Fluralaner_LCMS_25003_MedChemExpress
液相色谱-串联质谱(LCMSMS)方法测定人血浆中佐米曲普坦的含量

液相色谱-串联质谱(LC/MS/MS)方法测定人血浆中佐米曲普坦的含量王健吉林大学药物代谢研究中心(130021)E-mail: wjpsw@摘 要:本文建立了液相色谱-串联质谱(LC/MS/MS)方法测定人血浆中佐米曲普坦的含量。
色谱柱:Zorbax Extend-C18柱,5µm粒径,150×4.6 mm I.D.,美国Agilent公司;流动相:甲醇-水-甲酸(80:20:1,v/v/v);流速:0.8 mL/min。
本方法具有良好的灵敏度、准确度、精确度以及专属性,完全适用于临床应用及药物代谢研究。
关键词:佐米曲普坦;LC/MS/MS1. 引言佐米曲普坦(Zolmitriptan)为选择性5-HT1B/1D受体激动剂,通过对颅部血管扩张和三叉神经系统感觉神经的5-HT1B/1D受体的激动作用,促进颅部血管收缩,抑制炎症后神经肽的释放,临床用于治疗偏头痛[1,2]。
本试验建立了测定人血浆中佐米曲普坦含量的液相色谱-串联质谱(LC/MS/MS)分析方法用于临床应用及药物代谢研究。
2. 试验2.1仪器与药品API 4000型三重四极杆串联质谱仪,配有离子喷雾离子化源以及Analyst 1.3.2 数据处理软件,美国Applied Biosystem公司;Agilent 1100 高效液相色谱系统,包括二元输液泵,自动进样器,切换阀,美国Agilent公司。
佐米曲普坦标准品(纯度>99%):英国AstraZeneca公司提供;苯海拉明对照品(纯度>99%):中国药品生物制品检定所提供;甲醇为色谱纯,其它试剂均为分析纯,空白人血浆由吉林大学第一医院提供。
2.2血浆样品的分析方法血浆样品的预处理精密取血浆样品0.5 mL置具塞试管中,加入内标溶液(2 ng/mL- 1 -苯海拉明甲醇溶液)100 µL,加入100 µL甲醇-水(50:50,v/v)混合溶液,加入1 mol/L Na2CO3溶液100 µL,混匀;加入3mL正已烷-二氯甲烷-异丙醇(300:150:15,v/v),涡流混合1 min,往复振荡10 min(240次/分),离心5 min(3500 rpm),取上层有机相于另一试管中,40°C 空气流下吹干,残留物加入100 µL流动相溶解,涡流混合,取20 µL进行LC/MS/MS分析。
薄层荧光扫描法测定花生根中白藜芦醇的含量

薄层荧光扫描法测定花生根中白藜芦醇的含量韩小丽;张士真;呼亚旭;李明静【摘要】在硅胶G铝箔板上,以V (氯仿): (丙酮):V (甲酸)=8:1:0.2的溶液为展开剂,狭缝尺寸为3 mm×0.45 mm,检测波长为335 nm,采用薄层荧光扫描法测定花生根中白藜芦醇的含量.结果表明:白藜芦醇在21.6 ~108.0 ng范围内线性关系良好,回归方程为Y=-664.701+12.666 X,R = 0.996 9,花生根中白藜芦醇的含量为358.89 μg/g.【期刊名称】《化学研究》【年(卷),期】2010(021)005【总页数】3页(P88-89,96)【关键词】薄层荧光扫描法;白藜芦醇;花生根【作者】韩小丽;张士真;呼亚旭;李明静【作者单位】河南省医药学校,河南,开封,475001;商丘市技师学院,河南,商丘,476000;河南大学,化学化工学院,河南,开封,475004;河南大学,化学化工学院,河南,开封,475004【正文语种】中文【中图分类】O652.63白藜芦醇(resveratrol)是一种具有生物活性的多酚类化合物,其化学名称为3,4′,5-三羟基二苯乙烯.目前至少已经在21科31属72种植物中发现了白藜芦醇的存在,如豆科的落花生属、葡萄科的葡萄属,决明属、百合科的藜芦属、槐属[1]等.由于它具有抗氧化,抑制癌细胞增殖,抑制血小板活性,消炎等多种药理活性[2-4],因此被广泛应用于医药、食品、化妆品等行业.目前,开发利用富含白藜芦醇的保健植物愈来愈受到人们的关注,有关从葡萄皮、虎杖中提取白藜芦醇的研究已有大量的文献报道[5-7],而花生根中白藜芦醇的研究报道较少,而且主要集中于用 HPLC法测定白藜芦醇的含量[8-10].花生根为花生的不可食部分,如能充分利用,既可以提高花生种植的附加值,又可避免环境污染,对农产品资源开发与利用将有重要的意义.作者用薄层荧光扫描法对花生根中白藜芦醇的含量进行了测定,为综合利用提供参考.1.1 仪器与材料970CRT荧光分光光度计(上海精密科学仪器有限公司),CAMAG TLC SANNER 3型薄层扫描仪(瑞士),CAMAG LINOMAT5半自动点样仪(瑞士),铝箔板(德国,20 mm×20 mm×5 mm),白藜芦醇对照品(购自中科院昆明植物所植化室),其他试剂均为分析纯.将花生根(采自河南开封近郊)洗净、晾干、粉碎后,备用.1.2 色谱及扫描条件展开剂:V(氯仿)∶V(丙酮)∶V(甲酸)=8∶1∶0.2;上行展开,展距5 cm;单光束反射式荧光线性扫描,激发波长335 nm;狭缝尺寸3 mm×0.45 mm,滤光片 K400;扫描速度20 mm·s-1.2.1 对照品溶液的制备精密称取白藜芦醇对照品适量,用乙酸乙酯溶解,定容至25 mL容量瓶中,配制成浓度为0.108 0 g/L的对照品溶液备用.2.2 样品溶液的制备取花生根粗粉3 g,精密称定,置于索氏提取器中,用90 mL 95%的甲醇冷浸,分三次加入,冷浸24 h后索氏提取3 h,水浴温度75℃.提取液旋转蒸至醇干.加入等体积石油醚萃取三次,萃余液用等体积乙酸乙酯萃取三次,收集有机相,旋转蒸干.用乙酸乙酯溶解,转移至10 mL容量瓶中定容,待测.2.3 标准曲线的考察用半自动点样仪对白藜芦醇对照品溶液进行点样,点样量分别为0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0μL,点于同一块硅胶 G铝箔板上进行检测,以白藜芦醇峰面积(Y)为纵坐标,进样体积(X)为横坐标,绘制标准曲线,回归方程为:Y=-664.701+12.666X,R=0.996 9;在21.6 ng~108.0 ng范围内线性关系良好.2.4 样品含量测定精密称取等量的花生根粗粉(3份),按照2.2项制备样品溶液,在1.2项中的色谱和扫描条件下进行测定,测得样品含量平均值为358.89μg/g,RSD为1.49%.测定结果见表1.2.5 精密度试验精密吸取5份0.3μL的对照品溶液,分别点于同一块硅胶 G铝箔板上,展开,扫描,测得峰面积值分别为3 622.57,3 682.60,3 529.69,3 524.13,3 816.76.平均值为3 635.15,RSD为3.34%.2.6 重现性试验取2.4项中样品2,分别吸取0.3μL在同一块硅胶 G铝箔板上点 5个点,扫描,测得峰面积值分别为4 958.45,4 817.56,4 818.45,5 120.46,4 996.81,平均值为4 942.35,RSD为2.60%.2.7 稳定性试验取上述样品2,放置5 h、10 h、15 h和24 h后分别进行测定,测得样品中白藜芦醇含量分别为363.98,363.69,359.77,359.44,359.34μg/g,平均值为361.24μg/g,RSD为0.66%.可知样品在冰箱内(6℃)存放24 h后白藜芦醇含量基本稳定.2.8 回收率试验取2.4项中样品溶液5.0 mL,加入0.108 0 g/L的对照品溶液0.5 mL,用乙酸乙酯溶解,并定容至10 mL容量瓶中,在1.2项中的色谱和扫描条件下测定,回收率分别为103.86%,105.08%,105.52%,平均回收率为104.82%,RSD=0.80%(n=3).2.9 荧光激发波长的选择白藜芦醇在366 nm的紫外光照射下能产生荧光,但这并不是最佳的荧光激发波长.通过荧光分光光度计的检测得知,最佳激发波长为335 nm,荧光发射波长为375 nm,本试验中的荧光为Stokes荧光.71.[32]林英光,杨卓如,程江.纳米掺锶羟基磷灰石的制备及其抗菌性能研究[J].化工新型材料,2007,35(3):20-24.[33]Kim T N,Feng Q L,Kim J O,et al.Antimicrobial effects of metalions(Ag+,Cu2+,Zn+)in hydroxyapatite[J].J Mater Sci:MaterMed,1998(9):129-134.