海的作业3号修井作业平台受玛瑙台风影响(风力最大时阵风9级,浪高近4米)平台发生倾斜发生倾斜45度事故。平台上4人落水,32人被困平台。目前已有34人获救。平台设计通常都考虑台风的影响,况且又是在中国的内海-渤海,我觉得平台倒塌与海洋腐蚀应有一定的关联。 1.2 腐蚀工程 腐蚀工程包括腐蚀原理和防护技术两部分。 腐蚀原理是从热力学和动力学方面解释和论述腐蚀的原因、过程和控制。 防护技术泛指防止或延缓腐蚀损害所采用的有效措施。大体上有以下几种: ①选择材料,根据使用环境合理选用各类金属材料或非金属材料; ②电化学保护技术,主要是阴极保护技术、阳极保护技术与排流技术;③表面处理技术,如磷化、氧化、钝化及表面转化膜; ④涂层、镀层技术,主要有涂料、油脂、镀层、衬里与包覆层等; ⑤调节环境,即改善环境介质条件,如封闭式循环体系中使用缓蚀剂、调节pH值,以及脱气、除氧和脱盐等; ⑥正确设计与施工,从工程与产品设计时就应考虑腐蚀问题,如正确选材与配合,合理设计表面与几何形状,严格施工工艺,采取保护措施,特别是防止接触腐蚀、应力腐蚀、缝隙腐蚀及焊接腐蚀等。 由此可见,腐蚀工程涉及的专业知识领域很广,主要有冶金、材料、机械、表面处理、化学、

十大海洋腐蚀防护技术

盘点十大海洋腐蚀防护技术 前言 海洋工程构筑物大致分为:海岸工程(钢结构、钢筋混凝土)、近海工程(海洋平台、钻井、采油、储运)、深海工程(海洋平台、钻井、采油、储运)、海水淡化、舰船(船体、压载舱、水线以上),简称为船舶与海洋工程结构。船舶与海洋工程结构的主要失效形式包括:均匀腐蚀、点蚀、应力腐蚀、腐蚀疲劳、腐蚀/磨损、海生物(宏生物)污损、微生物腐蚀、H2S与CO2腐蚀等等。控制船舶和海洋工程结构失效的主要措施包括:涂料(涂层)、耐腐蚀材料、表面处理与改性、电化学保护(牺牲阳极、外加电流阴极保护)、缓蚀剂、结构健康监测与检测、安全评价与可靠性分析及寿命评估。 从腐蚀控制的主要类型看(表1),涂料(涂层)是最主要的控制方法、耐腐蚀材料次之,表面处理与改性是常用的腐蚀控制方法,电化学保护(牺牲阳极与外加电流)是海洋结构腐蚀控制的常用手段,缓蚀剂在介质相对固定的内部结构上经常使用,结构健康监测与检测技术是判定腐蚀防护效果、掌握腐蚀动态以及提供进一步腐蚀控制措施决策和安全评价的重要依据,腐蚀安全评价与寿命评估是保障海洋工程结构安全可靠和最初设计时的重要环节。建立全寿命周期防护理念,结合海洋工程设施的特点及预期耐用年数,在建设初期就重视防腐蚀方法,通过维修保养实现耐用期内整体成本最小化并保障安全性,是重大海洋工程结构值得重视的问题。 表1腐蚀防护方法及中国的防腐蚀费用比例 一、防腐涂料(涂层) 涂料是船舶和海洋结构腐蚀控制的首要手段。海洋涂料分为海洋防腐涂料和海洋防污涂料两大类。按防腐对象材质和腐蚀机理的不同,海洋防腐涂料又可分为

海洋钢结构防腐涂料和非钢结构防腐涂料。海洋钢结构防腐涂料主要包括船舶涂料、集装箱涂料、海上桥梁涂料和码头钢铁设施、输油管线、海上平台等大型设施的防腐涂料;非钢结构海洋防腐涂料则主要包括海洋混凝土构造物防腐涂料和其他防腐涂料。 海洋防腐蚀涂料包括车间底漆、防锈涂料、船底防污涂料、压载舱涂料、油舱涂料、海上采油平台涂料、滨海桥梁保护涂料以及相关工业设备保护涂料。海洋防腐涂料的用量大,每万吨船舶需要使用4~5万升涂料。涂料及其施工的成本在造船中占10%~15%,如果不能有效防护,整个船舶的寿命至少缩短一半,代价巨大。 海洋防腐领域应用的重防腐涂料主要有:环氧类防腐涂料、聚氨酯类防腐涂料、橡胶类防腐涂料、氟树脂防腐涂料、有机硅树脂涂料、聚脲弹性体防腐涂料以及富锌涂料等,其中环氧类防腐涂料所占的市场份额最大,具体见表2。实际上,从涂料使用的分类看,涂料可以分为:底漆、中间漆和面漆。其中,底漆主要包括富锌底漆(有机:环氧富锌;无机:硅酸乙酯)、热喷涂铝锌;中间漆主要有环氧云铁、环氧玻璃鳞片;面漆包括聚氨酯、丙烯酸树脂、乙烯树脂等。 表2我国重防腐涂料的种类与比例 我国重防腐涂料增长率较快,2012年我国涂料总产量1270万t,居世界第一位,但企业数量多,单产低。 我国涂料生产企业有上万家,但产量在5000t以上的涂料企业不足10%。美国涂料年生产总量约700万t,厂家只有400多个。日本是世界第3大涂料生产国,总产量200万t,生产企业只有167家。我国涂料公司的产值低:从企业销售额来看,我国最大的涂料公司的年销售额不足AkzoNobel(阿克苏诺贝尔)公司的1/50。此外,我国许多涂料公司的产品质量还有待进一步提高。我国虽有先进的纳米复

