2017年秋九年级数学上册 小专题(三)一元二次方程的实际应用(新版)北师大版
一元二次方程的应用初三九年级数学北师大版含答案

一元二次方程的应用知识要点:1、应用一元二次方程解决面积类的应用题。
2、应用一元二次方程解决平均增长(减少)类的应用题。
3、应用一元二次方程解决销售定价类的应用题。
典例精析:例1:如图,是上海世博园内一个矩形花园,花园的长为100米,宽为50米,在它的四角各建有一个同样大小的正方形观光休息亭,四周建有与观光休息亭等宽的观光大道,其余部分(图中阴影部分)种植的是不同花草.已知种植花草部分的面积为3600米2,那么矩形花园各角处的正方形观光休息亭的边长为多少米?变式练习1:现有60米的篱笆,准备围成一个如图所示的养鸡场,为了节省篱笆,养鸡场的一边利用一面长度为20米的墙来替代,另一面的篱笆与墙平行,中间再用篱笆分开.若养鸡场的面积为225平方米,那么与墙平行的一边长是多少?例2:(2010临沂市) 为落实素质教育要求,促进学生全面发展,我市某中学2009年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2011年投资18.59万元.(1)求该学校为新增电脑投资的年平均增长率;(2)从2009年到2011年,该中学三年为新增电脑共投资多少万元?变式练习2:(2012钦州)近年来,某县为发展教育事业,加大了对教育经费的投入,2009年投入6000万元,2011年投入8640万元.(1)求2009年至2011年该县投入教育经费的年平均增长率;(2)该县预计2012年投入教育经费不低于9500万元,若继续保持前两年的平均增长率,该目标能否实现?请通过计算说明理由.例3:(2010 江苏省南京市) 某批发商以每件50元的价格购进800件T恤.第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元.设第二个月单价降低x元.(1)填表(不需化简):(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?变式练习3:(2010 辽宁省铁岭市) 某旅游景点为了吸引游客,推出的团体票收费标准如下:如果团体人数不超过25人,每张票价150元,如果超过25人,每增加1人,每张票价降低2元,但每张票价不得低于100元,阳光旅行社共支付团体票价4800元,则阳光旅行社共购买多少张团体票?例4:(2011淄博市) 已知:的两边AB ,AD 的长是关于x 的方程21024m x mx -+-=的两个实数根.(1)当m 为何值时,四边形ABCD 是菱形?求出这时菱形的边长;(2)若AB 的长为2的周长是多少?变式练习4:已知ABC △的两边AB 、AC 的长是关于x 的一元二次方程 22(23)320x k x k k -++++=的两个实数根,第三边BC 的长为5.(1)当k 为何值时,ABC △是直角三角形;(2)当k 为何值时,ABC △是等腰三角形,并求出ABC △的周长.巩固练习: 1、(2012•湛江)湛江市2009年平均房价为每平方米4000元.连续两年增长后,2011年平均房价达到每平方米5500元,设这两年平均房价年平均增长率为x ,根据题意,下面所列方程正确的是( )A .55002)1(x +=4000B .55002)1(x -=4000C .40002)1(x -=5500D .40002)1(x +=55002、(2012•泰州)某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x ,根据题意所列方程正确的是( )A .362)1(x -=36-25B .36(1-2x )=25C .362)1(x -=25D .36)1(2x -=253、(2011•吉林)某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米,设花圃的宽为x 米,则可列方程为( ) A .x (x-10)=200 B .2x+2(x-10)=200 C .x (x+10)=200 D .2x+2(x+10)=2004、(2011 吉林省) 某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米,设花圃的宽为x 米,则可列方程为( )A .(10)200x x -=B .22(10)200x x +-=C .(10)200x x +=D .22(10)200x x ++=5、三角形两边的长分别是8和6,第三边的长是一元二次方程060162=+-x x 的一个实数根,则该三角形的面积是( )A .24B .24或85C .48D .856、(2012佛山)某药品原价是100元,经连续两次降价后,价格变为64元,如果每次降价的百分率是一样的,那么每次降价的百分率是________;7、如图(1),在宽为20m ,长为32m 的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田,假设试验田面积为570m 2,求道路宽为多少?