[34]Ahn E,Gleason N,Nakahira A,et al.Nanostructure processing of hydroxyapatite-based bioceramics[J].N ano Lett,2001,1(3):149-153. [35]Li L,Liu Y,Tao J,et al.Surface modification of hydroxyapatite nanocrystallite by a small amount of terbium provides a biocompatible fluorescent probe[J].J Phys Chem C,2008,112(32):12219-12224.[36]邓霞,陈治清,钱志勇,等.纳米羟基磷灰石/脂肪族聚酯酰胺复合材料[J].生物医学工程学杂志,2008,25(2):378-381.[37]曹惠,陈新,邵正中.羟基磷灰石/丝素蛋白复合纤维的制备及其矿化研究[J].化学学报,2008,66(18):2059-2064.[38]Chen F,Wang Z C,Lin C J.Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials[J].Mater Lett,2002,57(4):858-861.[39]Li B,Hu Q,Qian X,et al.Bioabsorbable chitosan/hydroxyapatite composite rod prepared by in-situ precipitation for internal fixation of bone fracture[J].Acta Polymerica Sinica,2002(6):828-833.[40]Nukavarapu S,Kumbar S,Brown J,et al.Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissue engineering[J].Biomacromolecules,2008,9:1818-1825.[41]Sundaram C S,Viswanathan N,Meenakshi S.Uptake of fluoride by nano-hydroxyapatite/chitosan,a bioinorganic composite[J].BioresTechnol,2008,99:8226-8230.[42]Reverchon E,Pisanti P,Cardea S.Nanostructured PLLA-hydroxyapatite scaffolds produced by a supercritical assisted technique[J].Ind Eng Chem Res,2009,48:5310-5316.[43]Wen J,Li Y,Zuo Y,et al.Preparation and characterization of nano-hydroxyapatite/silicone rubber composite[J].Mater Lett,2008,62:3307-3309.。
硕士论文--多奈哌齐透皮贴剂的药学研究

多奈哌齐透皮给药研究
Study of Donepezil Transdermal Patch
Abstract
Donepezil(DPB)is a piperidine—based reversible acety7lcholinesterase inhibitor. Currently DPB is the most prescribed pharmacological agent for the treatment of mild to moderate Alzheimer’S disease.It also plays the important role in improving the patient’S mental state and keeping the brain active.Now the drug dosage form of DPB has tablets and capsules.Researches have showed that aizheimer’S disease is the most common cause of
研究结果表明当使用混合丙烯酸酯压敏胶作为基质时(B/C=3/I,w/w),多奈哌齐 经皮贴剂中药物浓度超过15%wt_i产生结晶,透皮贴剂能够保证长时间的给药需求, 贴剂中有关物质的生成量较少,药物的稳定性较好,但药物的体外经皮渗透速率较低, 需要加入促渗剂提高药物的经皮渗透速率。使用脂肪酸酯1和有机酸作为混合促渗剂时, 能够起到协同促渗作用,与对照组相比,可将多奈哌齐累积透过量提高2.7倍。使用最 优处方进行大鼠体内药代动力学实验,结果表明,与口服给药相比,多奈哌齐经皮给药 后,血药浓度垒少可以维持48小时以上,药物生物利用度显著提高,-、I‘均滞留时间和 半衰期也相应显著延长。
离子色谱仪流动注射电导法测定过氧化氢

以 H2 O2 标准溶液的浓度为横坐标,以该条件下 测得 100 mg/L H2 O2 产生的电导响应值为基准,所得 相对电导值为纵坐标,绘制工作曲线(见图 2)。该工
作曲 线 呈 现 良 好 的 线 性,线 性 回 归 方 程 为:! =
0. 0107 " - 0 . 059(4 !:以 100 mg/L H2 O2 样品产生电导 为基准的相对电导值,":H2 O2 浓度),其相关系数为 0.9996。8 次连续进样所得标准偏差小于 2 . 6% 。在 上述实 验 条 件 下,本 法 可 检 测 的 H2 O2 下 限 为 0 . 5 mg/L。
" 实验部分
"#! 仪器 DX-120 离子色谱仪(美国 DIONEX);HS20000 软件(杭州英谱科技开发公司);聚乙烯反应管,内孔
径:1 . 0 mm,外孔径:2 . 0 mm;定量管:25、50 !L;微孔滤膜:孔径 0 . 45 !m。 "#" 实验装置
将 DX-120 离子色谱仪改装后成流动注射流程,详见图 1。
回收率 Recovery (%)
99 . 65
99 . 89
100 . 5
4结 论
本文提出了在离子色谱上用流动注射原理测定过氧化氢的方法,研究了以 H2 SO3 作为载流测定过 氧化氢的最佳条件。该方法与其他方法相比具有方法简便、成本低廉的优势,并充分提高了仪器的利用 率,可用于水处理中过氧化氢含量的监测控制及环境中过氧化氢的监测分析。今后,在本方法基础上, 研究与高效液相色谱柱分离作用结合,使被测物质在柱分离后进行测定,可更好地消除干扰,并有望用
关键词 过氧化氢,亚硫酸,电导法,离子色谱,流动注射
!引 言
Gelucire-14-44-SDS-MedChemExpress

Inhibitors, Agonists, Screening LibrariesSafety Data Sheet Revision Date:Nov.-23-2018Print Date:Nov.