导数定义及公式
函数的导数与导数公式

函数的导数与导数公式导数是微积分的重要概念之一,它在函数的研究和应用中起着重要的作用。
本文将介绍函数的导数及其相关公式。
一、导数的定义与计算方法导数是函数在某一点上的瞬时变化率。
对于函数$f(x)$,其在$x=a$处的导数可以通过极限的定义来计算,即:$$f'(a) = \lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$$其中$h$表示自变量$x$的增量。
对于一次多项式函数$f(x) = ax+b$,可以直接求导。
根据导数的定义计算,有:$$f'(x) = \lim_{h\to 0} \frac{f(x+h)-f(x)}{h} = a$$所以一次多项式函数的导数等于其系数。
二、导数的几何意义导数具有几何意义,可以理解为函数曲线在某一点上的切线的斜率。
具体来说,对于函数$f(x)$,其导数$f'(x)$表示函数曲线在点$(x,f(x))$处的斜率。
通过导数的定义计算,可以得到函数曲线在不同点处的切线斜率,从而描绘出函数曲线的变化情况。
三、导数的基本性质导数具有一些基本的性质,可以用来简化导数的计算或推导其他函数的导数。
1. 常数乘法规则:若$c$为常数,则$(cf(x))' = cf'(x)$,即常数与函数的乘积的导数等于常数乘以函数的导数。
2. 取负号规则:$(-f(x))' = -f'(x)$,即函数的相反数的导数等于函数的导数的相反数。
3. 和差法则:$(f(x)\pm g(x))' = f'(x) \pm g'(x)$,即函数的和(或差)的导数等于函数的导数之和(或差)。
4. 乘法法则:$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$,即函数的乘积的导数等于第一个函数的导数乘以第二个函数,再加上第一个函数乘以第二个函数的导数。
5. 商法则:$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) -f(x)g'(x)}{(g(x))^2}$,即函数的商的导数等于分子的导数乘以分母,减去分子乘以分母的导数,再除以分母的平方。
导数的定义公式的变形

导数的定义公式的变形一、导数的定义。
1. 函数在某点的导数定义。
- 设函数y = f(x)在点x_0的某个邻域内有定义,当自变量x在x_0处取得增量Δ x(点x_0+Δ x仍在该邻域内)时,相应地函数y取得增量Δ y=f(x_0 + Δ x)-f(x_0)。
- 如果Δ y与Δ x之比当Δ xto0时的极限存在,则称函数y = f(x)在点x_0处可导,并称这个极限为函数y = f(x)在点x_0处的导数,记作f^′(x_0),即f^′(x_0)=limlimits_Δ xto0(Δ y)/(Δ x)=limlimits_Δ xto0(f(x_0+Δ x)-f(x_0))/(Δ x)。
2. 函数在区间上的导数。
- 如果函数y = f(x)在开区间(a,b)内每一点都可导,则称函数y = f(x)在开区间(a,b)内可导。
- 对于区间(a,b)内的每一个x值,都对应着一个确定的导数f^′(x),于是在区间(a,b)内就定义了一个新的函数,这个函数称为原函数y = f(x)的导函数,记作y^′,f^′(x),(dy)/(dx)或(d)/(dx)f(x),即f^′(x)=limlimits_Δ xto0(f(x+Δ x)-f(x))/(Δ x)。
二、导数定义公式的变形。
1. 用h表示增量。
- 令Δ x = h,则函数y = f(x)在点x_0处的导数f^′(x_0)=limlimits_hto0(f(x_0 + h)-f(x_0))/(h)。
- 函数y = f(x)的导函数f^′(x)=limlimits_hto0(f(x + h)-f(x))/(h)。
2. 从x到x_0的变形。
- 我们也可以写成f^′(x_0)=limlimits_xto x_0(f(x)-f(x_0))/(x - x_0)。
这种变形在一些证明和计算中非常有用,例如证明函数在某点的导数存在性等。
3. 负增量形式。
- 令Δ x=-h,当hto0时,Δ xto0。
导数和高阶导数公式总结

导数和高阶导数公式总结一、导数的定义和基本公式导数表示了函数在其中一点的变化率。
如果函数f(x)在x=a的邻域内有定义,那么它的导数f'(a)定义如下:f'(a) = lim(h→0) [f(a+h) - f(a)] / h其中,lim表示极限,h表示变化的量。
在上述定义中,导数可以理解为函数在其中一点的切线斜率。
如果导数大于0,意味着函数在该点递增;如果导数小于0,意味着函数在该点递减;如果导数等于0,意味着函数在该点取得极值。
根据这个定义,我们可以得到一些基本的导数公式:1.常数函数的导数为02. 幂函数的导数:(xn)' = nx^(n-1)3.指数函数的导数:(e^x)'=e^x4. 对数函数的导数:(ln x)' = 1/x5.三角函数的导数:- (sin x)' = cos x- (cos x)' = -sin x- (tan x)' = sec^2 x- (cot x)' = -csc^2 x- (sec x)' = sec x * tan x- (csc x)' = -csc x * cot x二、高阶导数的定义和计算高阶导数是指函数的导数再次求导的结果。
如果函数f(x)的导数f'(x)存在,我们可以继续求导得到f''(x),称为f(x)的二阶导数。
同样地,我们可以继续求导得到f'''(x),f''''(x),以此类推。
高阶导数的计算可以通过对导数的导数进行迭代实现。
例如,对于二阶导数:f''(x)=(f'(x))'=[(f(x+h)-f(x))/h]'= lim(h→0) [[(f(x+h) - f(x)) / h]' / h]通过类似的方法,可以计算三阶导数、四阶导数和更高阶的导数。
导数的概念及其意义、导数的运算