设道路宽为x m ,8、如图,邻边不等的矩形花圃ABCD ,它的一边AD 利用已有的围墙,另外三边所围的栅栏的总长度是6m .若矩形的面积为4m 2,则AB 的长度是 _____m (可利用的围墙长度超过6m ).9、我市为了增强学生体质,开展了乒乓球比赛活动.部分同学进入了半决赛,赛制为单循环形式(即每两个选手之间都赛一场),半决赛共进行了6场,则共有 ________人进入半决赛.10、等腰ABC △两边的长分别是一元二次方程2560x x -+=的两个解,则这个等腰三角形的周长是____________11、(2012•襄阳)为响应市委市政府提出的建设“绿色襄阳”的号召,我市某单位准备将院内一块长30m,宽20m的长方形空地,建成一个矩形花园,要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)12、(2012•湘潭)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD (围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m2.13、(2012•山西)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?14、(2012•广东)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?15、(2012•河池)随着人们环保意识的不断增强,我市家庭电动自行车的拥有量逐年增加.据统计,某小区2009年底拥有家庭电动自行车125辆,2011年底家庭电动自行车的拥有量达到180辆.(1)若该小区2009年底到2012年底家庭电动自行车拥有量的年平均增长率相同,则该小区到2012年底电动自行车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资3万元再建若干个停车位,据测算,建造费用分别为室内车位1000元/个,露天车位200元/个.考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,则该小区最多可建两种车位各多少个?试写出所有可能的方案.牌汽车的年产量为6.4万辆,到2010年,该品牌汽车的年产量达到10万辆.若该品牌汽车年产量的年平均增长率从2008年开始五年内保持不变,则该品牌汽车2011的年产量为多少万辆?2、小明家有一块长8m、宽6m的矩形空地,妈妈准备在该空地上建造一个花园,并使花园面积为空地面积的一半,小明设计了如下的四种方案供妈妈挑选,请你选择其中的一种方案帮小明求出图中的x值.3、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?初三承诺班数学课堂小测第四讲 一元二次方程的应用学号: 姓名: 得分:(限时10分钟) 1、(2012•娄底)为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x ,则下面所列方程正确的是( )A .2892)1(x -=256B .2562)1(x -=289C .289(1-2x )=256D .256(1-2x )=2892.(2012•成都)一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x ,根据题意,下面列出的方程正确的是( )A .100(1+x )=121B .100(1-x )=121C .1002)1(x +=121D .1002)1(x -=1213、如图,是用4个相同的小矩形与1个小正方形镶嵌而成的正方形图案,已知该图案的面积为49,小正方形的面积为4,若用x ,y 表示小矩形的两边长(x >y ),请观察图案,指出以下关系式中不正确的是( )A .x+y=7B .x-y=2C .22y x +=25D .4xy+4=494、如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,则道路的宽为( )A .5米B .3米C .2米D .2米或5米5、一个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数为( )A .25B .36C .25或36D .