-23-20181. PRODUCT AND COMPANY IDENTIFICATION1.1 Product identifierProduct name :Gelucire 14/44Catalog No. :HY-Y1892CAS No. :121548-04-71.2 Relevant identified uses of the substance or mixture and uses advised againstIdentified uses :Laboratory chemicals, manufacture of substances.1.3 Details of the supplier of the safety data sheetCompany:MedChemExpress USATel:609-228-6898Fax:609-228-5909E-mail:sales@1.4 Emergency telephone numberEmergency Phone #:609-228-68982. HAZARDS IDENTIFICATION2.1 Classification of the substance or mixtureNot a hazardous substance or mixture.2.2 GHS Label elements, including precautionary statementsNot a hazardous substance or mixture.2.3 Other hazardsNone.3. COMPOSITION/INFORMATION ON INGREDIENTS3.1 SubstancesSynonyms:NoneFormula:N/AMolecular Weight:N/ACAS No. :121548-04-74. FIRST AID MEASURES4.1 Description of first aid measuresEye contactRemove any contact lenses, locate eye-wash station, and flush eyes immediately with large amounts of water. Separate eyelids with fingers to ensure adequate flushing. Promptly call a physician.Skin contactRinse skin thoroughly with large amounts of water. Remove contaminated clothing and shoes and call a physician.InhalationImmediately relocate self or casualty to fresh air. If breathing is difficult, give cardiopulmonary resuscitation (CPR). Avoid mouth-to-mouth resuscitation.IngestionWash out mouth with water; Do NOT induce vomiting; call a physician.4.2 Most important symptoms and effects, both acute and delayedThe most important known symptoms and effects are described in the labelling (see section 2.2).4.3 Indication of any immediate medical attention and special treatment neededTreat symptomatically.5. FIRE FIGHTING MEASURES5.1 Extinguishing mediaSuitable extinguishing mediaUse water spray, dry chemical, foam, and carbon dioxide fire extinguisher.5.2 Special hazards arising from the substance or mixtureDuring combustion, may emit irritant fumes.5.3 Advice for firefightersWear self-contained breathing apparatus and protective clothing.6. ACCIDENTAL RELEASE MEASURES6.1 Personal precautions, protective equipment and emergency proceduresUse full personal protective equipment. Avoid breathing vapors, mist, dust or gas. Ensure adequate ventilation. Evacuate personnel to safe areas.Refer to protective measures listed in sections 8.6.2 Environmental precautionsTry to prevent further leakage or spillage. Keep the product away from drains or water courses.6.3 Methods and materials for containment and cleaning upAbsorb solutions with finely-powdered liquid-binding material (diatomite, universal binders); Decontaminate surfaces and equipment by scrubbing with alcohol; Dispose of contaminated material according to Section 13.7. HANDLING AND STORAGE7.1 Precautions for safe handlingAvoid inhalation, contact with eyes and skin. Avoid dust and aerosol formation. Use only in areas with appropriate exhaust ventilation.7.2 Conditions for safe storage, including any incompatibilitiesKeep container tightly sealed in cool, well-ventilated area. Keep away from direct sunlight and sources of ignition.Recommended storage temperature:Pure form-20°C 3 years4°C 2 yearsIn solvent-80°C 6 months-20°C 1 monthShipping at room temperature if less than 2 weeks.7.3 Specific end use(s)No data available.8. EXPOSURE CONTROLS/PERSONAL PROTECTION8.1 Control parametersComponents with workplace control parametersThis product contains no substances with occupational exposure limit values.8.2 Exposure controlsEngineering controlsEnsure adequate ventilation. Provide accessible safety shower and eye wash station.Personal protective equipmentEye protection Safety goggles with side-shields.Hand protection Protective gloves.Skin and body protection Impervious clothing.Respiratory protection Suitable respirator.Environmental exposure controls Keep the product away from drains, water courses or the soil. Cleanspillages in a safe way as soon as possible.9. PHYSICAL AND CHEMICAL PROPERTIES9.1 