§3.1 导数的概念及其意义、导数的运算学习目标了解导数的概念、掌握基本初等函数的导数. 2.通过函数图象,理解导数的几何意义.3.能够用导数公式和导数的运算法则求简单函数的导数,能求简单的复合函数(形如f (ax +b ))的导数.知识梳理 1.导数的概念(1)函数y =f (x )在x =x 0处的导数记作f ′(x 0)或0'|x x y =.f ′(x 0)=lim Δx →0 ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx . (2)函数y =f (x )的导函数 f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx.2.导数的几何意义函数y =f (x )在x =x 0处的导数的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,相应的切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式基本初等函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x α(α∈Q ,且α≠0)f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x (a >0,且a ≠1)f ′(x )=a x ln_a f (x )=e xf ′(x )=e x f (x )=log a x (a >0,且a ≠1)f ′(x )=1x ln af (x )=ln xf ′(x )=1x4.导数的运算法则若f ′(x ),g ′(x )存在,则有 [f (x )±g (x )]′=f ′(x )±g ′(x ); [f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x );⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0); [cf (x )]′=cf ′(x ).5.复合函数的定义及其导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 常用结论1.区分在点处的切线与过点处的切线(1)在点处的切线,该点一定是切点,切线有且仅有一条. (2)过点处的切线,该点不一定是切点,切线至少有一条. 2.⎣⎡⎦⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0). 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( × ) (2)与曲线只有一个公共点的直线一定是曲线的切线.( × ) (3)f ′(x 0)=[f (x 0)]′.( × )(4)若f (x )=sin (-x ),则f ′(x )=cos (-x ).( × ) 教材改编题1.函数f (x )=e x +1x 在x =1处的切线方程为________.答案 y =(e -1)x +2 解析 f ′(x )=e x -1x 2,∴f ′(1)=e -1, 又f (1)=e +1,∴切点为(1,e +1),切线斜率k =f ′(1)=e -1, 即切线方程为y -(e +1)=(e -1)(x -1), 即y =(e -1)x +2.2.已知函数f (x )=x ln x +ax 2+2,若f ′(e)=0,则a =________. 答案 -1e解析 f ′(x )=1+ln x +2ax , ∴f ′(e)=2a e +2=0,∴a =-1e.3.若f (x )=ln(1-x )+e 1-x ,则f ′(x )=________. 答案1x -1-e 1-x题型一 导数的运算例1 (1)(多选)(2022·济南质检)下列求导运算正确的是( ) A.⎝⎛⎭⎫1ln x ′=-1x ln 2x B .(x 2e x )′=2x +e xC.⎣⎡⎦⎤cos ⎝⎛⎭⎫2x -π3′=-sin ⎝⎛⎭⎫2x -π3 D.⎝⎛⎭⎫x -1x ′=1+1x 2 答案 AD解析 ⎝⎛⎭⎫1ln x ′=-1ln 2x ·(ln x )′=-1x ln 2x , 故A 正确;(x 2e x )′=(x 2+2x )e x ,故B 错误;⎣⎡⎦⎤cos ⎝⎛⎭⎫2x -π3′=-2sin ⎝⎛⎭⎫2x -π3,故C 错误;⎝⎛⎭⎫x -1x ′=1+1x 2,故D 正确.(2)函数f (x )的导函数为f ′(x ),若f (x )=x 2+f ′⎝⎛⎭⎫π3sin x ,则f ⎝⎛⎭⎫π6=________. 答案 π236+2π3解析 f ′(x )=2x +f ′⎝⎛⎭⎫π3cos x , ∴f ′⎝⎛⎭⎫π3=2π3+12f ′⎝⎛⎭⎫π3, ∴f ′⎝⎛⎭⎫π3=4π3, ∴f ⎝⎛⎭⎫π6=π236+2π3.教师备选1.函数y =sin 2x -cos 2x 的导数y ′等于( )A .22cos ⎝⎛⎭⎫2x -π4B .cos 2x +sin xC .cos 2x -sin 2xD .22cos ⎝⎛⎭⎫2x +π4 答案 A解析 y ′=2cos 2x +2sin 2x =22cos ⎝⎛⎭⎫2x -π4. 2.(2022·济南模拟)已知函数f ′(x )=e x sin x +e x cos x ,则f (2 021)-f (0)等于( ) A .e 2 021cos 2 021 B .e 2 021sin 2 021 C.e2 D .e答案 B解析 因为f ′(x )=e x sin x +e x cos x , 所以f (x )=e x sin x +k (k 为常数), 所以f (2 021)-f (0)=e 2 021sin 2 021.思维升华 (1)求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.(2)抽象函数求导,恰当赋值是关键,然后活用方程思想求解. (3)复合函数求导,应由外到内逐层求导,必要时要进行换元.跟踪训练1 (1)若函数f (x ),g (x )满足f (x )+xg (x )=x 2-1,且f (1)=1,则f ′(1)+g ′(1)等于( )A .1B .2C .3D .4 答案 C解析 当x =1时,f (1)+g (1)=0, ∵f (1)=1,得g (1)=-1,原式两边求导,得f ′(x )+g (x )+xg ′(x )=2x , 当x =1时,f ′(1)+g (1)+g ′(1)=2, 得f ′(1)+g ′(1)=2-g (1)=2-(-1)=3.(2)已知函数f (x )=ln(2x -3)+ax e -x ,若f ′(2)=1,则a =________. 答案 e 2解析 f ′(x )=12x -3·(2x -3)′+a e -x +ax ·(e -x )′=22x -3+a e -x -ax e -x ,∴f ′(2)=2+a e -2-2a e -2=2-a e -2=1,则a =e 2.题型二 导数的几何意义 命题点1 求切线方程例2 (1)(2021·全国甲卷)曲线y =2x -1x +2在点(-1,-3)处的切线方程为__________.答案 5x -y +2=0 解析 y ′=⎝⎛⎭⎪⎫2x -1x +2′=2(x +2)-(2x -1)(x +2)2=5(x +2)2,所以y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为__________. 答案 x -y -1=0解析 ∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x .∴由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0. 