海洋环境下混凝土的腐蚀性介绍

海洋环境下混凝土的腐蚀性介绍 上海海事大学尹若元摘编2010-04-22 关键字:混凝土腐蚀海洋环境浏览量:113 作为一种节能、经济、用途极为广泛的人工耐久性材料,混凝土是目前世界上使用最广泛的建筑材料之一,在工业、运输、民用等领域有着广泛的应用。用混凝土建造的建筑物和构筑物在使用期间常常受到腐蚀介质的侵蚀,特别是在海洋环境中。海洋环境是混凝土结构所处的最恶劣的外部环境之一。海水中的化学成分能引起混凝土溶蚀破坏、碱-骨料反应,在寒冷地区可能出现冻融破坏,海浪及悬浮物对混凝土结构会造成机械磨损和冲击作用,海水或海风中的氯离子能引起钢筋腐蚀。国内外大量调查表明:海洋恶劣环境下的混凝土构筑物经常过早损坏,寿命一般在20~30年,远达不到要求的服役寿命(一般要求服役寿命100年以上)。损坏的构筑物需花大量财力进行维修补强,且造成停工停产,带来巨大经济损失。因此,研究海洋环境下混凝土的腐蚀机理,提高海洋环境混凝土耐久性,保护内部钢筋免于腐蚀,建造低价格高性能的混凝土就显得尤为重要。 近年来,国内外的学者相继开展了一些针对混凝土材料化学腐蚀的研究,本文从试验研究和数值模拟两方面对当前受腐蚀混凝土的力学研究现状进行简要介绍。 一、试验研究 蒋钰鹏[1]通过对酸性地下水环境中不同配比的混凝土强度进行分析,并和标准养护的未腐蚀材料对比,研究酸性环境对不同配比混凝土强度的影响规律,提出对存在酸性腐蚀条件的土质,基础混凝土工程应采取以下预防措施:(1)混凝土的密实度和抗渗性是防止腐蚀的关键,提高基础混凝土的设计强度,合理选用水泥型号,使用高标号水泥,并适当掺用高效减水剂(缓凝型除外),降低水灰比。(2)加强混凝土施工中的现场管理,严格控制施工质量,确保混凝土按规程振捣,确保混凝土的密实度,表面必须抹光压实。 (3)施工前要制定混凝土养护方案,科学地进行养护。(4)适当增加钢筋保护层的厚度,厚度应大于50 mm,并在施工中严格控制。(5)混凝土基础施工前对基槽进行处理,加入石灰等降低酸度,并加厚垫层。(6)对完成的混凝土基础结构在回土覆盖前,可采用混凝土密封剂进行防护,使用前要对混凝土表面进行清理。张伟勤等[2]研究了混凝土在盐卤的干湿循环环境中,受单一化学腐蚀破坏材料的损伤及强度、质量损失的规律,研究表明研制的高性能混凝土(HPC)在淡水、卤水中干湿循环能力全部优于普通混凝土

海水海洋大气腐蚀特点及防腐

海水海洋大气腐蚀特点 及防腐 COmPany number : [0089WT-8898YT-W8CCB-BUl^^^?8]

海水、海洋大气中的金属腐蚀 1、海水水质的主要特点 含盐量高,盐度一般在3□g∕L左右;腐蚀性大;海水中动、植物多;海水中各种离子组成比例比较稳。PH变化小,海水表层PH在~范围内,而在深层PH则为左右。 2、海水腐蚀的特点 海水腐蚀为电化学腐蚀;海水腐蚀的阳极极化阻滞对大多数金属(铁、钢、铸铁、锌等)都很小,因而腐蚀速度相当大;海水氯离子含量很高,CI-破坏钝化膜,因此大多数金属在海水中不能建立钝态,在海水中山于钝化的局部破坏,很容易发生空隙和缝隙腐蚀等局部腐蚀。不锈钢在海水中也遭到严重腐蚀;多数金属阴极过程为氧去极化作用,少数负电性很强金属(Mg)及合金腐蚀时发生阴极氢去极化作用;海水电导率很大,海水腐蚀电阻性阻滞很小,所以海水腐蚀中不仅腐蚀微电池的活性大,腐蚀宏电池的活性也很大。 海水的电阻率很小,因此异种金属接触能造成的显着的电偶腐蚀。其作用强烈,作用范围大。 3、海水腐蚀的影响因素 盐类及浓度 盐度是指IOO克海水中溶解的固体盐类物质的总克数。一般在相通的海洋中总盐度和各种盐的相对比例并无明显改变,在公海的表层海水中,其盐度范围为%~%,这对—般金属的腐蚀无明显的差异。但海水的盐度波动却直接影响到海水的比电导率,比电导率又是影响金属腐蚀速度的一个重要因素,同时因海水中含有大量的氯离子,破坏金属的钝化,所以很多金属在海水中遭到严重腐蚀。 盐类以CI-为主,一方面:盐浓度的増加使得海水导电性増加,使海水腐蚀性很强;另一方面:盐浓度增大使溶解氧浓度下降,超过一定值时金属腐蚀速度下降。 PH值