-25或-366、某小组同学,新年时每人互送贺年卡一张,结果全组共送了贺年卡56卡,则这个小组共有( )A .7人B .8人C .14人D .4人7、菱形ABCD 的一条对角线长为6,边AB 的长是方程01272=+-x x 的一个根,则菱形ABCD 的周长为_____8、若两数和为-7,积为12,则这两个数是_________9、随着近期国家抑制房价新政策的出台,某小区房价两次下跌,由原来的每平方米6000元降至每平方米4860元,则每次降价的百分率为 _______10、一个凸多边形共有9条对角线,则这个多边形的边数是_____参考答案:例1:解:设正方形观光休息亭的边长为x 米.依题意,有(1002)(502) 3 600.x x --=整理,得2753500.x x -+=解得12570.x x ==, 7050x => ,不合题意,舍去, 5.x ∴=答:矩形花园各角处的正方形观点休息亭的边长为5米.变式练习1:解这个方程得:45,1521==x x因为墙的长度仅有20米,因此与墙平行的一边长只可以取15米答:与墙平行的一边长为15米或45米。
北师大版九年级数学上册一元二次方程应用题专题训练

一元二次方程应用经典题型★列一元二次方程解应用题的一般步骤是:“审、设、列、解、答”.(1)“审”指读懂题目、审清题意,明确已知和未知,以及它们之间的数量关系.这一步是解决问题的基础;(2)“设”是指设元,设元分直接设元和间接设元,所谓直接设元就是问什么设什么,间接设元虽然所设未知数不是我们所要求的,但由于对列方程有利,因此间接设元也十分重要.恰当灵活设元直接影响着列方程与解方程的难易;(3)“列”是列方程,这是非常重要的步骤,列方程就是找出题目中的等量关系,再根据这个相等关系列出含有未知数的等式,即方程.找出相等关系列方程是解决问题的关键;(4)“解”就是求出所列方程的解;(5)“答”就是书写答案,应注意的是一元二次方程的解,有可能不符合题意,如线段的长度不能为负数,降低率不能大于100%等等.因此,解出方程的根后,一定要进行检验.★几类常考的一元二次方程应用题.一、面积问题(参考课本P38、48练习)1.如图,要在长、宽分别为40米、24米的矩形赏鱼池内建一个正方形的亲水平台.为了方便行人观赏,分别从东、南、西、北四个方向修四条等宽的小路与平台相连,若小路的宽是正方形平台边长的14,小路与亲水平台的面积之和占矩形赏鱼池面积的16,求小路的宽.2.一块长为60m,宽为50m的矩形荒地,地方政府准备在此建一个综合性休闲广场,其中阴影部分为通道,通道的宽度均相等,中间的三个矩形(其中三个矩形的一边长均为am)区域将铺设塑胶地面作为运动场地.(1)设通道的宽度为xm,则a ______________________;(用含x的代数式表示);(2)若塑胶运动场地总的占地面积为22430m,请问通道的宽度为多少?二、增长率问题1、为做好延迟开学期间学生的在线学习服务工作,市教育局推出“中小学延迟开学期间网络课堂”,为学生提供线上学习,据统计,第一批公益课受益学生20万人次,第三批公益课受益学生24.2万人次.(1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;(2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次?2.某市某楼盘准备以每平方米4000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米3240元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.9折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.4元,请问哪种方案更优惠?3、某电脑公司2019年的各项经营中,一月份的营业额约为200万元,一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率。
北师大版 九年级数学上册 2.6 一元二次方程的实际应用

一元二次方程的实际应用 类型1 数字问题1.一个两位数,十位上的数字比个位上的数字大7,且十位上的数字与个位上的数字和的平方等于这个两位数,这个两位数是 .2.如图是一张日历表,在此日历表上可以用一个矩形任意圈出2×2个位置上相邻的数(如2,3,9,10).如果圈出的4个数中最大数与最小数的积为128,那么这4个数中最小的数是 .类型2 传播问题3.某树主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支总数是43.若设主干长出x 个支干,则可列方程( )A .(x +1)2=43B .x +2x +1=43C .x 2+x +1=43D .x(x +1)=434.