建筑工程结构的损伤检测技术
建筑结构构件常用检测方法

建筑结构构件常用检测方法(总5页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除建筑结构构件常用检测方法土木09-1 杨新波 36号工程结构的检测——通过一定的设备,应用一定的技术,采集一定的数据,把的采集的数据按照一定的方法进行处理,从而得到所检测对象的某些特征的过程。
结构检测可提供科学的参考依据,是结构质量鉴定的直接方式,是检测技术发展的需要。
常见的结构构件检测方法如下。
一、回弹法回弹法检测混凝土抗压强度技术规程JGJT 23-20111、回弹仪的基本原理:根据砼的表面硬度与抗压强度存在一定的关系建立测强曲线,通过回弹值和碳化深度推定砼的强度。
砼表面硬度低,则回弹值少,砼表面硬度高,则回弹值大。
2、回弹仪的种类回弹仪按冲击动能大小,分重型、中型、轻型、特轻型四种规格。
重型回弹仪(HT3000型)冲击动能26.42J,可供大型构件,重型构件,路面,飞机跑道及其他大体积砼的强度检测之用。
中型回弹仪(HT225型)冲击动能2.21J,可用于一般建筑物,桥梁,预制厂等普通砼构件的强度检测。
应用最广泛。
轻型回弹仪(HT100型)冲击动能0.98J,用于轻质材料和薄壁构件的强度检测。
特轻型回弹仪(HT28型)冲击动能0.27J,可供砂浆强度检测。
3、回弹法适用范围(以标准动能为2.707J为例):普通砼采用的拌合材料、拌和用水符合现行国家标准;不掺加外加剂或仅掺非引气型外加剂;采用普通成型工艺;采用《砼结构施工及验收规范》GB50204规定的钢模、木模及其他材料制作的模板;自然养护或蒸气养护出池后经自然养护7d以上,且砼表面为干燥状态;砼龄期为14~1000d;砼抗压强度为10~60MPa。
4、相关规定及概念测区:检测结构或构件混凝土抗压强度时的一个检测单元。
测点:在测区内进行的一个检测点。
结构或构件混凝土强度检测可采用下列两种方式,其适用范围及结构或构件数量应符合下列规定:○1单个检测:适用于单个结构或构件的检测;○2批量检测:适用于在相同的生产工艺条件下,混凝土强度等级相同,原材料、配合比、成型工艺、养护条件基本一致且龄期相近的同类结构或构件。
混凝土梁损伤识别技术研究

混凝土梁损伤识别技术研究一、引言混凝土梁是建筑结构中常见的构件之一,其安全性和稳定性关系到建筑物的整体安全。
然而,由于混凝土梁长期受到外部环境和荷载的作用,会导致梁的损伤和破坏,如裂缝、变形、酸蚀等。
这些损伤对混凝土梁的结构性能和承载能力造成了影响。
因此,混凝土梁的损伤识别技术研究显得尤为重要。
二、混凝土梁损伤识别方法混凝土梁损伤识别方法主要分为非破坏性检测和破坏性检测两类。
其中,非破坏性检测又包括声波检测、超声波检测、电磁波检测、红外热像检测等方法。
1.声波检测声波检测是利用超声波在材料中传播和反射的特性来检测混凝土梁的损伤情况。
通过测量超声波的传播时间和强度等参数,可以判断出混凝土梁中的裂缝、空洞、质量缺陷等情况。
2.超声波检测超声波检测是将高频声波传递到混凝土梁中,通过测量超声波在混凝土梁内部的传播速度和强度等参数,来识别梁的损伤情况。
超声波检测具有高精度、高灵敏度和无损伤性等优点。
3.电磁波检测电磁波检测是利用电磁波在混凝土梁中传播和反射的特性来检测梁的损伤情况。
电磁波检测可以检测混凝土梁的裂缝、空洞、钢筋腐蚀等情况,具有无损伤性、高效率和易操作等优点。
4.红外热像检测红外热像检测是利用红外线热像仪对混凝土梁表面进行热成像,从而识别混凝土梁中的损伤情况。
红外热像检测可以检测混凝土梁的温度变化和热分布情况,从而判断出混凝土梁的裂缝、变形等情况。