海洋环境下钢铁腐蚀的影响因素及腐蚀机理研究进展

海洋环境下钢铁腐蚀的影响因素及腐蚀机理研究进展[摘要] 本文阐述了海洋环境下钢铁腐蚀的研究意义及腐蚀影响因素,综述了海洋环境五个不同区带的腐蚀机理的研究进展。 [关键词]海洋腐蚀影响因素腐蚀机理 [Abstract] In this paper, research significance of corrosion and influence factors of steels in marine environment were reviewed, and the corrosion mechanism of five different zones in marine environment was summarized. [Key words]Marine corrosioninfluence factorcorrosion mechanism 引言 海洋中蕴藏着巨大的资源财富,有着极为广阔的发展前景。海洋资源的开发和利用,离不开海上基础设施的建设。由于海洋环境是一个腐蚀性很强的环境,海洋大气中相对湿度都高于它的临界值,海洋大气中的钢铁表面很容易形成有腐蚀性的水膜;海水中含有较高浓度的盐分,是一种容易导电的电解质溶液,是腐蚀性最强的天然腐蚀剂之一。同时波、浪、潮、流又会对金属构件产生低频往复应力和冲击,加上海洋微生物、附着生物及它们的代谢产物等都会对腐蚀过程产生直接或间接的加速作用。因此,在诸多工程领域广泛使用的钢结构等工程材料容易发生各种灾害性腐蚀破坏。这不仅仅涉及造成材料的浪费,更严重的是造成灾害性事故,引发油气泄漏,造成环境污染和人员伤亡等,导致巨大经济损失。 作为工业材料,由于钢铁材料韧性大、强度高、价格便宜,因而大量应用于海洋环境中;但是苛刻的海洋腐蚀环境使得钢铁构筑物的腐蚀不可避免,所以海洋环境中的钢铁腐蚀和防护是一个重大课题。因此,研究钢铁在海洋环境中的腐蚀规律及其防护对策,对于延长海洋钢铁设施的使用寿命,保证海上钢铁构造物的正常运行和安全使用以及促进海洋经济的发展,都具有十分重要的意义。本文综述了钢铁在海洋环境中的腐蚀影响因素以及腐蚀机理的研究进展。 1. 海洋环境下钢铁腐蚀的影响因素 海水不仅仅是盐度在32‰~37‰,pH值在8~8.2之间的天然强电解质溶液,更是一个含有悬浮泥沙、溶解各种气体、生物以及腐败有机物的复杂体系。钢铁海洋腐蚀是海洋环境中诸多因素的综合作用结果,例如,溶解氧、盐度、温度、pH 值、流速、海洋生物等环境因素以及钢铁合金元素都是影响腐蚀的重要因素,而且它们的影响常常是相互关联的。 1.1溶解氧:氧是钢铁海水腐蚀的去极化剂,如果海水中没有溶解氧,钢铁是不会腐蚀的,因此海水中溶解氧是影响钢铁海洋腐蚀的重要因素之一。它在钢铁腐蚀的微电池的阴极区不断反应,产生很强的阴极去极化作用,微电池阳极区的金属

阴极保护在海洋平台上的应用_曹永升

化学工程与装备 2013年 第8期 180 Chemical Engineering & Equipment 2013年8月 阴极保护在海洋平台上的应用 曹永升,史勋汉,孙为志,王 沙,赵 晨 (海洋石油工程股份有限公司,天津 300451) 摘 要:本文通过分析对海洋平台所处环境的分析以及阴极保护的工作原理介绍,研究了阴极保护在海洋平台的腐蚀防护中的应用,分析了两种阴极保护的特点及其在海洋平台防腐工作中的应用情况和取得的效果。 关键词:阴极保护;海洋平台;腐蚀;防腐 1 概述 海洋平台是海上石油开采的主要装置。随着海洋石油开发逐步向深海迈进,海洋平台的体积也逐渐加大,结构日趋复杂,投资日益增高。并且海洋平台及其辅助设施都是由复杂的钢结构组成,长期受到海洋环境中着海水的侵蚀。因此,如何加强平台结构的腐蚀防护、有效地控制平台钢结构的腐蚀,提高其使用寿命、保障生产运行的安全成为人们关注的焦点。而阴极保护作为一种腐蚀防护方式,已广泛应用于各种环境的金属防腐实践中,这其中也包括海洋平台的腐蚀与防护。 2 阴极保护原理 阴极保护其实质是对阴极金属进行保护,防止金属结构的腐蚀。通常我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。腐蚀的危害性极大,世界上每年生产的钢铁中约有10%的钢铁因腐蚀而变成铁锈,大约30%的钢铁设备因为腐蚀而损坏。这样不仅造成了极大的材料浪费,还会导致停产、人生伤害和环境污染等严重的生产事故。据统计,有些国家由于金属的腐蚀造成的直接经济损失约占国民生产总值的2~4%。金属腐蚀发生的根本原因是金属热力学性质上的不稳定性造成的,即金属本身较其他某些化合物(如氧化物,氢氧化物,盐等)原子处于较高的自由能状态,使得金属极易失去电子而被氧化,这种倾向在相应条件具备时,就会发生金属由单质向化合物的转化,即发生了腐蚀。金属和金属的腐蚀主要是化学作用或电化学作用引起的,有时还包含了机械作用﹑物理作用及生物作用。 阴极保护一种用于防止金属在电介质中发生氧化还原反应的电化学保护技术,其基本原理是利用金属活性较大金属作为牺牲阳极、被保护金属作为阴极,或者是在被保护的金属表面施加一定的直流电流,从而使氧化还原反应不在阴 极金属上发生,进而达到保护阴极金属的目的。也就是利用牺牲阳极材料或辅助阳极的腐蚀来替代被保护金属结构的腐蚀,从而使被保护结构的金属的使用寿命得以延长,进而提高设备等的安全性和经济性。 根据阴极供电电流的提供方式不同,阴极保护可分为牺牲阳极保护和外加电流保护两种。 (1)牺牲阳极阴极保护。牺牲阳极阴极保护就是将电位更负,即金属活性较大的金属作为原电池的阳极,与被保护的金属相连,通过电负性金属或合金的不断溶解消耗,向被保护的金属提供保护电流,使处于电解质中的金属电子转移到被保护的金属上去,使得整个被保护的金属处于一个较负的相同的电位下,使阴极部分的金属免受腐蚀,达到保护的目的。这种保护方式简便易行,不需要提供外加电源,并且很少产生腐蚀干扰。牺牲阳极保护原理见图1。 图1 牺牲阳极保护原理图 (2)外加电流阴极保护。外加电流阴极保护就是指利用外加直流电源和辅助阳极,将外部交流电转变成低压直流电,通过辅助阳极将保护电流传递给被保护的金属,使其产生阴极极化,使被保护的金属结构电位低于周围环境电位。也就是通过给金属补充大量的电子,使被保护金属处于电子