命题点2 求参数的值(范围)例3 (1)(2022·青岛模拟)直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2),则2a +b 等于( )A .4B .3C .2D .1 答案 A解析 ∵直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2), 将P (1,2)代入y =kx +1, 可得k +1=2,解得k =1, ∵ f (x )=a ln x +b ,∴ f ′(x )=a x ,由f ′(1)=a1=1,解得a =1,可得f (x )=ln x +b , ∵P (1,2)在曲线f (x )=ln x +b 上, ∴f (1)=ln 1+b =2,解得b =2,故2a +b =2+2=4.(2)(2022·广州模拟)过定点P (1,e)作曲线y =a e x (a >0)的切线,恰有2条,则实数a 的取值范围是________. 答案 (1,+∞)解析 由y ′=a e x ,若切点为(x 0,0e x a ), 则切线方程的斜率k =0'|x x y =0e x a >0,∴切线方程为y =0e x a (x -x 0+1), 又P (1,e)在切线上, ∴0e x a (2-x 0)=e ,即ea =0e x (2-x 0)有两个不同的解, 令φ(x )=e x (2-x ), ∴φ′(x )=(1-x )e x ,当x ∈(-∞,1)时,φ′(x )>0; 当x ∈(1,+∞)时,φ′(x )<0,∴φ(x )在(-∞,1)上单调递增,在(1,+∞)上单调递减, ∴φ(x )max =φ(1)=e , 又x →-∞时,φ(x )→0; x →+∞时,φ(x )→-∞, ∴0<ea<e ,解得a >1,即实数a 的取值范围是(1,+∞). 教师备选1.已知曲线f (x )=x 3-x +3在点P 处的切线与直线x +2y -1=0垂直,则P 点的坐标为( ) A .(1,3) B .(-1,3) C .(1,3)或(-1,3) D .(1,-3)答案 C解析 设切点P (x 0,y 0), f ′(x )=3x 2-1,又直线x +2y -1=0的斜率为-12,∴f ′(x 0)=3x 20-1=2,∴x 20=1, ∴x 0=±1,又切点P (x 0,y 0)在y =f (x )上, ∴y 0=x 30-x 0+3, ∴当x 0=1时,y 0=3;当x 0=-1时,y 0=3. ∴切点P 为(1,3)或(-1,3).2.(2022·哈尔滨模拟)已知M 是曲线y =ln x +12x 2+(1-a )x 上的任一点,若曲线在M 点处的切线的倾斜角均是不小于π4的锐角,则实数a 的取值范围是( )A .[2,+∞)B .[4,+∞)C .(-∞,2]D .(-∞,4]答案 C解析 因为y =ln x +12x 2+(1-a )x ,所以y ′=1x +x +1-a ,因为曲线在M 点处的切线的倾斜角均是不小于π4的锐角,所以y ′≥tan π4=1对于任意的x >0恒成立,即1x +x +1-a ≥1对任意x >0恒成立, 所以x +1x ≥a ,又x +1x≥2,当且仅当x =1x ,即x =1时,等号成立,故a ≤2,所以a 的取值范围是(-∞,2].思维升华 (1)处理与切线有关的参数问题,关键是根据曲线、切线、切点的三个关系列出参数的方程:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上. (2)注意区分“在点P 处的切线”与“过点P 处的切线”. 跟踪训练2 (1)(2022·南平模拟)若直线y =x +m 与曲线y =e x -2n相切,则( )A .m +n 为定值 B.12m +n 为定值 C .m +12n 为定值D .m +13n 为定值答案 B解析 设直线y =x +m 与曲线y =e x -2n切于点(x 0,02e x n -),因为y ′=e x-2n,所以02e x n -=1,所以x 0=2n ,所以切点为(2n ,1),代入直线方程得1=2n +m , 即12m +n =12. (2)若函数f (x )=ln x +2x 2-ax 的图象上存在与直线2x -y =0平行的切线,则实数a 的取值范围是______. 答案 [2,+∞)解析 直线2x -y =0的斜率k =2,又曲线f (x )上存在与直线2x -y =0平行的切线, ∴f ′(x )=1x +4x -a =2在(0,+∞)内有解,则a =4x +1x -2,x >0.又4x +1x≥24x ·1x=4, 当且仅当x =12时取“=”.∴a ≥4-2=2.∴a 的取值范围是[2,+∞). 题型三 两曲线的公切线例4 (1)(2022·邯郸模拟)已知函数f (x )=x ln x ,g (x )=x 2+ax (a ∈R ),直线l 与f (x )的图象相切于点A (1,0),若直线l 与g (x )的图象也相切,则a 等于( ) A .0 B .-1 C .3 D .-1或3 答案 D解析 由f (x )=x ln x 求导得f ′(x )=1+ln x ,则f ′(1)=1+ln 1=1,于是得函数f (x )在点A (1,0)处的切线l 的方程为y =x -1,因为直线l 与g (x )的图象也相切,则方程组⎩⎪⎨⎪⎧y =x -1,g (x )=x 2+ax ,有唯一解,即关于x 的一元二次方程x 2+(a -1)x +1=0有两个相等的实数根, 因此Δ=(a -1)2-4=0,解得a =-1或a =3, 所以a =-1或a =3.(2)(2022·韶关模拟)若曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x 存在公共切线,则a 的取值范围为________. 答案 ⎣⎡⎭⎫e24,+∞ 解析 由y =ax 2(a >0),得y ′=2ax , 由y =e x ,得y ′=e x ,曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x 存在公共切线, 设公切线与曲线C 1切于点(x 1,ax 21), 与曲线C 2切于点(x 2,2e x ),则2ax 1=222121e e ,x x ax x x -=-可得2x 2=x 1+2,∴a =1121e2x x +, 记f (x )=12e2x x +, 则f ′(x )=122e(2)4x x x+-, 当x ∈(0,2)时,f ′(x )<0,f (x )单调递减; 当x ∈(2,+∞)时,f ′(x )>0,f (x )单调递增. ∴当x =2时,f (x )min =e 24.∴a 的取值范围是⎣⎡⎭⎫e 24,+∞.延伸探究 在本例(2)中,把“存在公共切线”改为“存在两条公共切线”,则a 的取值范围为________. 答案 ⎝⎛⎭⎫e 24,+∞ 解析 由本例(2)知,∵两曲线C 1与C 2存在两条公共切线,∴a =1121e2x x +有两个不同的解. ∵函数f (x )=12e2x x+在(0,2)上单调递减, 在(2,+∞)上单调递增,且f (x )min =f (2)=e 24,又x →0时,f (x )→+∞, x →+∞时,f (x )→+∞, ∴a >e 24.