5.破坏性检测破坏性检测是利用试验方法对混凝土梁进行破坏实验,从而获得混凝土梁的力学性能参数,如强度、刚度等。
破坏性检测具有精度高、可靠性强等优点,但同时也会对混凝土梁造成损伤。
三、混凝土梁损伤识别技术应用混凝土梁损伤识别技术在实际工程中得到了广泛的应用。
例如,在桥梁、隧道、大型建筑等工程中,混凝土梁的损伤识别技术可以用于对混凝土梁的健康状况进行监测和评估,从而提高工程的安全性和可靠性。
1.桥梁工程中的应用桥梁是交通工程中最重要的组成部分之一,其安全性和稳定性关系到交通运输的畅通和人民生命财产的安全。
建筑结构现场检测技术

建筑结构现场检测技术1. 简介建筑结构现场检测技术是指利用先进的技术手段对建筑结构进行实时、非破坏性的检测,以评估其安全性、稳定性和耐久性。
现场检测技术可以帮助工程师准确了解建筑物的结构状况,及时发现存在的问题,并采取相应的措施进行修复和加固,保证建筑物的安全运行。
2. 主要技术2.1 声波检测技术声波检测技术是通过发射声波信号,并根据信号的传播时间和反射强度来确定建筑结构的质量和损伤程度。
这种技术非常适用于检测混凝土结构中的裂缝、空洞和孔隙等问题。
通过声波检测技术,工程师可以快速准确地评估建筑结构的健康状况,并采取相应的维修措施。
2.2 红外线检测技术红外线检测技术利用红外线相机来检测建筑结构表面的温度分布。
通过分析温度分布的变化,工程师可以判断建筑结构是否存在漏水、能量损失等问题。
这种技术可以快速定位问题的位置,并及时采取修复行动,避免进一步的损坏。
2.3 激光扫描技术激光扫描技术利用激光仪器对建筑结构进行扫描,生成三维模型。
通过分析三维模型,工程师可以了解建筑结构的几何形状和尺寸,识别潜在的结构问题,如偏移、变形等。
激光扫描技术具有高度精确性和实时性,可以有效地辅助工程师进行结构评估和维修计划的制定。
2.4 高频电磁波检测技术高频电磁波检测技术是一种无损检测技术,利用电磁波在建筑结构中的传播和反射特性进行结构评估。
该技术可以检测出建筑结构中的缺陷、腐蚀、锈蚀等问题,为工程师提供详细的结构信息和维修建议。
3. 应用案例3.1 裂缝识别与分析通过声波检测技术和激光扫描技术,工程师可以对建筑结构中的裂缝进行准确的识别和分析。
通过分析裂缝的长度、宽度、深度等参数,工程师可以评估裂缝对结构的影响,并采取适当的修复措施。
3.2 停车场屋面漏水检测红外线检测技术可以帮助工程师快速定位停车场屋面漏水的位置。
通过检测屋面表面的温度分布,工程师可以确定漏水点,及时修复屋面,防止进一步的损害。
3.3 钢结构变形检测激光扫描技术可以对钢结构的变形进行精确测量。
建筑混凝土结构损伤评估技术规程

建筑混凝土结构损伤评估技术规程建筑混凝土结构损伤评估技术规程1. 引言建筑混凝土结构是现代城市发展中不可或缺的一部分,然而,随着时间的推移和外界环境的影响,混凝土结构可能会出现各种损伤和缺陷。
为了确保建筑结构的安全性和耐久性,建筑业界普遍采用了混凝土结构损伤评估技术。
本文将详细介绍建筑混凝土结构损伤评估技术规程的内容和相关观点。
2. 混凝土结构损伤的分类在混凝土结构损伤评估中,首先需要对损伤进行分类。
根据损伤的性质和程度,我们可以将混凝土结构损伤分为表面损伤、裂缝损伤、腐蚀损伤和结构破坏等不同类型。
每种类型的损伤都有其特定的评估标准和方法。
3. 混凝土结构损伤评估的方法和工具为了准确评估混凝土结构的损伤状况,评估人员需要掌握一系列的方法和工具。
常用的方法包括目视检查、结构定位和仪器检测等。
目视检查可以帮助评估人员发现表面损伤和裂缝等明显的问题,结构定位可以确定问题的具体位置和范围,而仪器检测则提供了更精确的数据和分析结果。
在仪器检测方面,常用的工具包括超声波检测仪、电阻率仪和红外线相机等。