双相钢2205在海水中的耐蚀特性及保护方法

双相钢(00CrNi5Mo3N)在海水中的耐蚀特性 及阴极保护的必要性 一.腐蚀特性分析 双相钢(00CrNi5Mo3N)在40度以上浓海水中,金属的五种腐蚀类型均有可能发生,包括全面腐蚀、应力腐蚀、晶间腐、蚀点腐蚀以及缝隙腐蚀。以下按腐蚀类型,说明双相钢(00CrNi5Mo3N)在40度以上浓海水中环境下的耐蚀能力。(说明:00CrNi5Mo3N基本与2205双相钢等同,以下不再说明)。 1. 1 全面腐蚀 全面腐蚀(又称均匀腐蚀) 是指在整个合金材料表面上以比较均匀的方式所发生的腐蚀现象。就双相不锈钢(00CrNi5Mo3N)在此方面的应用来讲,其抗全面腐蚀能力基本没有问题。 1. 2 应力腐蚀 机械设备零件在应力(拉应力) 和腐蚀介质的联合作用下,将出现低于材料强度极限的脆性开裂现象,导致设备和零件失效,这种现象称为应力腐蚀开裂。双相不锈钢(00CrNi5Mo3N)因其含有连续稳定的铁素体,不易发生相应腐蚀。 1. 3 晶间腐蚀 沿着材料晶粒间界先行发生的腐蚀,使晶粒之间丧失结合力的局部破坏现象,称为晶间腐蚀。由于双相不锈钢(00CrNi5Mo3N)的含碳量都很低的缘故,基本不发生晶间腐蚀或者腐蚀程度几乎可以忽略。 1. 4 点腐蚀 图1 双相不锈钢2205的点腐蚀与温度及Cl-离子浓度的关系

如果腐蚀仅仅集中在设备的某些特定点域,并在这些点域形成向深处发展的腐蚀小坑,而金属的大部分表面仍保持钝性的腐蚀现象,称为点腐蚀。由图1可知,仅就点腐蚀而言,双相不锈钢(00CrNi5Mo3N)的点腐蚀与温度及Cl-离子浓度存在一定相关性。一般认为:双相钢(00CrNi5Mo3N)则可用于较低离子浓度环境(Cl- 低于18 g/ L) ,而正常海水中Cl-浓度为19.673 g/L(参考:《海洋手册》,郭琨编著,海洋出版社,1984年),用于滨海电厂的循环水泵,特别是循环水是非直排循环使用情况下,Cl-会反复被富集,其浓度大大超出普通海水中Cl-浓度19.673 g/L,同时温度也会高于正常的自然气候下的海水温度。因此双相钢(00CrNi5Mo3N)存在较大的点蚀可能性,如果使用此材料要引起注意,需要采用阴极保护手段防腐。 1. 5 缝隙腐蚀 图2 双相不锈钢(00CrNi5Mo3N)的缝隙腐蚀与温度及Cl-离子浓度的关系缝隙腐蚀是在电介质溶液中(特别是含有卤素离子的介质) ,在金属与金属或非金属表面之间狭窄的缝隙内,由于溶液的移动受到阻滞,在缝隙内溶液中氧耗竭后,氯离子即从缝隙外向缝隙内迁移,又由于金属氯化物的水解自催化酸化过程,导致钝化膜的破裂,因而产生与自催化点腐蚀相类似的局部腐蚀。由于正常海水中Cl-浓度为19.673 g/L,从图2可以看出,除SAF2507及254SMO两种不锈钢以外,其他各类型均有可能发生缝隙腐蚀。工程实际中,海水输送、低压增压泵等设备材质经常为(00CrNi5Mo3N) 。之所以有如此选择,是因为(00CrNi5Mo3N)是较为经济的材质选择(比如工程中不要采用螺纹连接、法兰间采用非金属垫片以阻止产生晶间缝隙) 。但不能排除其发生缝隙腐蚀的可能性。 因此可以得到,在31℃,Cl—离子含量在20g/L的海水中,双相不锈钢(00CrNi5Mo3N)采用阴极保护防护措施是必要的。