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,请用一元二次方程的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,那么经过三轮感染后,被感染的电脑共有多少台?类型3 球赛与握手问题5.要组织一次篮球联赛,赛制为双循环制(每两队之间都进行两场比赛),计划安排380场比赛.若设参赛队伍有x 支,则可列方程为( )A.12x(x -1)=380 B .x(x -1)=380 C.12x(x +1)=380 D .x(x +1)=380 6.参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共签订了45份合同,共有多少家公司参加商品交易会?类型4增长率问题7.(宜宾中考)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为( )A.2% B.4.4% C.20% D.44%8.(太原期中)“早黑宝”是我省农科院研制的葡萄优质新品种,在我省被广泛种植.清徐县某葡萄种植基地2016年种植“早黑宝”100亩,到2018年“早黑宝”的种植面积达到225亩.(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场调查发现,当“早黑宝”售价为20元/千克时,每天能售出200千克,售价每降低1元,每天可多售出50千克,为了推广宣传,基地决定降价促销.已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1 800元,则售价应降低多少元?类型5营销利润问题9.某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每辆汽车的进价与销售量有如下关系:若当月仅售出1辆汽车,则该辆汽车的进价为27万元,每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.5万元;销售量在10辆以上,每辆返利1万元.(1)若该公司当月售出3辆汽车,则每辆汽车的进价为万元;(2)如果汽车的售价为28万元/辆,该公司计划当月盈利12万元,那么需要售出多少辆汽车?(盈利=销售利润+返利)10.(铜仁中考)某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800元,销售单价应定为多少元?类型6几何图形问题11.某学校计划利用一片空地建一个学生自行车车棚,其中一面靠墙,这堵墙的长度为12米.计划建造车棚的面积为80平方米,已知现有的木板材料可使新建板墙的总长为26米.(1)为了方便学生出行,学校决定在与墙平行的一面开一个2米宽的门,那么这个车棚的长和宽分别应为多少米?(2)如图,为了方便学生取车,施工单位决定在车棚内修建几条等宽的小路,使得停放自行车的面积为54平方米,那么小路的宽度是多少米?12.如图,A,B,C,D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向D移动.(1)P,Q两点从出发开始到几秒时,四边形PBCQ的面积为33 cm2?(2)P,Q两点从出发开始到几秒时,点P和点Q的距离是10 cm?类型7其他问题13.(教材P58复习题T21变式)如图,某天晚上8点时,一台风中心位于点O正北方向160 km的点A处,台风中心以每小时20 2 km的速度向东南方向移动,在距台风中心≤120 km 的范围内将受到台风影响,同时,在点O有一辆汽车以每小时40 km的速度向东行驶.(1)汽车行驶了多少小时后受到台风影响?(2)汽车受到台风影响的时间有多长?小专题14三角形内接特殊四边形问题——教材P122复习题T21的变式与应用教材母题:(教材P122复习题T21)一块直角三角形木板的面积为1.5 m2,一条直角边AB为1.5 m,怎样才能把它加工成一个无拼接的面积最大的正方形桌面?甲、乙两位木匠的加工方法如图所示,请你用学过的知识说明哪位木匠的方法符合要求(加工损耗忽略不计,计算结果中的分数可保留).图甲图乙解决本题的关键:(1)“内接”,所谓内接就是正方形的四个顶点都在三角形的边上,正因如此,故:①正方形的一边与三角形的一边平行,从而得到三角形相似;②大三角形的高等于正方形的边长与小三角形的高之和.(2)方程思想,利用相似三角形的性质——“相似三角形对应高的比等于相似比”这个等量关系,将已知边和未知边放在一个方程中.1.(太原一模)如图,小明把一个边长为10的正方形DEFG剪纸贴在△ABC纸片上,其中AB=AC=26,BC=20,正方形的顶点D,G分别在边AB,AC上,且AD =AG,点E,F在△ABC内部,则点E到BC的距离为( )A.1 B.2 C.21 D.292.(上海中考)如图,已知正方形DEFG的顶点D,E在△ABC的边BC上,顶点G,F分别在边AB,AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是.3.如图,矩形DEFG的边EF在△ABC的边BC上,点D在边AB上,点G在边AC上,△ADG的面积是40,△ABC的面积是90,AM⊥BC于点M,交DG于点N,则AN∶AM=.4.如图,在△ABC中,BC=12,AD是BC边上的高,AD=8,P,N分别是AB,AC边上的点,Q,M是BC上的点,连接PQ,PN,MN,PN交AD于点E.若四边形PQMN是矩形,且PQ∶PN=1∶2,求PQ,PN的长.。