Information on basic physical and chemical propertiesAppearance White to off-white (Oil)Odor No data availableOdor threshold No data availablepH No data availableMelting/freezing point No data availableBoiling point/range No data availableFlash point No data availableEvaporation rate No data availableFlammability (solid, gas)No data availableUpper/lower flammability or explosive limits No data availableVapor pressure No data availableVapor density No data availableRelative density No data availableWater Solubility No data availablePartition coefficient No data availableAuto-ignition temperature No data availableDecomposition temperature No data availableViscosity No data availableExplosive properties No data availableOxidizing properties No data available9.2 Other safety informationNo data available.10. STABILITY AND REACTIVITY10.1 ReactivityNo data available.10.2 Chemical stabilityStable under recommended storage conditions.10.3 Possibility of hazardous reactionsNo data available.10.4 Conditions to avoidNo data available.10.5 Incompatible materialsStrong acids/alkalis, strong oxidising/reducing agents.10.6 Hazardous decomposition productsUnder fire conditions, may decompose and emit toxic fumes.Other decomposition products - no data available.11.TOXICOLOGICAL INFORMATION11.1 Information on toxicological effectsAcute toxicityClassified based on available data. For more details, see section 2Skin corrosion/irritationClassified based on available data. For more details, see section 2Serious eye damage/irritationClassified based on available data. For more details, see section 2Respiratory or skin sensitizationClassified based on available data. For more details, see section 2Germ cell mutagenicityClassified based on available data. For more details, see section 2CarcinogenicityIARC: No component of this product present at a level equal to or greater than 0.1% is identified as probable, possible or confirmed human carcinogen by IARC.ACGIH: No component of this product present at a level equal to or greater than 0.1% is identified as a potential or confirmed carcinogen by ACGIH.NTP: No component of this product present at a level equal to or greater than 0.1% is identified as a anticipated or confirmed carcinogen by NTP.OSHA: No component of this product present at a level equal to or greater than 0.1% is identified as a potential or confirmed carcinogen by OSHA.Reproductive toxicityClassified based on available data. For more details, see section 2Specific target organ toxicity - single exposureClassified based on available data. For more details, see section 2Specific target organ toxicity - repeated exposureClassified based on available data. For more details, see section 2Aspiration hazardClassified based on available data. For more details, see section 212. ECOLOGICAL INFORMATION12.1 ToxicityNo data available.12.2 Persistence and degradabilityNo data available.12.3 Bioaccumlative potentialNo data available.12.4 Mobility in soilNo data available.12.5 Results of PBT and vPvB assessmentPBT/vPvB assessment unavailable as chemical safety assessment not required or not conducted.12.6 Other adverse effectsNo data available.13. DISPOSAL CONSIDERATIONS13.1 Waste treatment methodsProductDispose substance in accordance with prevailing country, federal, state and local regulations.Contaminated packagingConduct recycling or disposal in accordance with prevailing country, federal, state and local regulations.14. TRANSPORT INFORMATIONDOT (US)This substance is considered to be non-hazardous for transport.IMDGThis