铝的腐蚀性能及海洋大气环境中铝的腐蚀特性

铝的腐蚀性能及海洋大气环境中铝的腐蚀特性 1、铝的耐氧腐蚀性能 铝是一种活泼金属,极容易和空气中的氧气起化应生成氧化铝。氧化铝在铝制器皿表面结一层灰色致密的极薄的(约十万分之一厘米厚)薄膜,这层薄膜十分坚固,它能使里力的金属和外界完全隔开。从而保护内部的铝不再受空气中氧气的侵蚀。 2、铝的酸碱腐蚀 铝和氧化铝薄膜都能和许多酸性或碱性物质起化学反应,一旦氧化铝薄膜被碱性溶液或酸性溶液溶解掉,则内部铝就要和碱性或酸性溶液起反应而渐渐被侵蚀掉。 3、铝的腐蚀形式 (1)点腐蚀:点腐蚀又称为孔腐蚀,是在金属上产生针尖状、点状、孔状的一种为局部的腐蚀形态。点腐蚀是阳极反应的一种独特形式,是一种自催化过程,即点腐蚀孔内的腐蚀过程造成的条件,如有腐蚀介质(CL-、F-等)、促进反应的物质(CU2+、ZN2+等),既促进又足以维持腐蚀的继续进行。 (2)均匀腐蚀:铝在磷酸与氢氧化钠等溶液中,其上的氧化膜溶解,发生均匀腐蚀,溶解速度也是均匀的。溶液温度升高,溶液浓度增大,促进铝的腐蚀。 (3)缝隙腐蚀:缝隙腐蚀是一种局部腐蚀。金属部件在电解溶液中,由于金属与金属或金属与非金属之间形成缝隙,其宽度足以使介质浸入而又使介质处于一种停滞状态,使得缝隙内部腐蚀加剧的现象称为缝隙腐蚀。缝隙腐蚀特别容易发生在机械组件接合的地方,例如金属垫圈或是铆接处和铝门窗与灰浆填隙处。它是属于一种电池效应,但是缝隙一般需在特定程度大小的范围内才会发生,例如:有足够的宽度可使溶液进入,足够窄得使溶液可以停滞等,所以在应用或工程上必须要小心,避免发生足以产生缝隙腐蚀的环境。缝隙腐蚀的机构很类似穿孔腐蚀的情况,首先是均匀腐蚀,然后因氧浓淡电池会引起阳极反应(缺氧区)和阴极反应(富氧区),由于间隙内氧无法补充,因此阳极反应会继续在同一个位置进行,因此产生严重的腐蚀结果。

海水、海洋大气腐蚀特点及防腐

海水、海洋大气中的金属腐蚀 1、海水水质的主要特点 含盐量高,盐度一般在35g/L左右;腐蚀性大;海水中动、植物多;海水中各种离子组成比例比较稳。pH变化小,海水表层pH在8.1~8.3范围内,而在深层pH则为7.8左右。 2、海水腐蚀的特点 海水腐蚀为电化学腐蚀;海水腐蚀的阳极极化阻滞对大多数金属(铁、钢、铸铁、锌等)都很小,因而腐蚀速度相当大;海水氯离子含量很高,Cl-破坏钝化膜,因此大多数金属在海水中不能建立钝态,在海水中由于钝化的局部破坏,很容易发生空隙和缝隙腐蚀等局部腐蚀。不锈钢在海水中也遭到严重腐蚀;多数金属阴极过程为氧去极化作用,少数负电性很强金属(Mg)及合金腐蚀时发生阴极氢去极化作用;海水电导率很大,海水腐蚀电阻性阻滞很小,所以海水腐蚀中不仅腐蚀微电池的活性大,腐蚀宏电池的活性也很大。 海水的电阻率很小,因此异种金属接触能造成的显著的电偶腐蚀。其作用强烈,作用范围大。 3、海水腐蚀的影响因素 3.1盐类及浓度 盐度是指100克海水中溶解的固体盐类物质的总克数。一般在相通的海洋中总盐度和各种盐的相对比例并无明显改变,在公海的表层海水中,其盐度范围为3.20%~3.75%,这对一般金属的腐蚀无明显的差异。但海水的盐度波动却直接

影响到海水的比电导率,比电导率又是影响金属腐蚀速度的一个重要因素,同时因海水中含有大量的氯离子,破坏金属的钝化,所以很多金属在海水中遭到严重腐蚀。 盐类以Cl-为主,一方面:盐浓度的增加使得海水导电性增加,使海水腐蚀性很强;另一方面:盐浓度增大使溶解氧浓度下降,超过一定值时金属腐蚀速度下降。 3.2 pH值 海水pH在7.2-8.6之间,为弱碱性,对腐蚀影响不大。 3.3碳酸盐饱和度 在海水pH条件下,碳酸盐达到饱和,易沉积在金属表面形成保护层。若未饱和,则不会形成保护层,使腐蚀速度增加。 3.4含氧量 海水腐蚀是以阴极氧去极化控制为主的腐蚀过程。海水中的含氧量是影响海水腐蚀性的重要因素。氧在海水中的溶解度主要取决于海水的盐度和温度,随海水盐度增加或温度升高,氧的溶解度降低。如果完全除去海水中的氧,金属是不会腐蚀的。对碳钢、低合金钢和铸铁等,含氧量增加,则阴极过程加速,使金属腐蚀速度增加。但对依靠表面钝化膜提高耐蚀性的金属,如铝和不锈钢等,含氧量增加有利于钝化膜的形成和修补,使钝化膜的稳定性提高,点蚀和缝隙腐浊的倾向减小。 含氧量增加,金属腐蚀速度增加;对于能形成钝化膜的金属,含氧量适当增加,有助于防止腐蚀的进一步进行。