北师版九年级数学上册一元二次方程的应用

个性化教学辅导教案1.用适当的方法解方程:(1)2(x+2)2﹣8=0;(2)x(x﹣3)=x;(3)x2=6x﹣;(4)(x+3)2+3(x+3)﹣4=0.2.已知关于x的方程(a2﹣1)x2+(1﹣a)x+a﹣2=0(1)当a为何值时,该方程为一元二次方程?(2)当a为何值时,该方程为一元一次方程?3.解方程,有一位同学解答如下:解:这里a=,b=,c=∴b2﹣4ac=(﹣∴=∴请你分析以上解答有无错误,如有错误,指出错误的地方,并写出正确的结果.1.新苑小区的物业管理部门为了美化环境在小区靠墙的一侧设计了一块长方形花圃(如图所示),墙长25,花圃三边外围用篱笆围起,栽上花,共用篱笆40.(1)花圃的面积能达到200 m2吗?(2)花圃的面积能达到250 m2吗?(3)你能根据所学的知识求出花圃的最大面积吗?此时,篱笆该怎样围?2.如图,某中学为方便师生活动,准备在长30m、宽20m的矩形草坪上修筑两横两纵四条小路,横、纵路的宽度之比为3:2,若要使余下的草坪面积是原来草坪面积的,则路宽分别为多少?3.有﹣块长32cm,宽14cm的矩形铁皮.(1)如图1,如果在铁皮的四个角裁去四个边长一样的正方形后,将其折成底面积为280cm2的无盖长方体盒子,求裁去的正方形的边长.(2)由于需要,计划制作一个有盖的长方体盒子,为了合理利用材料,某学生设计了如图2的裁剪方案,阴影部分为裁剪下来的边角料,其中左侧的两个阴影部分为正方形,问能否折出底面积为180的有盖盒子?如果能,请求出盒于的体积;如果不能,请说明理由.4.如图所示,在菱形ABCD中,AC,BD交于点O,AB=15,AO=12,P从A出发,Q从O出发,分别以2cm/s和1cm/s的速度各自向O,B点运动,当运动时间为多少秒时,四边形BQP A的面积是△POQ面积的8倍.5.中共十六大提出全面建设小康社会,加快推进社会主义现代化进程,力争到2020年国民生产总值比2000年翻两番(即4倍).如果以十年为单位计算,设每个十年的国民生产总值的增长率都是x,请列出x满足的方程,请求出x的值.6.本届政府为了解决农民看病难的问题,决定下调药品的价格.某种药品经过连续两次降价后,由每盒200元下调至128元,(1)求这种药品平均每次降价的百分率是多少?(2)经调查某药店,该药品每盒降价5%,即可多销售10盒.若该药店原来每天可销售500盒,那么两次调价后,每月可销售该药多少盒?7.中华商场将进价为40元的衬衫按50元售出时,每月能卖出500件,经市场调查,这种衬衫每件涨价4元,其销售量就减少40件.如果商场计划每月赚得8000元利润,那么售价应定为多少?这时每月应进多少件衬衫?8.某旅游团结束时,其中一个游客建议大家互相握手言别,细心的小明发现,每两个参加旅游的人互握一次手,共握了66次手,问这次旅游的游客人数是多少?【几何方面应用】1.有一块长为a,宽为b的长方形铝片,四角各截去一个相同的边长m的正方形,折合成一个没有盖的盒子,则此盒子的容积v的表达式应该为()A.v=m2(a﹣m)(b﹣m)B.v=m(a﹣m)(b﹣m)C.v=m(a﹣2m)(b﹣2m)D.v=m(a﹣2m)(b﹣2m)2.从一块长30cm,宽12cm的长方形薄铁皮的四个角上,截去四个相同的小正方形,余下部分的面积为296cm2,则截去小正方形的边长为()A.1cm B.2cm C.3cm D.4cm3.三角形一边的长是该边上高的2倍,且面积是32,则该边的长是()A.8 B.4 C.4 D.84.某工厂计划在长24米、宽20米的空地中间划出一块32平方米的长方形建一住房,并且四周剩余空地一样宽,那么这宽度应是()A.14米B.8米C.14米或8米D.以上都不对5.如图所示,把底面直径为60mm米,高为200mm的圆柱形钢材,锻压成底面为正方形,高为157mm的长方体零件毛坯,那么零件毛坯的底面正方形的边长为()(π取3.14)A.30mm B.40mm C.50mm D.60mm6.如图所示,使用墙的一边,再用13m的竹篱笆围三边,围成一个面积为20m2矩形,设墙的对边长为xm,可得长,宽分别为()A.5m,4m B.5m,4m或8m,mC.m,8m D.m,5m7.