教师备选1.若f (x )=ln x 与g (x )=x 2+ax 两个函数的图象有一条与直线y =x 平行的公共切线,则a 等于( )A .1B .2C .3D .3或-1 答案 D解析 设在函数f (x )=ln x 处的切点为(x ,y ),根据导数的几何意义得到k =1x =1,解得x =1,故切点为(1,0),可求出切线方程为y =x -1,此切线和g (x )=x 2+ax 也相切, 故x 2+ax =x -1,化简得到x 2+(a -1)x +1=0,只需要满足Δ=(a -1)2-4=0,解得a =-1或a =3. 2.已知曲线y =e x 在点(x 1,1e x )处的切线与曲线y =ln x 在点(x 2,ln x 2)处的切线相同,则(x 1+1)(x 2-1)等于( )A .-1B .-2C .1D .2 答案 B解析 已知曲线y =e x 在点(x 1,1e x )处的切线方程为 y -1e x =1e x (x -x 1),即1111e e e ,xxxy x x =-+曲线y =ln x 在点(x 2,ln x 2)处的切线方程为y -ln x 2=1x 2(x -x 2),即y =1x 2x -1+ln x 2,由题意得1112121e ,e e 1ln ,x x x x x x ⎧=⎪⎨⎪-=-+⎩ 得x 2=11ex , 1e x -1e x x 1=-1+ln x 2=-1+11lnex =-1-x 1, 则1e x =x 1+1x 1-1.又x 2=11e x ,所以x 2=x 1-1x 1+1,所以x 2-1=x 1-1x 1+1-1=-2x 1+1,所以(x 1+1)(x 2-1)=-2.思维升华 公切线问题,应根据两个函数在切点处的斜率相等,且切点既在切线上又在曲线上,列出有关切点横坐标的方程组,通过解方程组求解.或者分别求出两函数的切线,利用两切线重合列方程组求解.跟踪训练3 (1)(2022·青岛模拟)已知定义在区间(0,+∞)上的函数f (x )=-2x 2+m ,g (x )=-3ln x -x ,若以上两函数的图象有公共点,且在公共点处切线相同,则m 的值为( ) A .2 B .5 C .1 D .0答案 C解析 根据题意,设两曲线y =f (x )与y =g (x )的公共点为(a ,b ),其中a >0, 由f (x )=-2x 2+m ,可得f ′(x )=-4x ,则切线的斜率为k =f ′(a )=-4a , 由g (x )=-3ln x -x ,可得g ′(x )=-3x -1,则切线的斜率为k =g ′(a )=-3a -1,因为两函数的图象有公共点,且在公共点处切线相同,所以-4a =-3a -1,解得a =1或a =-34(舍去),又由g (1)=-1,即公共点的坐标为(1,-1), 将点(1,-1)代入f (x )=-2x 2+m , 可得m =1.(2)已知f (x )=e x (e 为自然对数的底数),g (x )=ln x +2,直线l 是f (x )与g (x )的公切线,则直线l 的方程为____________________. 答案 y =e x 或y =x +1解析 设直线l 与f (x )=e x 的切点为(x 1,y 1), 则y 1=1e x ,f ′(x )=e x , ∴f ′(x 1)=1e x , ∴切点为(x 1,1e x ), 切线斜率k =1e x ,∴切线方程为y -1e x =1e x (x -x 1), 即y =1e x ·x -x 11e x +1e x ,①同理设直线l 与g (x )=ln x +2的切点为(x 2,y 2), ∴y 2=ln x 2+2, g ′(x )=1x ,∴g ′(x 2)=1x 2,切点为(x 2,ln x 2+2), 切线斜率k =1x 2,∴切线方程为y -(ln x 2+2)=1x 2(x -x 2),即y =1x 2·x +ln x 2+1,②由题意知,①与②相同,∴111121221e e ,e e ln 1,x x x x x x x x -⎧=⎪⎨⎪-+==+⇒⎩③④ 把③代入④有111e e x x x -+=-x 1+1, 即(1-x 1)(1e x -1)=0, 解得x 1=1或x 1=0,当x 1=1时,切线方程为y =e x ; 当x 1=0时,切线方程为y =x +1, 综上,直线l 的方程为y =e x 或y =x +1.课时精练1.(2022·营口模拟)下列函数的求导正确的是( ) A .(x -2)′=-2xB .(x cos x )′=cos x -x sin xC .(ln 10)′=110D .(e 2x )′=2e x 答案 B解析 (x -2)′=-2x -3,∴A 错; (x cos x )′=cos x -x sin x ,∴B 对; (ln 10)′=0,∴C 错; (e 2x )′=2e 2x ,∴D 错.2.(2022·黑龙江哈师大附中月考)曲线y =2cos x +sin x 在(π,-2)处的切线方程为( ) A .x -y +π-2=0 B .x -y -π+2=0 C .x +y +π-2=0 D .x +y -π+2=0答案 D解析 y ′=-2sin x +cos x ,当x =π时,k =-2sin π+cos π=-1,所以在点(π,-2)处的切线方程,由点斜式可得y +2=-1×(x -π),化简可得x +y -π+2=0.3.(2022·长治模拟)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)等于( )A .-1B .0C .2D .4 答案 B解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13,∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1, ∴g ′(3)=1+3×⎝⎛⎭⎫-13=0. 4.已知点A 是函数f (x )=x 2-ln x +2图象上的点,点B 是直线y =x 上的点,则|AB |的最小值为( ) A. 2 B .2 C.433 D.163答案 A解析 当与直线y =x 平行的直线与f (x )的图象相切时,切点到直线y =x 的距离为|AB |的最小值.f ′(x )=2x -1x =1,解得x =1或x =-12(舍去),又f (1)=3,所以切点C (1,3)到直线y =x 的距离即为|AB |的最小值,即|AB |min =|1-3|12+12= 2.5.设曲线f (x )=a e x +b 和曲线g (x )=cos πx2+c 在它们的公共点M (0,2)处有相同的切线,则b+c -a 的值为( ) A .0 B .π C .