4. 混凝土结构损伤评估的标准和指南在建筑行业中,针对混凝土结构的损伤评估制定了一系列的标准和指南。
这些标准和指南旨在提供评估的方法和步骤,并为评估结果提供可比较的判定标准。
在国内,混凝土结构损伤评估的标准主要包括《混凝土结构工程检测规范》和《混凝土结构维修技术规程》等。
而国际上,比较知名的标准有美国混凝土协会(ACI)制定的《混凝土损伤评估与修复指南》。
5. 我对建筑混凝土结构损伤评估技术规程的观点和理解基于我的研究和实践经验,我认为建筑混凝土结构损伤评估技术规程在保障建筑结构安全和提高结构耐久性方面起着重要的作用。
通过采用统一的评估标准和方法,我们可以更准确地了解混凝土结构损伤的状况,及时进行维修和修复工作,有效延长结构的使用寿命。
然而,我也认识到该技术规程仍存在一些局限性,例如在评估裂缝损伤时,只注重宽度和长度等参数,而忽视了裂缝的深度和形态等重要因素。
工程结构损伤检测与评估

工程结构损伤检测与评估随着工业现代化的快速发展,工程结构的重要性越来越受到关注。
在建筑或桥梁、道路等大型工程中,工程结构损伤的出现是常有的事情。
如何及时发现结构损伤,保证工程结构的安全运行,是一个非常重要的问题。
本文将探讨工程结构损伤检测与评估的相关内容。
一、工程结构损伤检测的方法1.传统力学法传统的力学法主要是通过观察结构的变形、裂缝和断裂来识别结构的损伤状况。
虽然这种方法容易实施,但它只能识别单一的损伤,并且需要时间来追踪变化。
同时,这种方法在捕捉开始出现的微小损伤时并不敏感。
2.声波检测法声波检测法是目前应用最为广泛的一种工程结构损伤检测方法,它利用结构在受到外部刺激后的振动响应来识别结构的损伤状况。
通过分析反射声波和传播波的干涉,可以得出结构内部的损伤位置和程度。
声波检测法能够准确地测量结构的损伤,并且它可以针对不同材料的结构开展有效的检测。
但是,声波检测法受到环境噪声等干扰因素的影响很大。
3.光学检测法光学检测法是借助激光扫描仪或其他光学设备,探测结构表面的微小变化,通过比对云图或折射图,识别出结构的损伤位置。
这种方法可以检测表面和体积缺陷,并且可达到较好的测量精度。
但是,它需要特定的仪器设备,并且适用范围也受到一定的限制。
二、工程结构损伤评估的方法1.定性评估法定性评估法是通过目视借助图像技术,根据观察者的经验和技能来评估结构损伤的程度。
这种方法可以很快地得出结论,但面临主观性大、易受干扰等一系列问题。
2.定量评估法定量评估法是将结构的损伤程度使用统计学方法进行归纳和比较,从而得出数字化的数量结果。
这种方法可以大大减少主观性的影响,但是需要特定的仪器设备和专业技能,更加复杂。
三、工程结构损伤检测与评估的未来发展随着机器学习、深度学习和人工智能等技术的迅速发展,工程结构损伤检测和评估的精度和效率得到了极大提高。
基于人工智能的结构损伤检测与评估方法可以快速、准确地检测和评估结构损伤,引入人工智能技术和预测模型,可以完成更加复杂的结构分析和预测,使结构的安全性和经济效益得到了进一步提高。
第四章 结构损伤及材料性能劣化检测

测定粉末的氯离子含量
取几个同层样品氯离子含量实测值的平均值作为该层中点氯离子含 量的代表值,绘出沿深度变化的氯离子浓度分布规律曲线
7
混凝土中硫酸盐含量检测
混凝土中硫酸盐含量及其侵入深度检测 时的测区布置、试样制取混凝土中氯离 子含量的检测,混凝土中硫酸盐含量可 采用硫酸钡重量法测定。
构件变形与裂缝----渗透法检查裂缝
被检查部位的表面及其周围20mm范围内应用砂轮和砂纸打磨光滑 用清洗剂将表面清洗干净,干燥后喷涂渗透剂
10min后,用清洗剂将表面多余的渗透剂清除 喷涂显示剂,停留10~30min后,观察裂缝情况