一块面积为600平方米的长方形土地,它的长比宽多10米,求长方形的长与宽,若设长方形的长为x米,则它的宽为米,根据题意的方程为.8.如图,在Rt△ABC中,∠C=90°,点P以1cm/s的速度由点A向终点C运动,点Q以2cm/s的速度由点C向终点B运动,当其中一点到达自己的终点时,另一点随之停止运动.现已知AC=12cm,BC=9cm,设运动了t秒时,S△PQC=S△ABC,则t 的值为.9.如图所示,要用防护网围成长方形花坛,其中一面利用现有的一段墙,且在与墙平行的一边开一个2米宽的门,现有防护网的长度为91米,花坛的面积需要1080平方米,若墙长50米,求花坛的长和宽.(1)一变:若墙长46米,求花坛的长和宽;(2)二变:若墙长40米,求花坛的长和宽;(3)通过对上面三题的讨论,你觉得墙长对题目有何影响?10.如图,在梯形ABCD中,AD∥BC,∠C=∠D=90°,BC=16,CD=12,AD=21.动点P从点D出发,沿线段DA的方向以每秒2个单位长度的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长度的速度向点B运动.点P,Q分别从点D,C同时出发,当点P运动到点A时,点Q随之停止运动.设运动时间为t(s),当t 为何值时,以B,P,Q三点为顶点的三角形为等腰三角形?【代数方面应用】1.某种商品经过两次降价,由每件100元降低了19元,则平均每次降价的百分率为( ) A .9%B .9.5%C .8.5%D .10%2.某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了促进销售,增加盈利,尽量减少库存,商场决定适当地降价,若每件衬衫每降价1元,商场平均每天 多销售出2件,若商场平均每天要盈利1200元,每件衬衫应降价( )元. A .10B .20C .10或20D .无法确定3.某种商品经过两次降价后,由原来价格10元降到现在价格8.1元,则这种商品平均每次降价的百分率为( ) A .10%B .25%C .80%D .90%4.某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克).现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量的增长率的.则新品种花生亩产量的增长率为( ) A .20%B .30%C .50%D .120%5.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x 人参加这次聚会,则列出方程正确的是( ) A.x (x ﹣1)=10B.102)1(=-x x C.x (x +1)=10D .102)1(=+x x 6.在一次篮球联赛中,每个小组的各队都要与同组的其他队比赛两场,然后决定小组出线的球队。
北师大版九年级数学上第二章一元二次方程知能素养小专题(三)一元二次方程的实际应用习题课件

九年级 数学 上册 北师版
类型二:传播问题 2.(思明区月考)有一段时间,甲型 H1N1 流感在某地迅速蔓延,每天的 新增病例和累计确诊病例人数如图所示. 5 月 16 日至 5 月 21 日甲型 H1N1 流感疫情数据统计图
九年级 数学 上册 北师版
(1)在 5 月 17 日至 5 月 21 日这 5 天中,此地平均每天新增加甲型 H1N1 流感确诊病例多少人? (2)甲型 H1N1 流感病毒的传染性极强,某地因 1 人患了甲型 H1N1 流感没 有及时隔离治疗,经过两天传染后共有 9 人患了甲型 H1N1 流感,每天传 染中平均一个人传染了几个人?
九年级 数学 上册 北师版
解:(1)(267-4)÷5=52.6(人). 故在 5 月 17 日至 5 月 21 日这 5 天中,此地平均每天新增加甲型 H1N1 流 感确诊病例 52.6 人. (2)设每天传染中平均一个人传染了 x 个人,依题意有 x(x+1)+x+1=9, 解得 x1=2,x2=-4(舍去). 故每天传染中平均一个人传染了 2 个人.
九年级 数学 上册 北师版
解:(1)设进馆人次的月平均增长率为 x, 则由题意得 128+128(1+x)+128(1+x)2=608.化简得 4x2+12x-7=0. ∴x=0.5=50%,或 x=-3.5(舍去). (2)∵进馆人次的月平均增长率为 50%, ∴第四个月的进馆人次为 128(1+50%)3=128×287=432<500. 故校图书馆能接纳第四个月的进馆人次.
九年级 数学 上册 北师版
(2)不能围成面积为 60 m2 的花圃. 理由:假设存在符合条件的长方形,设 AD 的长为 ym, 于是有(24-3y)·y=60,整理得 y2-8y+20=0, ∵Δ=(-8)2-4×20=-16<0, ∴这个方程无实数根, ∴不能围成面积为 60 m2 的花圃.