-2 D .3 答案 D解析 ∵f ′(x )=a e x ,g ′(x )=-π2sin πx2,∴f ′(0)=a ,g ′(0)=0,∴a =0,又M (0,2)为f (x )与g (x )的公共点,∴f (0)=b =2,g (0)=1+c =2,解得c =1, ∴b +c -a =2+1-0=3.6.(2022·邢台模拟)设点P 是函数f (x )=2e x -f ′(0)x +f ′(1)图象上的任意一点,点P 处切线的倾斜角为α,则角α的取值范围是( ) A.⎣⎡⎭⎫0,3π4 B.⎣⎡⎭⎫0,π2∪⎝⎛⎭⎫3π4,π C.⎝⎛⎭⎫π2,3π4 D.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π 答案 B解析 ∵f (x )=2e x -f ′(0)x +f ′(1), ∴f ′(x )=2e x -f ′(0),∴f ′(0)=2-f ′(0),f ′(0)=1, ∴f (x )=2e x -x +f ′(1), ∴f ′(x )=2e x -1>-1.∵点P 是曲线上的任意一点,点P 处切线的倾斜角为α, ∴tan α>-1. ∵α∈[0,π), ∴α∈⎣⎡⎭⎫0,π2∪⎝⎛⎭⎫3π4,π. 7.(多选)已知函数f (x )的图象如图,f ′(x )是f (x )的导函数,则下列结论正确的是( )A .f ′(3)>f ′(2)B .f ′(3)<f ′(2)C .f (3)-f (2)>f ′(3)D .f (3)-f (2)<f ′(2) 答案 BCD解析 f ′(x 0)的几何意义是f (x )在x =x 0处的切线的斜率.由图知f ′(2)>f ′(3)>0, 故A 错误,B 正确. 设A (2,f (2)),B (3,f (3)), 则f (3)-f (2)=f (3)-f (2)3-2=k AB ,由图知f ′(3)<k AB <f ′(2),即f ′(3)<f (3)-f (2)<f ′(2),故C ,D 正确.8.(多选)(2022·重庆沙坪坝区模拟)若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=[f ′(x )]′.若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,3π4上是凸函数的是( ) A .f (x )=-x 3+3x +4 B .f (x )=ln x +2x C .f (x )=sin x +cos x D .f (x )=x e x 答案 ABC解析 对A ,f (x )=-x 3+3x +4, f ′(x )=-3x 2+3, f ″(x )=-6x ,当x ∈⎝⎛⎭⎫0,3π4时,f ″(x )<0,故A 为凸函数; 对B ,f (x )=ln x +2x ,f ′(x )=1x +2,f ″(x )=-1x2,当x ∈⎝⎛⎭⎫0,3π4时,f ″(x )<0,故B 为凸函数; 对C ,f (x )=sin x +cos x , f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x =-2sin ⎝⎛⎭⎫x +π4, 当x ∈⎝⎛⎭⎫0,3π4时,f ″(x )<0,故C 为凸函数; 对D ,f (x )=x e x ,f ′(x )=(x +1)e x , f ″(x )=(x +2)e x ,当x ∈⎝⎛⎭⎫0,3π4时,f ″(x )>0,故D 不是凸函数. 9.(2022·马鞍山模拟)若曲线f (x )=x cos x 在x =π处的切线与直线ax -y +1=0平行,则实数a =________. 答案 -1解析 因为f (x )=x cos x , 所以f ′(x )=cos x -x sin x , f ′(π)=cos π-π·sin π=-1,因为函数在x =π处的切线与直线ax -y +1=0平行,所以a =f ′(π)=-1.10.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a =________.答案 2解析 f ′(x )=-(ax -1)′(ax -1)2+e xcos x -e xsin x =-a(ax -1)2+e x cos x -e x sin x , ∴f ′(0)=-a +1=-1,则a =2.11.(2022·宁波镇海中学质检)我国魏晋时期的科学家刘徽创立了“割圆术”,实施“以直代曲”的近似计算,用正n 边形进行“内外夹逼”的办法求出了圆周率π的精度较高的近似值,这是我国最优秀的传统科学文化之一.借用“以直代曲”的近似计算方法,在切点附近,可以用函数图象的切线近似代替在切点附近的曲线来近似计算.设f (x )=2e x,则f ′(x )=________,其在点(0,1)处的切线方程为________.答案 22e xx y =1 解析 ∵f (x )=2e x ,故f ′(x )=(x 2)′2e x =22e x x ,则f ′(0)=0.故曲线y =f (x )在点(0,1)处的切线方程为y =1.12.已知函数f (x )=x 3-ax 2+⎝⎛⎭⎫23a +1x (a ∈R ),若曲线y =f (x )存在两条垂直于y 轴的切线,则a 的取值范围为____________________. 答案 (-∞,-1)∪(3,+∞)解析 因为f (x )=x 3-ax 2+⎝⎛⎭⎫23a +1x (a ∈R ),所以f ′(x )=3x 2-2ax +23a +1,因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2-2ax +23a +1=0有两个不等的实根,则Δ=4a 2-12⎝⎛⎭⎫23a +1>0,即a 2-2a -3>0, 解得a >3或a <-1,所以a 的取值范围是(-∞,-1)∪(3,+∞).13.拉格朗日中值定理又称拉氏定理,是微积分学中的基本定理之一,它反映了函数在闭区间上的整体平均变化率与区间某点的局部变化率的关系,其具体内容如下:若f (x )在[a ,b ]上满足以下条件:①在[a ,b ]上图象连续,②在(a ,b )内导数存在,则在(a ,b )内至少存在一点c ,使得f (b )-f (a )=f ′(c )(b -a )(f ′(x )为f (x )的导函数).则函数f (x )=x e x -1在[0,1]上这样的c 点的个数为( ) A .1 B .2 C .3 D .4 答案 A解析 函数f (x )=x e x -1, 则f ′(x )=(x +1)e x -1, 由题意可知,存在点c ∈[0,1], 使得f ′(c )=f (1)-f (0)1-0=1,即(1+c )e c -1=1,所以e c -1=11+c ,c ∈[0,1],作出函数y =e c -1和y =11+c的图象,如图所示,由图象可知,函数y =e c-1和y =11+c的图象只有一个交点,所以e c -1=11+c ,c ∈[0,1]只有一个解,即函数f (x )=x e x -1在[0,1]上c 点的个数为1.14.