substance is considered to be non-hazardous for transport.IATAThis substance is considered to be non-hazardous for transport.15. REGULATORY INFORMATIONSARA 302 Components:No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302.SARA 313 Components:This material does not contain any chemical components with known CAS numbers that exceed the threshold (De Minimis) reporting levels established by SARA Title III, Section 313.SARA 311/312 Hazards:No SARA Hazards.Massachusetts Right To Know Components:No components are subject to the Massachusetts Right to Know Act.Pennsylvania Right To Know Components:No components are subject to the Pennsylvania Right to Know Act.New Jersey Right To Know Components:No components are subject to the New Jersey Right to Know Act.California Prop. 65 Components:This product does not contain any chemicals known to State of California to cause cancer, birth defects, or anyother reproductive harm.16. OTHER INFORMATIONCopyright 2018 MedChemExpress. The above information is correct to the best of our present knowledge but does not purport to be all inclusive and should be used only as a guide. The product is for research use only and for experienced personnel. It must only be handled by suitably qualified experienced scientists in appropriately equipped and authorized facilities. The burden of safe use of this material rests entirely with the user. MedChemExpress disclaims all liability for any damage resulting from handling or from contact with this product.Caution: Product has not been fully validated for medical applications. For research use only.Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA。
HPLC_法测定阿瑞匹坦中基因毒性杂质3-氯甲基-1,2,4-三唑啉-5-酮

第52卷第9期 辽 宁 化 工 Vol.52,No. 9 2023年9月 Liaoning Chemical Industry September,2023收稿日期: 2022-09-12HPLC 法测定阿瑞匹坦中基因毒性杂质3-氯甲基-1,2,4-三唑啉-5-酮常月赏,兰公剑*,王阔,陶蕾(南京正大天晴制药有限公司,江苏 南京 210046)摘 要:建立了液相色谱法测定阿瑞匹坦基因毒性杂质3-氯甲基-1,2,4-三唑啉-5-酮的分析方法。
采用安捷伦Poroshell 120系列EC -C18柱为色谱柱,0.1%磷酸溶液为流动相A,乙腈为流动相B,进行线性梯度洗脱,流速为1.0 mL ·min -1,柱温为30 ℃;检测波长为210 nm。
结果表明:溶剂空白及主峰不干扰该杂质的测定;该杂质在限度浓度20%~200%的范围内线性关系良好;该杂质的回收率在99.3%~101.0%范围内,RSD 小于5.0%;对照品溶液及供试液在室温放置18 h 内稳定;重复性和中间精密度RSD 均小于5.0%。
本方法专属性及精密度好,准确度高,可以用于本品中基因毒性杂质3-氯甲 基-1,2,4-三唑啉-5-酮的检测。
关 键 词:阿瑞匹坦;基因毒性杂质;3-氯甲基-1,2,4-三唑啉-5-酮;液相色谱法(HPLC) 中图分类号:TQ460.7 文献标识码: A 文章编号: 1004-0935(2023)09-1399-04阿瑞匹坦与其他止吐药物联合用药,适用于预防高度致吐性抗肿瘤化疗的初次和重复治疗过程中出现的急性和迟发性恶心和呕吐[1-6]。
阿瑞匹坦具有全新的药理作用机制,其作为首个神经激肽-1(NK -1)受体拮抗剂为预防和治疗癌症患者化疗引起的恶心呕吐提供了更多的药物治疗选择[7-9]。
3-氯甲基-1,2,4-三唑啉-5-酮是合成阿瑞匹坦的关键物料,属三唑啉酮类衍生物[10]。
3-氯甲基-1,2, 4-三唑啉-5-酮为单卤代烷烃化合物[11-12],依据ICH M7,该化合物具有基因警示结构。
正_负离子表面活性剂凝胶化正丁醇_卢婷

[Article]物理化学学报(Wuli Huaxue Xuebao )Acta Phys.-Chim.Sin.2011,27(2),486-490FebruaryReceived:October 13,2010;Revised:November 24,2010;Published on Web:December 23,2010.∗Corresponding authors.WANG Xiao-Dong,Email:xdwang@.ZHANG Tao,Email:taozhang@;Tel:+86-411-84379015.The project was supported by the National Natural Science Foundation of China (21003124)and Funds of the Chinese Academy of Sciences for Key Topics in Innovation Engineering (YYYJ0703).国家自然科学基金(21003124)和中国科学院知识创新工程重要方向(YYYJ0703)资助项目ⒸEditorial office of Acta Physico-Chimica Sinica正、负离子表面活性剂凝胶化正丁醇卢婷王晓东*张涛*(中国科学院大连化学物理研究所,辽宁大连116023)摘要:利用正、负离子表面活性剂混合体系月桂酸钠/十六烷基三甲基溴化铵(SL/CTAB)成功实现了正丁醇的凝胶化,并借助流变仪、扫描电子显微镜(SEM)研究了该凝胶的流变性质和微观形貌.实验发现,正、负离子表面活性剂的浓度及混合比例对正丁醇凝胶的形成具有较大影响,只有在合适的浓度和混合比例下正丁醇才能被有效地凝胶化.在正丁醇能够形成凝胶的前提下,固定正、负离子表面活性剂混合体系中某一组分的浓度,体系的粘度随着另一组分浓度的增加而增大.流变结果表明该凝胶具有剪切变稀的非牛顿流体特性.微观形貌的研究表明所形成的凝胶具有典型的三维网络结构,厚度相对均一的带状纤维是组成网络的结构单元.进一步的研究表明,正、负离子表面活性剂碳氢链的疏溶剂作用、极性头基间的静电吸引作用、表面活性剂与正丁醇分子间的氢键作用对凝胶的形成起到重要的作用.