数学北师大版九年级上册一元二次方程的运用

第一步:设未知数(单位名称); 第二步:列出方程; 第三步:解这个方程,求出未知数的值; 第四步:查(1)值是否符合实际意义, (2)值是否使所列方程左右相等;
第五步:答题完整(单位名称)。
下课了!
结束寄语
• 一元二次方程也是刻画现实世 界的有效数学模型.
40 x x . 250 2 2 即 x 40 x 500 0 .
解这个方程 ,知
25m
250m2 x
40 x 2
这个方程无实根 .
答: 鸡场的面积不能达到 250 m2. 2 老师提示 : 当方程配方为 x 20 100 时 , 特别要 ,
5 5 x 5 5
解: 设这块铁皮的宽是xcm,那么制成的长方体容器底 面的宽是(x-10)cm,长是(2x-10)cm.根据题意得: 5(x-10)(2x-10)=500 整理,得:
x2-15x=0
解这个方程,得:
x1=15 ∴x=15
x2=0 (不合题意,舍去) 2x=30
答:这块铁皮的宽是15cm,长是30cm.
知识的升华
2. 某农场要建一个长方形的养鸡场,鸡场的一边靠墙 (墙长25m),另外三边用木栏围成,木栏长40m. 解:(2)设养鸡场的长为xm,根据题意得
40 x x . 200 2 2 即 x 40 x 400 0 .
解这个方程 ,得
25m
200m2 x
180m2 x
40 x 2
x 20 2 10 ; x 20 2 10 . 1 2
x 20 2 10 20 40 20 25 25 不合 , 舍去 . 1
北师大版九年级数学上一元二次方程与实际应用题带答案

北师大版九年级数学上一元二次方程与实际应用题带答案一元二次方程的应用(带答案)满分100,测试时间45分钟一、选择题(每小题6分,共30分)1.若两个连续整数的积是56,则它们的和为()A.11B.15C.-15D.±152.某服装店原计划按每套200元的价格销售一批保暖内衣,但上市后销量不佳,为减少库存积压,两次连续降价打折处理,最后价格调整为每套128元.若两次降价折扣率相同,则每次降价的百分率为()A.8%B.18%C.20%D.25%3.商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台.为了促销,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台,商场要想在这种冰箱销售中每天盈利4800元,同时又要使消费者得到更多实惠,每台冰箱应降价()A.100元B.200元C.300元D.400元3.某旅行社为鼓励市民组团去天水湾风景区旅游,推出了如下收费标准:(1)如果人数不超过25人,人均旅游费用为1000元;(2)如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于700元某单位组织员工去天水湾风景区旅游,共支付旅游费用27000元,该单位去天水湾风景区旅游的共有()A.45人B.30 人C.45人或30人D.以上都不对5.如图2所示,在Rt△ABC中,∠C=90°,点P,Q同时由A,B 两点出发,分别沿AC,BC方向向C点匀速运动,其速度均为2m/s,若△PCQ的面积是△ABC面积的一半,则运动时间为()B.9s D.10s6.有一人患流感,经过两轮传染后共有81人患了流感,则每轮传染中平均一人传染了_____________人7.一辆新车购买价为20万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二、三年的年折旧率相同.若第三年年末这辆车折旧后价值为11.56万元,则第二、三年的年折旧率为______________8.已知线段AB的长为2,以AB为边在AB的下方作正方形ACDB.取AB边上一点E,以AE为边在AB的上方作正方形AENM.过E作EF⊥CD,垂足为F点,如图3所示若正方形AENM与四边形EFDB的面积相等,则AE的长为________________________三、解答题(共52分)9.(12分)将一条长为40cm的铁丝剪成两段,并以每段铁丝的长度为周长做成两个正方形. (1)要使这两个正方形的面积之和等于52cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于48cm2吗?若可能,求出两段铁丝的长度;若不可能,请说明理由.10.(12分)现代互联网技术的广泛应用,催生了快递行业的高速发展.某快递公司,今年三月份与五月份完成投递的快递总件数分别为4万件和4.84万件.