钢结构损伤检测
结构连接
钢结构的连接包括焊接连接、螺栓(铆钉)连接、高强螺栓连接 。
裂缝长度可用卷尺量测。
砌体结构损伤检测
裂缝的检测
砌体结构损伤检测
粉化腐蚀情况检测
块体和砂浆的粉化、腐蚀情况应先用目测进行普查,粉化、 腐蚀严重处,应逐一测定构件的粉化、腐蚀深度和范围 。
5
木结构损伤检测
基本内容
木结构损伤检测应包括构件的损伤检测及构件连接节点的损伤检测。 其中,木结构构件损伤的检测应包括木材疵病、裂缝和腐蚀的检测。
仅检测混凝土内部缺陷且当混凝土表面有较 明显外观缺陷时,抽样数量不宜少于同类构 件的30%
1
混凝土结构损伤检测
内部缺陷的检测方法
机械波法(超声脉冲波、 冲击波和声发射)
穿透辐射法(x射线、γ射 线和中子流等)
穿透能力较强、设备简单、 操作方便,适合于混凝 土内部缺陷的检测
穿透能力有限、设备相当 复杂、需要严格的防护 措施,一般不适合于混 凝土内部缺陷的检测
建筑物变形监测的方法和工具

建筑物变形监测的方法和工具近年来,随着城市建设的不断推进和建筑物的日益增多,保障建筑物的安全和稳定性成为一项重要任务。
然而,由于各种原因,建筑物的变形和结构损坏问题时有发生。
为了及时发现和解决这些问题,建筑物变形监测方法和工具不断发展和完善。
本文将探讨一些常用的建筑物变形监测方法和工具,以期对相关研究和实践提供参考。
一、激光扫描技术激光扫描技术是一种非接触式的测量方法,通过激光器释放出的光束扫描被测建筑物,利用光电探头接收反射光信号并记录。
这种技术可以获得建筑物表面的三维几何信息,并通过多次扫描对比来检测建筑物的变形情况。
激光扫描技术具有测量速度快、精度高、操作简单等优点,因此在建筑物变形监测中得到广泛应用。
二、全站仪技术全站仪技术是一种用于测量和记录建筑物的空间坐标的仪器。
通过望远镜和自动水平仪,全站仪可以测量建筑物不同位置的坐标,并统计和比对这些坐标的变化情况。
全站仪技术在建筑物变形监测中特别适用于高精度测量和分析。
由于该技术需要测量员对仪器进行操作,因此在实践中需要考虑人为因素对测量结果的影响。
三、GPS技术全球定位系统(GPS)是一种基于卫星定位的测量技术,可以用于获取建筑物变形的空间信息。
通过在建筑物不同位置安装GPS接收器,并与空间参考点相连,可以实时监测建筑物的位置和形变情况。
GPS技术具有全球遍布、实时性强的优势,能够为长期变形监测提供稳定可靠的数据。
但是,由于GPS信号易受到大气条件和建筑物遮挡物的影响,因此在一些特殊环境下可能精度会降低。
四、振动监测技术振动监测技术是一种通过监测建筑物的振动来判断其结构变化的方法。
这种技术通常通过在建筑物不同位置安装振动传感器,记录并分析振动信号的频率、强度和波形等信息。
振动监测技术可用于检测建筑物的整体结构损伤、裂缝扩展、地基沉降等变形情况,并提供合理的结构监控和维护建议。
五、红外线测温技术红外线测温技术是一种通过监测建筑物表面的红外辐射来获取其温度信息的方法。
建筑探伤检测方案

建筑探伤检测方案建筑探伤检测是目前广泛应用于建筑结构监测和评估的一种非破坏性检测技术。
通过对建筑结构的内部和外部进行测量和分析,可以检测出潜在的缺陷和损伤,为建筑结构的维修和加固提供依据。
一、探伤技术建筑探伤技术主要包括超声波探伤、雷达探测、红外热像仪和地震探测等多种方法。
超声波探伤是一种常用的方法,通过发射超声波信号并分析其回波来检测结构的内部缺陷和异物。
雷达探测则是利用电磁波在结构中的传播和反射特性,来识别墙体和地板中的裂缝和空洞。
红外热像仪可以通过测量结构表面的热辐射进行热分析,判断结构的缺陷和渗漏问题。
地震探测是一种利用地震波在地下传播的方法,通过监测地震波的传播和反射来判断地下的结构和构造。