关键词:正、负离子表面活性剂;物理凝胶;正丁醇;凝胶化;氢键中图分类号:O648Gelation of n -Butanol by a Catanionic Surfactant SystemLU TingWANG Xiao-Dong *ZHANG Tao *(Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,Liaoning Province,P .R.China )Abstract:The gelation of n -butanol was realized by a mixture of cationic and anionic surfactants(referred to as “catanionic surfactant ”).In this study,we used sodium laurate/cetyltrimethylammonium bromide (SL/CTAB)as the catanionic surfactant.The rheological properties and microstructures of the n -butanol gel were studied using a rheometer and scanning electron microscopy (SEM).We found that the concentration and mole ratio of the catanionic surfactant affected the formation of the gel and n -butanol was only efficiently gelled in the presence of the catanionic surfactant at a suitable concentration and mole ratio.When we fixed the concentration of one component in the catanionic surfactant system,the gel viscosity increased with the concentration of the other component on the basis of gel formation.This gel was a non-Newtonian fluid and showed a shear-thinning property in rheological experiments.In addition,SEM results showed that the gel had a representative three-dimensional network structure,which was composed of zonal fibers with uniform thickness.Further investigation indicates that the hydrophobic effect between the hydrocarbon chains,the electrostatic attraction between the polar headgroups,and the hydrogen bond interaction between the surfactants and n -butanol play an important role in gel formation.Key Words:Catanionic surfactant;Physical gel;n -Butanol;Gelation;Hydrogen bond1引言凝胶材料,特别是具有刺激响应性的智能凝胶材料,因在药物传递与释放、人造组织、纳米材料模板合成、凝胶推进剂等方面表现出巨大的应用潜486卢婷等:正、负离子表面活性剂凝胶化正丁醇No.2力,1-8而引起人们广泛的关注.凝胶体系是由凝胶剂形成的三维网络结构和固定于其中的溶剂组成,是同时兼有固体和液体某些特性的胶体分散体系.9,10不同于化学凝胶,依靠弱相互作用形成的物理凝胶往往具有刺激响应性(stimuli responsive)的特点,为其实现特殊的应用奠定了基础.11-13近年来,由液体推进剂衍生而来的凝胶推进剂是化学火箭领域中的一种新型推进剂,因兼具液体和固体推进剂的优点,其研制工作受到重视.14-16所谓凝胶推进剂就是用少量凝胶剂,将约为凝胶剂3-1000倍量的液体组分(燃烧剂或氧化剂)凝胶化,以形成具有一定结构和特定性能的推进剂.目前,肼、高浓度过氧化氢等凝胶推进剂的研制工作正逐渐开展起来.5,17-19正丁醇作为一种重要的有机化工原料,由于环境友好和可贮存性等优点,常用作绿色双组元推进剂.20-23因此,从凝胶推进剂基础研究的角度来看,如何实现正丁醇的凝胶化就显得尤为重要.按物理凝胶成因分类,凝胶剂主要包括高分子物质、小分子有机凝胶剂和无机微粒型凝胶剂等.与其它体系相比,隶属于小分子有机凝胶剂范畴的正、负离子表面活性剂混合体系,因其反电性头基间存在静电吸引作用,使得体系表现出独特的相行为和有趣的相分离现象.24-26这种正、负离子表面活性剂的混合体系,能够依靠自身之间的某些弱相互作用自组装形成蠕虫状、纤维状或带状结构,这些一维结构再经交联而形成三维网络结构,从而使溶剂凝胶化.27-29而且,通过改变正、负离子表面活性剂的混合比例、浓度等就可以实现对体系相行为、聚集行为的调控.然而,与水凝胶相比,正、负离子表面活性剂用于有机凝胶的报道相对较少.基于此,本文针对正、负离子表面活性剂混合体系凝胶化正丁醇展开研究,报道了相关结果,并对该凝胶的流变学性质、微观结构进行了研究.2实验部分2.1试剂正丁醇为天津市凯信化学工业有限公司产品,分析纯.十六烷基三甲基溴化铵(CTAB)购自天津科密欧化学试剂有限公司,分析纯,经乙醇/丙酮重结晶五次后使用.月桂酸钠(SL)按照如下步骤制备:配制NaOH浓溶液,稀释后用草酸标准溶液进行标定.等摩尔量的NaOH浓溶液缓慢加入月桂酸-乙醇溶液中.混合物减压蒸馏除去溶剂和水,所得固体充分干燥后得到纯品.十二烷基硫酸钠(SDS)为AC-ROS公司产品,纯度99%.十二烷基三乙基溴化铵(DEAB)由溴代十二烷基与三乙胺按照摩尔比1:2在乙醇中加热回流48h,减压蒸馏后用丙酮、乙醚的混合溶剂重结晶5次以上得到.用表面张力曲线测定上述四种表面活性剂均没有观察到最低点,证明没有高表面活性剂的杂质存在.30实验中所用的合成试剂均为分析纯.2.2凝胶的制备称取一定质量的CTAB和SL加入到10.0mL正丁醇中,加热、搅拌直至完全溶解,自然冷却至样品凝胶化,后将样品放在25.0°C的水浴中恒温.正、负离子表面活性剂摩尔比R=[SL]/[CTAB].2.3实验方法体系的流体力学性质在温控的旋转流变仪(奥地利安东帕公司,型号MCR301)上进行.使用锥板测量系统(CP25)考察正丁醇凝胶粘度随剪切速率的变化,上部锥与板的倾角为1°.测量时,每次用样品勺取约1mL恒温好的凝胶样品放置到温度设定好的流变仪下部平板上,调节上部锥板与恒温平板间的狭缝,待样品恒温10min后开始测量.测量温度如无特别说明均为25°C.电镜测量用JEOL JSM-6360LV扫描电子显微镜(SEM,美国FEI公司)进行观察,工作电压为20kV,样品进行观察之前在SEM 真空喷涂仪上喷金30s.3结果与讨论3.1凝胶的外观及形成规律图1为CTAB与SL作用所形成的正丁醇凝胶的照片,明显地,该凝胶呈白色不透明状.当固定CTAB的浓度为150mmol·L-1时,SL/CTAB的摩尔比例R达到0.20后形成可以倒置的凝胶,表明该凝胶具有较大的粘度,能够承受自身重力而不下落.继续增大R值到0.40时,仍然形成白色不透明状凝胶.从外观上来看,上述凝胶可因加热(50-70°C,不同样品略有差别)从凝胶态转变为溶液态而被破坏,破坏后的凝胶又可通过降温而重新形成凝胶态,表明所制备的正丁醇凝胶至少在宏观上具有一定的热可逆性,是一种温度刺激响应型凝胶.31进一步研究表明,正丁醇凝胶的形成与正、负离子表面活性剂的浓度与混合比例均相关.当CTAB浓度较低时,需要较多量的SL,即R值较大时487Acta Phys.