海洋平台的腐蚀及防腐技术_胡津津

第23卷第6期2008年12月 中国海洋平台CHINA OFFSHORE PL A TFORM Vol.23No.6Dec.,2008 收稿日期:2008-08-26 作者简介:胡津津(19792)女,工程师,从事非金属材料研究。 文章编号:100124500(2008)0620039204海洋平台的腐蚀及防腐技术 胡津津, 石明伟 (上海船舶工艺研究所,上海200032) 摘 要:概括了海洋平台不同区域的腐蚀环境和腐蚀规律,对海洋平台重防腐涂料的选择要求及配套体 系进行简要叙述。针对海洋平台的长效防腐防护要求,介绍了几种具有长效的防腐材料和防腐技术特点,包括 海洋平台热喷涂长效防腐蚀技术、锌加保护技术、海洋平台桩腿防腐套包缚技术等,为我国对海洋平台长效防 腐防护技术的研究提供参考。 关键词:海洋平台;防腐;热喷涂;锌加技术;防腐套 中图分类号:T G 17 文献标识码:A CORROSION AN D ANTICORROSION TECHNOLOG Y IN OFFSH ORE PLATFORMS HU Jin 2jin , S H I Ming 2wei (Shanghai Ship building Technology Research Instit ute ,CSSC 200032,China ) Abstract :This paper summarizes t he corro sion environment and rules of t he different zones in off shore platforms ,also briefly int roduces t he requirement s and systems of t he an 2 ticorro sion coating.According to t he long 2term anticorro sion requirement s in off shore plat 2 forms ,t he paper int roduces several long 2term anticorro sion technology ,including t hermal spraying ,adding zinc protection and anticorrosion technology wit h platform legs wrapped etc , which will provide some references to t he research of t he long 2term anticorrosion technology in off shore platforms. K ey w ords :off shore platform ;anticorro sion ;t hermal spraying ;adding zinc technolo 2 gy ;anticorrosion wrap 海洋平台是一种海上大型工程结构物。其钢结构长期处于盐雾、潮气和海水等环境中,受到海水及海生物的侵蚀,而产生剧烈的电化学腐蚀。腐蚀严重影响海洋平台结构材料的力学性能,从而影响到海洋平台的使用安全[4]。而且由于海洋平台远离海岸,不能像船舶那样定期进坞维修保养,因此海洋平台的建造者及使用者都非常重视海洋平台的防腐问题。如何对海洋平台结构进行长效防腐,以及开发研究海洋平台结构长效防腐的新材料、新技术及新工艺都具有十分重要的意义。 1 海洋平台的腐蚀规律 1.1 海洋环境的腐蚀区域界定 海洋平台的使用环境极其恶劣,阳光暴晒、盐雾、波浪的冲击、复杂的海水体系、环境温度和湿度变化及海洋生物侵蚀等使得海洋平台腐蚀速率较快。海洋平台在不同的海洋环境下,腐蚀行为和腐蚀特点会有比

金属材料的海洋腐蚀与防护习题(第一篇)

《金属材料的海洋腐蚀与防护》第一篇习题 一、填空题 1. 通常将海洋腐蚀环境分为5个区带,它们分别是:海洋大气区、浪花飞溅区、海水潮差区、海水全浸区以及海底泥土区。 2. 金属在海水中的腐蚀行为按其腐蚀速度受控制的情况分为: 控制和控制两大类。 3. 渤海的入海河流主要包括黄河、海河、辽河和滦河四条入海河流。 4. 南海北部海面12月份平均风速最大,台湾海峡及其南部海面以及巴士海峡海面由于狭管效应,是全年平均风速之冠。 5. 南海地形从周边向中央倾斜,依次分布着大陆架和岛架、大陆坡和岛坡及海盆等。 6. 在海洋环境中的金属结构件,腐蚀类型主要有均匀腐蚀、点蚀、缝隙腐蚀、冲击腐蚀、空泡腐蚀、电偶腐蚀、腐蚀疲劳等。 7. 金属结构腐蚀失效的主要原因可以归结为3个方面的原因:金属材料本身方面的原因、环境方面的原因、设计方面的原因。 8. 我国海水腐蚀试验确定的4个典型的试验点分别为黄海海域的青岛站、东海海域的舟山站和厦门站、南海海域的榆林站。 9. 在腐蚀学里,通常规定点位较低的电极为阳极,电位较高的电极为阴极。 10. 最重要最常见的两种阴极去极化反应是氢离子和氧分子阴极还原反应。 11. 多数情况下,发生氧去极化腐蚀主要由扩散过程控制。氧的扩散电流密度随溶解氧的浓度增加而增加,并与扩散层厚度成反比,流速越大,氧的扩散层厚度越小、氧的扩散电流密度越大,腐蚀增大。 12. 引起金属钝化的因素有化学及电化学两种。其中化学因素引起的钝化,一般都是有强氧化剂引起的。 13. 与腐蚀有关的微生物是细菌类,主要是硫酸盐还原菌。 14. 海水电导率以及氧在海水中的溶解度都主要取决于海水的盐度和温度两个 因素,其中任意一个因素的增加都会使海水电导率增加,氧的溶解度降低。15. 诸多海洋生物钟,与海水腐蚀关系较大的附着生物,最常见的附着生物主要有硬壳生物和无硬壳生物两种。 二、名词解释 1. 海洋飞溅区 答:在海洋环境中,海水的飞溅能够喷射洒到结构物表面,但在海水涨潮时又不能被海水所浸没的部位一般称为海洋飞溅区。 2. 海水潮差区 答:指海水平均高潮线与平均低潮线之间的区域。 3. 缝隙腐蚀 答:部件在介质中,由于金属与金属或金属与非金属之间形成特变小的缝隙,使缝隙内介质处于滞留状态引起缝内金属的加速腐蚀,这种局部腐蚀。