二、探伤设备建筑探伤检测需要使用一系列专业的设备和仪器。
超声波探伤需要使用超声波探头和接收器,用于发射和接收超声波信号。
雷达探测需要使用地下雷达设备,用于发射和接收电磁波信号。
红外热像仪和地震探测则分别需要使用红外热像仪和地震仪器,用于测量和分析结构的热辐射和地震波。
这些设备需要经过专业的培训和操作才能正确使用。
三、探伤步骤建筑探伤检测的步骤一般包括以下几个步骤。
首先是准备工作,包括确定探测的区域和目标,选择适当的探伤技术和设备,以及准备相关的工具和材料。
然后是实施探测,根据选定的技术和设备进行探测工作,记录和分析数据,并标记出存在问题的区域。
最后是报告和分析,根据探测结果编写报告,并提出相应的建议和措施。
四、探伤应用建筑探伤检测可以应用于各种建筑类型,包括住宅、商业建筑、工业厂房等。
在新建建筑中,可以用于监测施工质量和材料的使用情况,确保建筑结构的安全性。
在老旧建筑中,可以用于检测和评估结构的状况,提供维修和加固的依据。
此外,建筑探伤还可以应用于桥梁、地下管线、港口码头等工程的监测和评估。
总之,建筑探伤检测是一项重要的技术,可以帮助我们及时发现和解决建筑结构的问题。
通过选择适当的探伤技术和设备,并按照正确的步骤进行操作,可以提高建筑结构的安全性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建筑工程结构的损伤检测技术
摘要:建筑工程结构会受到来自各种因素、不同环境的影响,例如使用过度、年久失修、环境破坏、人为损害等,无论多么优越的建筑工程结构都会因为自身缺陷及损伤的加深而不能有效发挥其效果,因此检测建筑工程结构可十分精准地检测出缺陷位置与损伤程度,可谓具有十分重要的现实意义。
关键词:建筑工程;结构损伤;检测技术
1 损伤检测技术的应用
建筑工程结构损伤检测借助科技发展之力已完成了由最传统、最原始的专家检验一家之言向较科学、较规范的仪器检测先进之法的过渡,而且评定既有结构物的可靠性从某种程度上说对科学仪器的依赖性也是只增不减。
关于建筑工程结构损伤检测的研究工作从时间跨度上分有探索阶段、发展阶段和完善阶段:1940~1950年是采用目测法、凭经验判断的探索阶段,主要研究结构缺陷为什么会产生及如何修补;1960~1970年是引入多种检测及评价方法的发展阶段,主要研究建筑物的检测与评估方法;1980年之后是一系列的规范、标准都已制定的完善阶段,此阶段强调建筑物的综合评价并应用到实际检测的工作中去。
2 传统的损伤检测技术
对建筑工程结构进行损伤检测最常用的即是简便易行的目测法,目测法作为人工检测方法之一仅仅适用于结构规模小、复杂程度低的结构检测,结构规模与复杂程度一旦增加,应用该法的检测效率则会大打折扣,同时还会因部分构件材料老化、检测区域肉眼所不能及等原因导致检测工作费时费力、检测结果也不准确。
无损检测法是结构局部损伤检测方法的一种,仅仅适用于结构损伤区域已知的环境。
应用无损检测技术还需要配备专业的测试设备与检测人员,无损检测的工作量大、强度高,还存在一定缺陷,即特殊部位很难检测得到,而且在线监测与整体损伤检测实现起来也有一定的难度。
局部检测法同样存在诸多局限且应用环境要求较高。
例如,要预先知道建筑工程结构缺陷的大概位置并确定结构缺陷之间是否接近,对于部分难以到达的结构缺陷及结构规模较大、复杂程度较高的结构损伤检测,此法则毫无作用;局部检测法需要人工定期进行检测,所以检测期间部分结构的功能会停工或禁用,这势必会影响经济增长;此外,如果间隔期内的损伤不能被及时发现,则会“牵一发而动全身”,结构实时在线的连续监测便无从谈起。