现假定该公司每月投递的快递总件数的增长率相同(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递快递0.4万件,那么该公司现有10名快递投递业务员,能否完成今年6月份的快递投递任务?如果不能,那么至少需要增加几名业务员?11.(14分)某淘宝网店销售台灯,成本为每个30元销售大数据分析表明:当每个台灯售价为40元时,平均每月售出600个;若售价每上涨1元,则其月销售量就减少20个;若售价每下降1元,则其月销售量就增加200个(1)若售价上涨x元(x>0),则每月能售出个台灯;(2)为迎接“双十一”,该网店决定降价促销,在库存为1210个台灯的情况下,预计月获利恰好为8400元,求每个台灯的售价;(3)在库存为1000个台灯的情况下,预计月获利恰好为8000元,直接写出每个台灯的售价12.(14分)如图4所示,△ABC中,∠B=90°,AB=6 cm,BC=8 cm.(1)点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从B点开始沿BC边向点C 以2cm/s的速度移动,若一点到达终点,则另一点也随之停止运动.如果P,Q分别从A,B同时出发,那么线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能,说明理由(2)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P,Q同时出发,几秒时△PBQ的面积为1cm2?答案1. D2. C3.B4.B5.A6.87.15%58.19.解:(1)两段铁丝的长度分别为16cm和24cm(2)不能10.解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意,得4(1+x)2=4.84,解得x=0.1,x2=-2.1(不合题意,舍去).答:该快递公司投递总件数的月平均增长率为10%,(2)今年6月份的快递投通任务是4.84×(110%)=5.324(万件),而10名投递业务员能完成的快递投递任务是0.4×10=4(万件),4万件<5.324万0件,该公司现有的10名投递业务员不能完成今年6月份的快递投3÷递任务.平均每人每月最多可投递0.4万件,∵需要增加业务员(5.324-4)÷0.4=3.31(名),即至少需要增加4名业务员11.解:(1)(600-20x)(2)设每个台灯降价x元.根据题意,得(40一x30)(200x+600)=8400,解得x1=3,x2=4.当x=3时,40-3=37,3×200+600=1200,1200<1210;当ェ=4时,40-4=36,4×200+600=1400,1400>1210,不合题意,舍去.答:每个台灯的售价为37元.(3)每个台灯的售价为38元或50元.12.解:(1)线段PQ不能将△ABC分成面积相等的两部分.(2)(5-2)s、5s或(5+2)s。
一元二次方程在实际问题中的应用课件

整理:
x²– 0.1x – 0.9 = 0
解方程得:x1 = 1,x2 = -0.9(舍去).
则渠深为 1 – 0.4 = 0.6 m.
2.6.1 一元二次方程在实际问题中的应用(1)
5. 如图,在 Rt△ACB 中,∠C = 90°;AC = 30cm,BC = 21 cm. 动点 P
1m/s. 经过几秒△PCQ 的面积为 Rt△ACB 面积的一半?
2.6.1 一元二次方程在实际问题中的应用(1)
解:设时间为 t 秒,则 Rt△PCQ 两边 PC ,CQ 长分别为 (8 – t )米与 (6
– t )米.
由题可得
(8-t)(6-t)= × ×6×8
整理:t²– 14t + 48 = 24
(4) 列:根据等量关系列出一元二次方程;
(5) 解:求方程的解;
(6) 检:检验解是否符合方程,是否符合实际;
(7) 答:写出答案并作答.
2.6.1 一元二次方程在实际问题中的应用(1)
针 对 训 练
1.《九章算术》“勾股”章有一题:“今有二人同所立、甲行率七,乙
行率三,乙东行,甲南行十步而斜东北与乙会. 问甲乙行各几何.”
解方程得:t1 = 2,t2 =12(舍去).
则经过 2 秒时△PCQ 的面积为 Rt△ACB 面积的一半.
2.6.1 一元二次方程在实际问题中的应用(1)
4. 如图,一条水渠的断面为梯形,已知断面的面积为 0.78m2,上口比渠
底宽 0.6m,渠深比渠底少 0.4m,求渠深.
解:设渠底为 x m,则上口为 (x + 0.6) m,渠深为 (x – 0.4) m,