⁃Chim.Sin.2011V ol.27才能使正丁醇完全凝胶化.随着CTAB浓度的增大,较小的R值即可使正丁醇形成可倒置的白色不透明状凝胶.例如,[CTAB]=150mmol·L-1时,R=0.20即可使正丁醇完全凝胶化;而当[CTAB]减小到50 mmol·L-1时,只有R值达到0.50才能使正丁醇形成可倒置的凝胶.同时亦发现,固定CTAB的浓度,溶解表面活性剂所需的时间随R值增大而延长.不难理解,当CTAB浓度较小时,增大R值实际上也是表面活性剂总浓度的增大,而且随着正、负离子表面活性剂摩尔比例的接近,正、负离子表面活性间的静电吸引力也同时增大,有利于正丁醇凝胶的形成.3.2凝胶的剪切敏感性研究正丁醇凝胶的静态流变曲线如图2所示.从图中可以看出,随着体系剪切速率的增大,体系的表观剪切粘度逐渐降低,所有的样品均为非牛顿流体,表现出剪切变稀的性质,即CTAB和SL作用形成的正丁醇凝胶具有剪切敏感特性.这种剪切变稀的流变行为是由于剪切作用使凝胶内部结构发生变化而引起的.比较发现,固定CTAB浓度为150 mmol·L-1,随着R值的增大,体系的粘度逐渐增大.这可以归因于体系中正、负离子表面活性剂分子间的作用力,尤其是静电吸引作用增强.随着R值的增大,正、负离子表面活性剂间越来越接近电中性的比例,引起极性头基间静电吸引力的增强,体系中分子排列得更加紧密,有利于凝胶的形成与粘度的增大.此外,从图2中还可以发现,在10-100s-1的剪切速率范围内,体系粘度降低的速率变慢,表现在剪切应力−剪切速率图中有一明显的峰值.这可能是该凝胶的内部结构对某一特定的剪切速率比较敏感所致.此外,振荡实验表明上述的凝胶样品均没有动态流变响应,表明其不具有粘弹性.为了考察CTAB浓度对凝胶形成及表观粘度的影响,以不同浓度的CTAB为基质,固定R值,制备了多种正丁醇凝胶,测试其静态流变曲线,列于图3.从图中发现,所有的样品依然表现出剪切变稀的非牛顿流体性质,并且当R值一定时,体系的表观粘度随CTAB浓度的增加而增大.通过对比,我们发现R值越大,CTAB浓度变化对凝胶粘度的影响也相对地更加显著.例如,R=0.40时,CTAB浓度由100 mmol·L-1增大到150mmol·L-1时,体系粘度的增大1正丁醇凝胶在正、负离子表面活性剂摩尔比(R)变化下的外观照片Fig.1Appearance photographs of n-butanol gel with varying molar ratios(R)of cationic and anionic surfactants R=[SL]/[CTAB],[CTAB]=150mmol·L-1;SL:sodium laurate;CTAB:cetyltrimethylammonium bromide2正丁醇凝胶在不同R值时的表观剪切粘度随剪切速率的变化Fig.2Steady shear viscosity as a function of shearrate of n-butanol gel with different R valuesThe inset is the representative variation of shear stress asa function of shear rate.488卢婷等:正、负离子表面活性剂凝胶化正丁醇No.2程度远大于R =0.25时的情况.综上所述,在SL/CTAB 相互作用下正丁醇凝胶体系中,正、负离子表面活性剂的浓度、比例对凝胶的形成、表观粘度均有影响.3.3凝胶的形貌研究图4为正丁醇凝胶样品的SEM 图.可以清楚地看到,正、负离子表面活性剂作用下正丁醇凝胶具有典型的三维网状结构,组成网络的结构单元是厚度相对均一、长度可达几十微米的带状纤维.正是由于遍布体系的三维网络结构的形成,才使得正丁醇受限于其中而丧失流动性,进而形成凝胶.此时,我们亦可以给出这样一个结论:在静态流变测量上,正丁醇凝胶剪切变稀的特性即是因为剪切破坏了体系中的三维网络结构而引起的,这意味着引起流动阻力的分子间的相互作用减弱了,因而使得体系的粘度变小.3.4凝胶形成原因的探讨我们对正、负离子表面活性剂作用下正丁醇凝胶形成的本质原因进行了进一步的探讨.首先,表面活性剂分子独特的两亲性结构特点使得表面活性剂在溶液中达到临界浓度以上时,能够依靠“疏溶剂作用”而自发聚集,形成丰富多彩的两亲分子有序组合体,表现出不同的微观结构.30因此,在我们的体系中,正、负离子表面活性剂分子由于碳氢链之间的“疏溶剂效应”而引起聚集.其次,正、负离子表面活性剂间存在静电吸引作用,而且在正丁醇中这种静电作用要大于在水中的,因为正丁醇的介电常数ε=20-30,远小于水的介电常数(ε=80),根据库仑定律可知,在正丁醇中正、负离子表面活性剂极性基团间的静电吸引作用增强.32正丁醇体系中正、负离子表面活性剂间的这种库仑作用的增强,使得聚集体中表面活性剂分子排列得更加紧密,表面活性剂聚集能力增强,有利于促进小聚集体的涨大与演变;当空间和能量上的要求得到满足后,三维网络框架结构形成.而我们将CTAB 、SL 这两种表面活性剂分别独立用于正丁醇中,发现二者均不能凝胶化正丁醇.可见,正、负离子表面活性剂极性头基间的静电吸引作用对正丁醇的凝胶化起到十分重要的作用.此外,从表面活性剂与正丁醇的结构来看,SL 分子中的羧酸根与溶剂正丁醇中的羟基之间可以形成O ―H …O 型氢键.通过这种氢键作用,作为溶剂的正丁醇可以和表面活性剂紧密地结合起来,加之正丁醇分子间亦可以形成氢键,从而有利于正丁醇分子固定于正、负离子表面活性剂形成的三维网络结构中,丧失流动性而使其凝胶化.作为比较,我们将另一种能够在水溶液中形成凝胶的正、负离子表面活性剂混合体系SDS(十二烷基硫酸钠)/DEAB(十二烷基三乙基溴化铵)27引入到正丁醇中,固定SDS 与DEAB 的总浓度为200mmol ·L -1,不断改变二者间的摩尔比例,发现这一正、负离子表面活性剂混合体系却不能使正丁醇凝胶化.分析可知,此时的表面活性剂分子SDS 、DEAB 与正丁醇间不能形成有效的氢键,正丁醇不能被固定于表面活性剂形成的网络结构中,因此其仍然具有流动性而不能形成凝胶,表明正丁醇与表面活性剂间的氢键相互作用对于正丁醇凝胶化的实现至关重要.综上所述,疏溶剂作用、库仑作用、氢键作用是实现SL/CTAB 正、负离子表面活性剂凝胶化正丁醇的主要推动力,缺一不可.此外,范德华作用也是不可否认地存在于体系中的一种相互作用,在某种程度上,对凝胶的形成也起到一定的促进作用.图4正丁醇凝胶的典型SEM 图Fig.4SEM images of the representative n -butanol gelR =0.5,[CTAB]=100mmol ·L -13正丁醇凝胶在不同CTAB 浓度及R 值时的表观剪切粘度随剪切速率的变化Fig.3Steady shear viscosity as a function of shearrate of n -butanol gel with varying CTABconcentrations and R values489Acta Phys.⁃Chim.Sin.2011V ol.274结论正丁醇可被正、负离子表面活性剂混合体系(SL/CTAB)有效地凝胶化,该凝胶呈现出三维网络状的微观结构.这一凝胶具有剪切变稀的特性,并且凝胶的粘度与正、负离子表面活性剂的浓度、比例均相关.凝胶的形成是由疏溶剂作用、库仑作用与氢键作用共同主导的,前两者主要表现在表面活性剂形成的三维网络结构上,后者则体现在正丁醇与表面活性剂分子间的相互作用上,三者共同作用实现了正、负离子表面活性剂混合体系SL/CTAB对正丁醇的凝胶化.References(1)Terech,P.;Weiss,R.G.Chem.Rev.1997,97,3133.(2)Lee,K.Y.;Mooney,D.J.Chem.Rev.2001,101,1869.(3)Xing,B.G.;Yu,C.W.;Chow,K.H.;Ho,P.L.;Fu,D.G.;Xu,B.J.Am.Chem.Soc.2002,124,14846.(4)de Loos,M.;Feringa,B.L.;van Esch,.Chem.2005,No.17,3615.(5)Liu,K.Q.;Chen,T.;Zhang,Y.;Fu,Q.J.;Fang,Y.Chin.J.Explos.Propellants2006,29,1.