(2021·新高考全国Ⅰ)若过点(a ,b )可以作曲线y =e x 的两条切线,则( ) A .e b <a B .e a <b C .0<a <e b D .0<b <e a答案 D解析 方法一 设切点(x 0,y 0),y 0>0, 则切线方程为y -b =0e x (x -a ),由⎩⎨⎧y 0-b =0e x (x 0-a ),y 0=0e x ,得0e x (1-x 0+a )=b ,则由题意知关于x 0的方程0e x (1-x 0+a )=b 有两个不同的解. 设f (x )=e x (1-x +a ),则f ′(x )=e x (1-x +a )-e x =-e x (x -a ), 由f ′(x )=0得x =a ,所以当x <a 时,f ′(x )>0,f (x )单调递增, 当x >a 时,f ′(x )<0,f (x )单调递减, 所以f (x )max =f (a )=e a (1-a +a )=e a , 当x <a 时,a -x >0,所以f (x )>0,当x →-∞时,f (x )→0, 当x →+∞时,f (x )→-∞,函数f (x )=e x (1-x +a )的大致图象如图所示,因为f (x )的图象与直线y =b 有两个交点,所以0<b <e a .方法二 (用图估算法)过点(a ,b )可以作曲线y =e x 的两条切线 ,则点(a ,b )在曲线y =e x 的下方且在x 轴的上方, 得0<b <e a .15.若曲线y =14sin 2x +32cos 2x 在A (x 1,y 1),B (x 2,y 2)两点处的切线互相垂直,则|x 1-x 2|的最小值为( ) A.π3 B.π2 C.2π3 D .π 答案 B解析 ∵y =14sin 2x +32cos 2x=14sin 2x +32×1+cos 2x2 =12sin ⎝⎛⎭⎫2x +π3+34, ∴y ′=cos ⎝⎛⎭⎫2x +π3, ∴曲线的切线斜率在[-1,1]范围内, 又曲线在两点处的切线互相垂直,故在A (x 1,y 1),B (x 2,y 2)两点处的切线斜率必须一个是1,一个是-1.不妨设在A 点处切线的斜率为1, 则有2x 1+π3=2k 1π(k 1∈Z ),2x 2+π3=2k 2π+π(k 2∈Z ),则可得x 1-x 2=(k 1-k 2)π-π2=k π-π2(k ∈Z ),∴|x 1-x 2|min =π2.16.(2022·南昌模拟)已知曲线C 1:y =e x +m ,C 2:y =x 2,若恰好存在两条直线l 1,l 2与C 1,C 2都相切,则实数m 的取值范围是____________. 答案 (-∞,2ln 2-2)解析 由题意知,l 1,l 2的斜率存在,设直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,设l 1与C 1,C 2的切点坐标分别为(x 1,y 1),(x 2,y 2), 则⎩⎨⎧k 1=1e x m+=2x 2(k 1>0),k 1x 1+b 1=1e x m+,k 1x 2+b 1=x 22,可得⎩⎪⎨⎪⎧x 1=ln k 1-m ,x 2=k 12,k 1(x 2-x 1)=x 22-1ex m+,故k 1⎝⎛⎭⎫k 12-ln k 1+m =k 214-k 1, 整理得m =ln k 1-k 14-1,同理可得,当直线l 2:y =k 2x +b 2与C 1,C 2都相切时, 有m =ln k 2-k 24-1,综上所述,只需m =ln k -k4-1(k >0)有两解,令f (k )=ln k -k4-1,则f ′(k )=1k -14=4-k4k ,故当f ′(k )>0时,0<k <4, 当f ′(k )<0时,k >4,所以f (k )在(0,4)上单调递增,在(4,+∞)上单调递减, 故f (k )max =f (4)=ln 4-44-1=2ln 2-2,所以只需满足m <2ln 2-2即可.。
导数的概念及计算

导数的概念及计算一.函数y =f (x )在x =x 0处的导数(1)定义:称函数y =f (x )在x =x 0处的瞬时变化率0lim x ∆→ f (x 0+Δx )-f (x 0)Δx=0lim x ∆→ Δy Δx 为函数y =f (x )在x =x 0处的导数,记作y ′|x =x 0 =f ′(x 0) =0lim x ∆→ΔyΔx =0lim x ∆→f (x 0+Δx )-f (x 0)Δx . (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)值就是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).二.基本初等函数的导数公式三.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 四.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′.考向一 利用公式及运算法则求导【例2】求下列函数的导数2311(1)()y x x x x =++ (2) (3) ()234(21)x y x =+ (5)sin2xy e x -= 【举一反三】1.下列求导运算正确的是( )A .(3x )′=x •3x−1B .(2e x )′=2e x (其中e 为自然对数的底数)C .(x 2+1x )′=2x +1x 2 D .(x cosx)′=cosx−xsinx cos 2x2.求下列函数的导数: (1)y =√x 5+√x 7+√x 9√x ; (2)y =x ⋅tanx (3)y =x n ⋅lg x ;(4)y =1x +2x 2+1x 3;考向二 复合函数求导【例3】求下列函数导数(1)y =sin(2x +1) ()(2)cos2f x x x =⋅ (3)()cos ln y x =【举一反三】求下列函数的导数: (1)y =; (2)2()5log 21y x =+.(3)sin()eax b y +=;(提示:设e uy =,sin u v =,v ax b =+,x u v xy y u v ''''=⋅⋅)(4)2(πsin 2)3y x =+; 考向三 利用导数求值【例4】(1)f (x )=x (2 019+ln x ),若f ′(x 0)=2 020,则x 0= . 2.若f (x )=x 2+2x ·f ′(1),则f ′(0)= .3. 已知函数()f x 的导函数为()f x ',且满足()()2e ln f x xf x +'=,则()e f '= 。
高职高等数学7-导数定义及公式

条 件
研究导数的意义
1 即时速度 v(t0 )
经过 ∆ t 时间
∆s s (t0 + ∆t ) − s (t0 ) v= = ∆t ∆t
t0 + ∆t时刻
t0时刻
走了 ∆ s 路程
∆t → 0
t0时刻
s (t0 + ∆t ) − s (t0 ) v(t0 ) = lim ∆t →0 ∆t t0 + ∆t时刻