金属材料在海洋中的腐蚀与防护

金属材料在海洋中的腐蚀与防护 摘要:沿海工业发展,海洋资源的开发和利用,离不开海上基础设施的建设。由于海洋苛刻的腐蚀环境,金属材料结构及构造物的腐蚀不可避免。为了减少腐蚀,我们必须采取相应防护,目前阴极防护技术及海洋防蚀材料的发展,已经让金属的腐蚀得到一定的控制,并且随着技术的不断深化,海洋金属的腐蚀一定会得到更好的控制。 关键词:金属材料;海洋腐蚀环境;海洋腐蚀类型;阴极保护技术;海洋防蚀材料腐蚀是金属与其所处的环境之间的化学或电化学相互作用,受材料特性和环境特性所支配,其结果,改变了金属的性质。一般设施的建设都要经过设计阶段,其中防腐蚀设计是保证工程设施使用寿命的重要步骤。沿海工业建设,海洋资源开发和海洋经济的发展离不开海洋腐蚀研究。下面介绍一下各种不同的还有腐蚀环境和影响腐蚀的因素以及腐蚀类型。 海洋腐蚀环境——海水含盐量一般在3%左右,是天然的强电解质。大多数常用的金属结构材料受海水或海洋大气的腐蚀并且材料的耐腐蚀性能随暴露条件的不同而发生很大的变化。为方便起见,通常将海洋腐蚀环境分为5个区带:海洋大气区,海洋飞溅区,海水潮差区,海水全浸区以及海底泥土区。各区环境条件及腐蚀行为见下表: 图1-1——环境的分类 图1-2反映了海洋环境条件及腐蚀行为的情况 海洋大气区----海洋大气环境的腐蚀性,随温度的升高而加强。温度越搞腐蚀性越强。 海洋大气的腐蚀往往受多种因素的影响,是各种不同因素相互作用引起的,包括水分的影响,尘埃的影响,二氧化硫的影响及盐粒的影响等。

1.水分的影响---对大气腐蚀产生重要影响的是表面水分的含量,它直接影响到金属的腐蚀速度和腐蚀机理。根据实验结果,钢、铜、锌等金属在相对湿度50%~70%以下的空气中腐蚀轻微。金属表面所覆盖水膜的厚度和腐蚀度之间的关系如下图示。在Ⅰ区域中,水分子层或不完整的单分子层,腐蚀反应基本是氧化反应,常温下腐蚀速度很低;在Ⅱ区的水分子尽管用肉眼看不见,但其厚度有数10个水分子层甚至100个水分子层,次部分发生金属在水溶液中的电化学腐蚀,一般大气中的腐蚀是在该状态中发生的,随着水膜层厚度的增加腐蚀速度变大;在Ⅲ区水分子的存在可以用肉眼看见,水分子层厚度1微米以上存在的金属表面腐蚀,由于通过水层氧的扩散量所控制,所以腐蚀速度变低,在Ⅳ区域内与浸渍在水溶液中金属的腐蚀相类似。 图1-2为金属表面上水层厚度和腐蚀速度之间的关系 2.尘埃的影响---从大气中,尘埃并附着在金属表面的尘埃与腐蚀性有着密切的关系。附着的尘埃在金属表面上持续一段时间,就会引起腐蚀,尤其易引起点蚀。3.二氧化硫的影响--- S02 的平均浓度在严重污染的地带可达(0.01~0.1)*10^(-4)%,但是S02一般是溶解在金属表面的水分中,在锈层中一般含有FeSO4 的浓度及季节变化而变动。下图表示铁和铝的5个月的晶体,其数量随着S0 2 浓度的关系。其腐蚀原理可用电化学反应解释 的腐蚀量和S0 2 阳极反应:Fe→Fe2+ + 2e- 阴极反应:H O + O2 + 2e- →2OH- 2 Fe2+和OH-相结合生成Fe(OH)2沉淀物,这是大气腐蚀的第一阶段;随着Fe(OH)2的氧化而生成各种氧化物,这是大气腐蚀的第二阶段。

耐候钢在海洋大气中的的腐蚀

摘录 通过对暴露在海洋气候中耐候钢和碳钢历时四年的研究和回归运用分析,所用的研究的方法有对铁锈结构的观察,X射线衍射观察法,拉曼光谱观察法和电化学阻抗测定法。研究结果表明:耐候钢的腐蚀分为两步,第一步:腐蚀刚开始腐蚀速率较高;第二步;随着腐蚀时间的加长由于逐渐形成了致密的氧化膜,显著降低了腐蚀速率。在黑暗中对碳钢锈层进行偏振光观察,锈的表层中的氢氧化铁被金属铬取代了。此外,以氯化钠溶液为电解液,锈蚀钢作为电极设计一个可逆电池,利用对锈蚀钢的电化学阻抗谱外推出钢的保护能力。2002年艾斯维尔科学技术数据库保留所有权利。 一引言 米西瓦等人和山下等人通过对在海洋环境中的耐受钢形成的保护锈层的生长研究发现在海洋环境中耐候钢之所以不能像在传统环境中一样形成保护层是由于海水中氯离子的侵蚀作用。然而在工业和农业上方面,耐候钢风化形成的锈层对减缓腐蚀率起阻碍作用。此外,奥克达等人指出耐候钢锈层可分为两层:内锈层与外锈层。内锈层由像铬、铜等含量比较大的合金元素组成的致密层,具有保护钢铁的作用。外锈层:有裂纹和空隙无法抑制腐蚀性电解液的进入。在最近发表的论文中,有人测定了在利用电化学阻抗图谱研究了碳钢在自然盐水中锈层形成的特点。最近科学家们达成了一个共识:在有氯离子的存在下有些合金元素对钢铁的腐蚀有缓释作用。在海洋环境中提高金属的保护能力,降低钢铁的腐蚀速率的关键是调整钢铁的组成成份。在本文中,通过对中国宝钢集团制造的钢在青岛市的海岸海洋大气暴露下进行了为期四年的研究,提出了一种新的防腐机制。 二实验 2-1暴露测试 由宝钢公司提供的耐候钢试片(60mm×100mm×4mm)和低碳钢试片 (60mm×100mm×3mm)放置在青岛市的海岸,向南45°,在此海洋环境中放置四年。钢的成分表1给出,和主要的气象资料和大气污染数据由表2给出。 表一 化学成分(重量%)在中国的青岛市海岸暴露试验钢