传统的目测法和无损检测法都是针对结构局部而言,因此对结构整体性能参数的变化很难做到有效预测,实时、在线的健康监测和损伤检测都难以实现。
建筑工程结构一旦出现损伤,就会影响结构性能参数,此种影响若能被检测并归类,
对提高建筑工程结构的损伤检测技术十分有益。
3 非传统的损伤检测法
3.1 基于静力参数的损伤诊断法
该法通过在结构上施加静力荷载,建立静力平衡方程,根据实际检测到的结果便可轻而易举的得出包括结构刚度、位移、应变等在内的静力参数。
一般在单元层次上应用上述方法进行建筑工程结构损伤的检测与识别。
现阶段的静力测试仪造价不高且技术先进可靠,检测结果较为精准,但因为其对试验环境的要求较高且工作量较大,所以并不能达到实时、在线的健康监测和损伤检测目的。
另外,破损的结构受到特定荷载的影响却几乎没有发生形变时,想得到预期的诊断结果是有些难度的,因为基于静力参数的损伤诊断法本身存在一定的局限性。
3.2 基于振动的损伤检测法
3.2.1 动力参数诊断法
进行建筑工程结构损伤检测的主要目的除了确定是否存在损伤,还要确定损伤位置及损伤程度。
动力参数诊断法是指将通过观察得到的包括振型、频率、功率谱、模态曲率、应变模态、传递函数、能量传递比、模态柔度矩阵等在内已经改变的动力参数与基准参数进行比较,之后通过选择可能性最大的改变来确定结构的真实情况。
因为任何二阶振动模态相互间改变的自振频率情况可以作为损伤位置的函数,所以可用其当作损伤指标;但其也存在一定局限性,例如自振频率对局部损伤的敏感性不强,如果不同位置的损伤出现相同的自振频率,就要结合模态振型信息或灵敏度进行损伤定位。
3.2.2 神经网络法
大量的神经元构成了敏感的神经网络,神经网络负责信息处理工作,其通过网络元件之间的相互连接与分布式联系储存、传输信息。
网络元件之间的动态连接演化过程决定了控制、优化与识别的难易程度,神经网络之所以被广泛应用于这些领域很大程度上取决于其强大的容错性与非线性。
神经网络与模态修正法及信号处理法相比,其适应性更强,可适用于线性和非线性系统;另外,神经网络极强的环境振动处理能力降低了实际工程中的应用难度,这也是其他方法无可比拟的优势之一。
3.2.3 小波分析法
常规的损伤检测发通常是检测结构的振型、频率、功率谱、模态曲率等在内的动力参数变化情况来确定结构的损伤位置及损伤程度,这种振动反问题并不确定普适性,因为如果进行结构动力参数变化测试时出现了极小的误差都会造成动力参数识别结果有很大出入,因此应用于实际工程中的难度很大。
而小波分析法可以有效分析结构损伤前后的时域响应信号和频域响应信号,确定非线性系统响
应的动力学特性以检测结构的非线性,所以小波分析法特别适合用于正常信号与非正常信号之间的细微差别的识别工作当中。
3.2.4 遗传算法
1960年,Holland教授根据达尔文的进化论提出了遗传算法这一新颖的损伤检测技术。
遗传算法是指在测试得到的信息量少的环境下能够快速确定结构的损伤位置及损伤程度,就算模态信息不完整,也不会影响到该方法的择优能力。
3.2.5 布里渊散射光时域反射测量技术
布里渊散射光时域反射测量技术是当前领先国际的一项发展成熟的高端技术,其工作原理是利用光纤中的自然布里渊散射光的频移变化量与光纤所受的轴向应变之间的线性关系得到光纤的轴向应变。
与传统的损伤检测法相比,其具有分布式、长距离、光纤耐久性好且可实现实时、在线的健康监测和损伤检测等优点。
参考文献
[1] 邱敏,张学文.建筑工程结构振动控制的研究现状与展望[J].安全与环境工程,2013(03).
[2] 周奎,王琦,刘卫东,等.建筑工程结构健康检测的研究进展综述[J].工业建筑,2009(03).
[3] 李玲.浅谈基于模态分析的方法在建筑工程结构中的健康监测[J].科技创新与应用,2013(01).。