△x
2 x + ∆x = lim = 2x ∆x →0 1 f ′(1) = f ′( x) | x =1 = 2 ×1 = 2
′ = [12 ]′ = 0 PS : [ f (1)]
基本初等函数的求导公式
c′ = 0 ( x a )′ = n ⋅ x a −1 ( a为任意实数 ) ( a x )′ = a x ln a ( (e x )′ = e x ) 1 1 (log a x )′ = ( (ln x )' = ) x ln a x (sin x )' = cos x ; (cos x )' = − sin x (tan x )' = sec 2 x ; (cot x )' = − csc 2 x (sec x )′ = sec x ⋅ tan x ; (csc x )' = − csc x ⋅ cot x
s (t )
s′(t0 )
2 函数f ( x)在x0处切线的斜率
B A C
l
l
∆x → 0
x0
klAB = tan(∠BAC ) =
x0 + ∆x
x0
x0 +∆x
BC f ( x0 + ∆x ) − f ( x0 ) = AC ∆x f ( x0 + ∆x) − f ( x0 ) kl = lim = f ′( x0 ) ∆x →0 ∆x
导数的定义和求导规则

导数的定义和求导规则一、导数的定义1.1 极限的概念:当自变量x趋近于某一数值a时,函数f(x)趋近于某一数值L,即称f(x)当x趋近于a时的极限为L,记作:lim (x→a) f(x) = L1.2 导数的定义:函数f(x)在点x=a处的导数,记作f’(a)或df/dx|_{x=a},表示函数在某一点的瞬时变化率。
定义如下:二、求导规则2.1 常数倍法则:如果u(x)是可导函数,c是一个常数,则cu(x)也是可导函数,且(cu(x))’ = c*u’(x)。
2.2 幂函数求导法则:如果u(x) = x^n,其中n为常数,则u’(x) = n*x^(n-1)。
2.3 乘积法则:如果u(x)和v(x)都是可导函数,则(u(x)v(x))’ = u’(x)v(x) +u(x)v’(x)。
2.4 商法则:如果u(x)和v(x)都是可导函数,且v(x)≠0,则(u(x)/v(x))’ =(u’(x)v(x) - u(x)v’(x))/(v(x))^2。
2.5 和差法则:如果u(x)和v(x)都是可导函数,则(u(x) + v(x))’ = u’(x) + v’(x),(u(x) - v(x))’ = u’(x) - v’(x)。
2.6 链式法则:如果y = f(u),u = g(x),则y关于x的导数可以表示为dy/dx = (dy/du) * (du/dx)。
2.7 复合函数求导法则:如果y = f(g(x)),则y关于x的导数可以表示为dy/dx = (df/dg) * (dg/dx)。
2.8 高阶导数:如果f’(x)是f(x)的一阶导数,则f’‘(x)是f’(x)的一阶导数,以此类推。
2.9 隐函数求导法则:如果方程F(x,y) = 0表示隐函数,则y关于x的导数可以表示为(dy/dx) = -F_x / F_y,其中F_x和F_y分别是F(x,y)对x和y的偏导数。
三、导数的应用3.1 函数的单调性:如果f’(x) > 0,则f(x)在区间内单调递增;如果f’(x) < 0,则f(x)在区间内单调递减。
导数公式和法则

导数公式和法则一、导数的定义导数是微积分学中的一个重要概念,指的是函数在某一点处的变化率。
在数学上,导数通常用符号f′(f)来表示,表示函数f(f)在点f处的导数。
导数的定义如下:若函数f(f)在f=f处可导,则导数f′(f)定义为:$$ f'(a) = \\lim\\limits_{h \\to 0} \\frac{f(a + h) - f(a)}{h} $$其中f ff0,表示取极限时f逐渐趋近于0。
二、导数的公式对于常见函数,有一些常用的导数公式和法则,可以帮助我们计算导数。
下面列举了一些常见函数的导数公式:1.常数函数f(f)=f的导数为f′(f)=0,其中f为常数。
2.幂函数f(f)=f f的导数为 $f'(x) = n \\cdot x^{n-1}$,其中f为任意实数。
3.指数函数f(f)=f f的导数为f′(f)=f f。
4.对数函数 $f(x) = \\ln{x}$的导数为 $f'(x) =\\frac{1}{x}$,其中f>0。
5.三角函数的导数:–正弦函数 $f(x) = \\sin{x}$ 的导数为 $f'(x) = \\cos{x}$。
–余弦函数 $f(x) = \\cos{x}$ 的导数为 $f'(x) = -\\sin{x}$。
–正切函数 $f(x) = \\tan{x}$ 的导数为 $f'(x) = \\sec^2{x}$。
三、导数的法则在计算导数时,可以通过一些常见的法则来简化问题。
以下是一些常用的导数法则:1.常数倍法则:若 $f(x) = c \\cdot g(x)$,则 $f'(x) = c\\cdot g'(x)$。
2.和差法则:若 $f(x) = g(x) \\pm h(x)$,则 $f'(x) =g'(x) \\pm h'(x)$。
3.乘积法则:若 $f(x) = g(x) \\cdot h(x)$,则 $f'(x) =g'(x) \\cdot h(x) + g(x) \\cdot h'(x)$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数:
1.若f(x)=c,则f‘(x)=
2. 若f(x)=x n(n∈Q∗),则f‘(x)=
3. 若f(x)=sin x,则f‘(x)=
4.若f(x)=cos x,则f‘(x)=
5. 若f(x)= a x,则f‘(x)=
6. 若f(x)= e x,则f‘(x)=
7.若f(x)= log a x,则f‘(x)=8.若f(x)= ln x,则f‘(x)=9.【f(x)±
g(x)】′=
10.【f(x).g(x)】′=
11.【f(x)
g(x)
】′=
12.【cf(x)】′=
13. y=f(u),u=g(x),则y=f(g(x));y x′=
sin2x=
(e−x)′=
##导数:一般地,函数y=f (x )在x=x 0处的瞬时变化率是
Δy Δx
∆x→0lim = f (x 0+∆x )−f(x 0)∆x ∆x→0lim ,称函数y=f (x )在x=x 0处的导数,记作: f ‘(x )或y ‘|x =x 0。
即 f ‘(x 0)=Δy Δx ∆x→0lim = f (x 0+∆x )−f(x 0
)∆x ∆x→0lim 。
##函数y=f (x )在点x 0处的导数的几何意义,就是曲线y=f (x )在点P (x 0,f (x 0))处的切线斜率,也就是说曲线y=f (x )在点P (x 0,f (x 0))处的切线斜率是f ‘(x 0)。
相应地,过p 点的切线方程为:
y-f (x 0)=f ‘(x 0)(x-x 0)