海洋环境下钢结构的腐蚀机理

海洋环境下钢结构的腐蚀机理 1 海洋环境下钢的电化学腐蚀机理 所谓海洋环境是指从海洋大气到海底泥浆这一范围内的任一种物理状态,诸如温度、风速、日照、含氧量、盐度、PH 值以及流速等,一般可分成性质不同的几种类型:海洋大气区、浪溅区、水位变动区、全浸区以及泥下区。钢结构在海洋环境的五个区域中都有电化学腐蚀发生,这个电化学腐蚀过程与电解质电池反应相同,构成这种反应的三个要素是阳极、阴极及导电解质。钢铁是铁元素和渗碳体的混合物,铁元素的电位较低,渗碳体的电位较高,电位不等的两种元素在电解质溶液的作用下,构成了以铁元素为阳极,渗碳体为阴极的微电池网络,产生电流。在阳极区,由于极性水分子的作用,铁素体被析出,呈自由状态的铁离子因而进入溶液,这就是金属的活性溶解过程。在阴极区,由于电位差的作用,阳极区的电子经钢铁本体流到阴极,被溶液中的某些物质所吸收。在通常情况下,即溶液的PH值大于4时,表现为氧的还原;当溶液的PH值小于4时,则表现为氢的析出:阳极产物铁离子与阴极产物氢氧根离子相结合,生成初步的腐蚀产物氢氧化亚铁而沉淀,氢氧化亚铁进一步为溶液中的氧所氧化,转变为氢氧化铁( 即铁锈)。氢氧化铁的溶解度较小,呈疏松的薄膜状包裹于钢铁的表面,有一定的保护作用,但抗渗能力很弱,性质不稳定,当溶液中有充足的氧气供应时,则腐蚀过程一直进行,直至钢铁成为铁锈为止。 2 海洋环境下钢腐蚀的热力学机理 钢发生腐蚀是由它本身的性质所决定的。任何一种元素,包括金属元素和非金属元素在自然界都有一种最稳定状态,即能量最低状态。如果用某种方法,例如通过化学法或电化学法改变元素的状态,使其成为较高能量状态,则该元素具备了一种恢复到稳定态的能量,一旦条件合适便自发地回到原来状态,这就像水总是要流到最低处,即能量最低状态一样。如果把水用某种方法提到较高的位置,则水便具备了一种回到原来状态( 低处) 的能量( 势能),一旦条件合适,水便自发的从高处流向低处,恢复到原来的状态。钢是由铁制成的。而铁是在高炉中用焦炭中的碳对赤铁矿(Fe2O3) 还原而得到的。铁锈是铁氧化物的水合物,其成分类似于赤铁矿,从而可以解释在大多数情况下钢为何容易生锈,可以认为这个生锈的过程就是形成钢铁原始矿石的自然反应。由于自然界的矿石更为稳定,因此钢有转变为其原始状态的趋势。这种腐蚀过程热力学计算的反应趋向与化学系统的平衡态以及所发生的能量变化有关,这个过程的反应方向也可以用热力学上的吉布斯自由能判据来描述。 3 典型海洋环境 从海洋大气到海泥的不同海洋环境区域,各种环境因素变化很大,对钢结构的腐蚀

碳钢在海洋环境下的腐蚀研究

碳钢在海洋环境下的腐 蚀研究 Revised as of 23 November 2020

碳钢在海洋环境下的腐蚀研究 摘要 随着陆地石油储量减少和开采难度增加,海洋石油将成为未来能源最重要的来源。海洋石油开发设施的材料主要是碳钢,碳钢常年在腐蚀性极强的海水中工作,腐蚀不可避免。若能掌握碳钢在海洋环境下的腐蚀规律,找到合适的防腐措施,腐蚀造成的损失就能大幅度降低。本文根据塔菲尔直线外推法,用LK2010型电化学工作站测量碳钢在不同盐度海水中的腐蚀极化曲线,研究海水的盐度对碳钢腐蚀速度、塔菲尔曲线特征的影响。 关键词:碳钢腐蚀;塔菲尔直线外推法;电化学;极化曲线;腐蚀速度 The research on corrosion of carbon steel in marine environment Abstract As difficult exploitation of oil reserves to reduce and increase the land, ocean oil will become the most important source of energy future. Offshore oil development facilities materials are mainly carbon steel, carbon steel work in the strong causticity water all the year round, the corrosion of carbon steel is inevitable. If we can master the corrosion behavior of carbon steel in Marine environment, find a suitable anticorrosive measures,can greatly reduce the loss caused by corrosion. Based on the principles of Tafel linear extrapolation method, measured with electrochemical workstation LK2010 type corrosion polarization curve of carbon steel in sea water,the water of the influence of different factors on the corrosion of carbon steel.

相关文档
最新文档