[刘凯强,陈钿,张颖,符全军,房喻.火炸药学报,2006,29,1.](6)Yang,Z.M.;Liang,G.L.;Xu,B.Acc.Chem.Res.2008,41,315.(7)Lu,T.;Huang,J.B.;Li,Z.H.;Jia,S.K.;Fu,H.L.J.Phys.Chem.B2008,112,2909.(8)Liu,J.;He,P.L.;Yan,J.L.;Fang,X.H.;Peng,J.X.;Liu,K.Q.;Fang,Y.Adv.Mater.2008,20,2508.(9)Koumura,N.;Kudo,M.;Tamaoki,ngmuir2004,20,9897.(10)Estroff,L.A.;Hamilton,A.D.Chem.Rev.2004,104,1201.(11)Liu,K.Q.;Qu,Y.L.;Wang,M.Z.;Hu,D.D.;Fang,Y.;Wang,N.F.Chin.J.Explos.Propellants2003,26,23.[刘凯强,屈育龙,王明珍,胡道道,房喻,王宁飞.火炸药学报,2003,26,23.](12)Matsumoto,S.;Yamaguchi,S.;Ueno,S.;Komatsu,H.;Ikeda,M.;Ishizuka,K.;Iko,Y.;Tabata,K.V.;Aoki,H.;Ito,S.;Noji,H.;Hamachi,I.Chem.Eur.J.2008,14,3977.(13)Lin,Y.Y.;Qiao,Y.;Yan,Y.;Huang,J.B.Soft Matter2009,5,3047.(14)Mueller,D.C.;Turns,S.R.J.Propul.Power1996,12,591.(15)Migliaro,F.W.;Manke,S.A.;Rothgery,E.F.;Knollmueller,K.O.Liquid or Gel Propellant Useful in Rockets or Thrusters-Contains Oxidiser and Fuel Consisting of Reduced V olatilitySubstd.Hydrazine Cpd(s).US Patent5433802,1995-07-18. (16)Yan,D.Q.;Zhou,H.M.;Shan,J.S.J.Rocket Propul.2003,29,38.[闫大庆,周宏民,单建胜.火箭推进,2003,29,38.] (17)Henderson,C.B.;Va,A.Gelled Hydrazine PropellantCompositions-Contg Hydrazine Nitrate and Finely Divided Patent3811970,1974-05-21.(18)Toge,H.;Kubota,X.Supply Method of Gelling Propellant Usedas Fuel for Missile,Rocket-Involves Mixing Salt or Alkali toGelling Propellant in Tank to Liquefy It,and Sending OutLiquefied Propellant from Tank.JP Patent4075133,2008-04-16.(19)Fu,Q.J.;Du,Z.G.;Lan,H.P.;Yu,S.T.;Yang,C.J.RocketPropul.2006,32,48.[符全军,杜宗罡,兰海平,鱼升堂,杨超.火箭推进,2006,32,48.](20)Frankel,M.B.;Weber,J.F.New4-Azido-4,4-Dinitro-1-Butanol and Derivs.-Used in Explosives and Propellants,Prepd.from4,4-Dinitro-1-butanol and Acetyl Patent4795593,1989-01-03.(21)Wang,W.J.;Tang,S.Q.Chem.Propellants Polym.Mater.2004,2,30.[王万军,唐松青.化学推进剂与高分子材料,2004,2,30.](22)Wu,Z.J.Journal of Astronautics2006,27,448.[吴志坚.宇航学报,2006,27,448.](23)He,F.;Fang,T.;Li,Y.Y.;Mi,Z.T.Chin.J.Explos.Propellants2006,4,54.[贺芳,方涛,李亚裕,米镇涛.火炸药学报,2006,4,54.](24)Kaler,E.W.;Murthy,A.K.;Rodriguez,B.E.;Zasadzinski,J.A.Science1989,245,1371.(25)Shen,Y.W.;Hao,J.C.;Hoffmann,H.Soft Matter2007,3,1407.(26)Lu,T.;Li,Z.H.;Huang,J.B.;Fu,ngmuir2008,24,10723.(27)Yin,H.Q.;Lin,Y.Y.;Huang,J.B.J.Collid Interface Sci.2009,338,177.(28)Gronwald,O.;Snip,E.;Shinkai,S.Curr.Opin.ColloidInterface Sci.2002,7,148.(29)Koshy,P.;Verma,G.;Aswal,V.K.;Venkatesh,M.;Hassan,P.A.J.Phys.Chem.B2010,114,10462.(30)Zhao,G.X.;Zhu,B.Y.Principles of Surfactant Action,1st ed.;China Light Industry Press:Beijing,2003;pp61-95,225-320.[赵国玺,朱瑶.表面活性剂作用原理.北京:中国轻工业出版社,2003:61-95,225-320.](31)Ishi-I,T.;Shinkai,S.Supramolecular Dye Chemistry.In Topicsin Current Chemistry;Wu r thner,F.Eds.;Springer:Berlin,NewYork,2005;V ol.258,pp119-160.(32)Han,F.;He,X.;Huang,J.B.;Li,Z.C.;Wang,Y.L.;Fu,H.L.J.Phys.Chem.B2004,108,5256.490。
支气管肺泡灌洗液中生物标志物在特发性肺纤维化中的研究进展

-D 浓 度 高 于 结 节 病
断可能需要多个标志物。
骨膜蛋白是一种细胞外基质细 胞 蛋 白, 属
结节 病 组 [(
7 05±12 79)pg/g] 及 对 照 组 [(
1 84±
(
S100A9/MRP14) 水平升高,可为 IPF 的诊断提供依据。
黏蛋白是糖蛋白的一种,是由分泌 细 胞 分 泌
外表面 表 达 的 糖 蛋 白, 目 前 被 认 为 是 可 与 IPF 表 现 相 同 或 类 似。 急 性
IPF 诊断性生 物 标 志 物, 其 确 切 的 功 能 尚 不 清 楚。 作 为 一
诊断 IPF、监测 IPF 进 展、 判 断 IPF 预 后 的 生 物 标 志 物 受
程中,正常健康肺组 织 被 明 显 破 坏 的 肺 泡 结 构 和 改 变 的 细
胞外基质所取代。这 些 变 化 导 致 肺 气 体 交 换 中 断, 顺 应 性
降低,最终导致 呼 吸 衰 竭 和 死 亡 [2]。IPF 的 5 年 生 存 率 在
20%~40% 之间,死亡 率 高 于 结 肠 癌、 多 发 性 骨 髓 瘤 和 膀
6
和 SP
-D 相比,单 体 骨 膜 蛋 白 对 IPF 的 识 别 能 力 最 强。 传
广泛表 达, 分 别 为 MUC5AC 和 MUC5B, MUC5AC 主 要
在 一项对IPF 患者 BALF 的定量蛋白质组学的研究中发现,
气道上皮细胞在中性 粒 细 胞 弹 性 蛋 白 酶 和 活 化 的 嗜 酸 粒 细
和其他高危疾病 (特 应 性 皮 炎、 系 统 性 硬 皮 病 和 哮 喘 ) 患
由近端气 道 产 生, 而 MUC5B 主 要 表 达 于 远 端 呼 吸 道 [19]。