##导函数:如果函数y=f (x )在开区间(a ,b )内每一点都可导,就说函数f (x )在开区间(a ,b )内可导。
若函数f (x )在开区间(a ,b )内可导,则f (x )在(a ,b )内每一点的导数构成一个新函数,把这一新函数叫做f (x )在开区间(a ,b )内的导函数(简称导数)记作f ‘(x )或y ‘或y ‘x 。
即f ‘(x )=y ‘=Δy Δx ∆x→0lim = f (x+∆x )−f(x)∆x ∆x→0lim
一、函数的单调性
一般地,与其导函数的正负有如下关系:在某个区间(a ,b)内,如果f ‘(x )>0,那么函数y=f (x )在这个区间内单调递增;如果f ‘(x )<0那么函数y =f (x )在这个区间内单调递减。
1. 如果f ‘(x )>0,则f (x )严格增函数;如果f ‘(x )
<0,则f (x )严格减函数。
2. 如果在(a ,b )内恒有f ‘(x )=0,那么f (x )在(a ,
b )内是常数。
3.f‘(x)>0是f(x)在此区间上为增函数的充分而不必要条件。
求函数单调区间的步骤:
1.确定y=f(x)的定义域;
2.求导数f‘(x),求出f‘(x)=0的根;
3.函数的无定义点和f‘(x)=0的根将f(x)的定义域分成若干区间,列表考查这若干区间内f‘(x)的符号,进而确定f(x)的单调区间。
注意:A.如果一个函数具有相同单调性的区间不止一个,哪个这些单调区间不能用“U”连接,只能用逗号或“和”字隔开。
B.求函数单调区间时易忽视函数的定义域。
应优先考虑函数的定义域。
二、函数的极值:
1.定义,设函数f(x)在点x0附近有定义,如果对x0附近的所有点,都有f(x)<f(x0),则称f(x0)是函数f(x)的一个极大值;如果对x0附近的所有点,都有f(x)>f(x0),则称
f(x0)是函数f(x)的一个极小值。
极大值点、极小值点统称极值点,极大值和极小值统称极值。
2.判断f(x0)是极大值或极小值的方法:
第一步,确定函数的定义域,求导数f‘(x);
第二步,求方程f‘(x)=0的根;
第三步,检查f‘(x)在f‘(x)=0的根左右两侧的值的符号;
1.如果“左正右负”,那么f(x)在这个根处取到极大值;
2.如果“左负右正”,那么f(x)在这个根处取到极小值;
3.如果左右不改变符号,即都为正或都为负,则f(x)在这个根处无极值。
在此步聚中,最好利用方程f‘(x)=0的根,顺次将函数的定
义区间分成若干个开区间,并列表,依表格内容得出结论。
※函数在极值点的导数为0,但导数为0的点不一定是极值点,如函数f(x)=x3,点x=0就不是极值点,但f‘(0)=0;
※函数的极大值不一定大于极小值;
※在给定的一个区间上,函数可能有若干个极值点,也可能不存在极值点。
三函数的最值:
设函数y=f(x)是定义在区间[a,b]上的函数,y=f(x)在
区间(a,b)内有导数,求y=f(x)在[a,b]上的最大值与最小值,其步骤为:
先求函数y=f(x)在(a,b)内的极值;再将函数y=f(x)的各极值与端点的函数值f(a)、f(b )比较,其中最大的一个是最大值,最小的一个是最小值。
如果在区间[a,b]上,函数y=f(x)的图象是一条连续不断的曲线,则函数在[a,b]上一定能够取得最大值和最小值,并且函数的最值必在极值点或端点处取得。
※提示:
1.若函数y=f (x )在区间[a ,b]上单调递增,则f (a )为最小值,f (b )为最大值;若若函数y=f (x )在区间[a ,b]上单调递减,则f (a )为最大值,f (b )为最小值。
2.图象连续不断的函数在开区间(a ,b )上不一定有最大(小)值,如果图象连续不断的函数在开区间(a ,b )上只有一个极值,则该极值就是最值。
3.函数的极值不一定是最值,求函数的最值与函数的极值不同的是,在求可导函数的最值时,不需要对各导数为0的点讨论,其是极大值还是极小值,只需将导数为0的点的函数和端点函数值时行比较。
在解决实际生活中优化问题注意事项:1必须考虑是否符合实际意义2只有一个点使f ‘(x )=0的情形,如果在点有最大(小)值,不与端点比较也能知道是最大(小)值。
3不仅注意将问题涉及变量关系用函数关系表示出来,而且还应确定函数关系式中自变量的定义区间。
四.定积分及应用
定积分定义:若函数y=f (x )在区间[a ,b]上连续用分点a =x 0<x 1<⋯⋯<x i−1<x i <x n =b,将区间[a ,b]等分成n 个小区间,在每个小区间[x i−1,x i ]上任取一点ξi (i=1,2,3,⋯n ),
作和式∑f (ξi )n i=1∆x =∑b−a n f (ξi )n i=1,当n →∞时,上述和式无
限接近某个常数,这个常数叫函数y=f (x )在区间[a ,b]上定积分,记作∫f (x )b a dx 。
即∫f (x )b a dx =n→∞lim ∑b−a n f (ξi )n i=1
其中 f (x )叫做被积函数,a 做积分下限,b 做积分上限。
定积分∫f (x )b
a
dx 不是一个表达式,是一个常数。
定积分几何意义:从几何上看,若函数y=f (x )在区间[a ,b]上连续且恒有f (x )≥0,那么定积分∫f (x )b a
dx 表示直线x=a,x=b (a ≠b ),y=0和曲线y=f (x )所围成的曲边梯形的面积;
定积分性质:∫kf (x )b a dx =k ∫f (x )b a
dx (k 为常数)
∫[f (x )±g(x)]b a dx =∫f (x )b a dx ±∫g (x )b
a
dx ∫f (x )b a dx =−∫f (x )a b
dx 以上是线性性质,下面是对区间可加性
∫f (x )c a dx =∫f (x )b a dx +∫f (x )c b
dx (a <b <c ) 微积分基本定理--牛顿-莱布尼兹公式
一般地,如果f (x )在区间[a ,b]上的连续函数,并且F‘(x )=f (x ),那么∫f (x )b a
dx =F(b )-F(a )。
定积分的简单应用:
一、 求平面图形面积的应用
1. 定积分与平面图形面积的关系
通过定积分运算可以发现,定积分的值可以取正也可以取负,也可为0.
(1) 当对应的曲边梯形位于X轴上方,定积分值取正值,且
等于曲边梯形的面积;
(2) 当对应的曲边梯形位于X轴下方,定积分值取负值,且
等于曲边梯形面积的相反数;
(3) 当位于X轴上方的曲边梯形的面积等于位于X轴下方的
曲边梯形的面积时,定积分的值为0,且等于位于X轴
上方的曲边梯形的面积减去位于X轴下方的曲边梯形的
面积。
2. 利用定积分求平面图形面积的步骤
(1) 画出草图,在直角坐标系中画出曲线或直线的大致图像;
(2) 借助图形确定被积分函数,求出交点坐标,确定积分上、
下限;
(3) 将曲边梯形的面积表示成若干个定积分的和;
(4) 计算并求出结果
二、 定积分在物理学中的应用
1. 求变速直线运动的路程 s=∫v (t )b
a
dt 2. 求变力F 所做的功 w=∫F (x )b a dx。