2014年最全初中数学导学案——24.1.1圆

合集下载

24.1.1圆的有关概念(教案)

24.1.1圆的有关概念(教案)
4.学生小组讨论环节,大家围绕圆在实际生活中的应用展开了热烈的讨论。许多学生提出了独特的观点和想法,这让我感到很高兴。但同时,我也注意到一些学生在讨论中较为沉默,可能是因为他们对自己的观点不够自信。在今后的教学中,我要鼓励这些学生大胆发言,增强他们的自信心。
5.在总结回顾环节,学生对本节课的知识点掌握得较好,但仍有一些疑问。这说明我在教学中可能还存在一些不足,需要进一步优化教学方法,提高教学效果。
2.强化学生的逻辑思维和推理能力,通过分析圆与直线、圆与圆之间的位置关系,提升解决问题的策略和方法;
3.培养学生的数学运算能力,熟练掌握圆的周长和面积计算公式,并能应用于解决实际问题;
4.培养学生的数据分析观念,通过对圆的相关实例和练习的探讨,让学生学会从数学角度分析、提炼和解决问题;
5.培养学生的合作交流能力,通过小组讨论和分享,提高学生团队协作和表达自己观点的能力。
5.圆的内接四边形、圆的内切四边形及其性质。
本节课我们将结合教材内容,通过实例和练习,使学生对圆的概念有更深入的理解,并提高他们在实际应用中解决问题的能力。
二、核心素养目标
24.1.1圆的有关概念:
1.培养学生的空间观念和几何直观能力,通过探究圆的基本概念,使学生能够理解和运用圆的相关性质,形成对圆的准确认知;
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对圆的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
三、教学难点与重点

人教版数学九年级上册导学案:24.1 .1 圆

人教版数学九年级上册导学案:24.1 .1 圆

24.1 .1 圆(总第一课时)计划上课时间主备审阅审批一、学习目标:1、了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.2、从感受圆在生活中大量存在到圆形及圆的形成过程,讲授圆的有关概念.3、利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴.通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解.二、教学重点:1.重点:垂径定理及其运用.2.难点与关键:探索并证明垂径定理及利用垂径定理解决一些实际问题。

三、复习和预习案:1、在一个平面内,线段OA绕它固定的一个端点O旋转一周,•另一个端点所形成的图形叫做.固定的端点O叫做,线段OA叫做.2、圆心为O,半径为r的圆可以看成是所有到的图形.3、①连接圆上任意两点的线段叫做,如图线段AC,AB;②经过圆心的弦叫做,如图线段既是弦又是直径;③圆上任意两点间的部分叫做,简称弧,“以A、C为端点的弧记作AC”,读作“圆弧AC”或“弧AC”.大于半圆的弧(如图所示ABC叫做,•小于半圆的弧(如图所示)AC或BC叫做.④圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做.垂径定理内容:①、②、③、四、讨论与展示、点评、质疑:C1、如图,一条公路的转弯处是一段圆弧(即图中CD ,点O 是CD 的圆心,•其中CD=600m ,E 为CD 上一点,且OE ⊥CD ,垂足为F ,EF=90m ,求这段弯路的半径.C2、.有一石拱桥的桥拱是圆弧形,正常水位下水面宽AB=•60m ,水面到拱顶距离CD=18m ,当洪水泛滥时,水面宽MN=32m 时,水面到拱顶距离是多少?请说明理由.五、自我检测案:C1.如图1,如果AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,那么下列结论中,•错误的是( ).A .CE=DEB .BC BD C .∠BAC=∠BAD D .AC>AD(1) (2) (3)C2.如图2,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( )A .4B .6C .7D .8CC3.如图3,在⊙O 中,P 是弦AB 的中点,CD 是过点P 的直径,•则下列结论中不正确的是( )A .AB ⊥CD B .∠AOB=4∠ACDC .AD BD D .PO=PDB4.如图4,AB 为⊙O 直径∠C 是直角,E 是BC 中点,OE 交BC 于点D ,BD=3,AB=10,则AC=_____.(4) (5)B5.P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm ,则经过P 点的最短弦长为______ __;•最长弦长为_______.B6.如图5,OE 、OF 分别为⊙O 的圆心O 到弦AB 、CD 的距离,如果OE=OF ,那么____ ___(只需写一个正确的结论)A7.如图,AB 为⊙O 的直径,CD 为弦,过C 、D 分别作CN ⊥CD 、DM•⊥CD ,•分别交AB 于N 、M ,请问图中的AN 与BM 是否相等,说明理由.A8.如图,⊙O 直径AB 和弦CD 相交于点E ,AE=2,EB=6,∠DEB=30°,求弦CD 长.B A。

人教版九年级上册数学学案:24.1.1圆

人教版九年级上册数学学案:24.1.1圆

O D C B A OCF E A B 《24.1.1圆》导学案 NO :34一、自主学习1.填空:在一个平面内,线段OA 绕它的一个端点O 旋转_____,另一个端点A 所形成的图形叫做___。

记作____,读作____,固定端点O 叫做________,线段OA 叫_____。

2、从集合的角度认识圆,圆是_________________的集合。

在圆上的点到圆心的距离都等于_____,到圆心的距离等于_____的点都在圆上。

“圆”指的是_______,即旋转时所形成的那条封闭曲线,而不是指包括圆心在内的整个“圆面”。

3.以点A 为圆心,可以画______个圆;以已知线段AB 的长为半径可以画______个圆;以点A 为圆心,AB 的长为半径,可以画____个圆.点拨精讲:确定圆的两个要素:圆心(定点)和半径(定长).圆心确定圆的_______,半径确定圆的________.4.到定点O 的距离为5的点的集合是以____为圆心,____为半径的圆.圆的半径相等,两条半径可能构成_______.5、如图1,AB 是⊙O 的直径,OC 是半径,若∠ABC=60°,则∠CAB 的大小___6、阅读教材.(1)弦:连接圆上任意两点的____ __叫做弦;经过圆心的弦叫做_____ ___(2)弧:圆上任意两点间的_____叫做弧;圆的任一直径的两个端点把圆分成的两条弧,每一条弧叫做___ _;大于半圆的弧叫做__ __;小于半圆的弧叫____ 。

(3)直径与弦有怎样的关系?劣弧和优弧怎么表示?(4)如图,在⊙O 中,直径是______, 弦有__________,劣弧有_________,优弧有____ _(5)等圆:能够________的两个圆叫做等圆;它们实质是_____相等_____不同的两个圆。

等弧:在同圆或等圆中,能够_________的弧叫做等弧。

它们实质是_____相等_____不同的弧。

第二十四章《圆》导学案(全章)

第二十四章《圆》导学案(全章)

AQP24.1.1圆(第1课时)【自主学习】 (一) 新知导学1.圆的运动定义:把线段OP 的一个端点O ,使线段OP 绕着点O 在 旋转 ,另一端点P 运动所形成的图形叫做圆,其中点O 叫做 ,线段OP 叫做 .以O 为圆心的圆记作 .2.圆的集合定义:圆是到 的点的集合. 3.点与圆的位置关系:如果⊙O 的半径为r ,点P 到圆心的距离为d ,那么 点P 在圆内⇔ ;点P 在圆上⇔ ; 点P 在圆外⇔ .【合作探究】1.如图,已知:点P 、Q ,且PQ=4cm.(1)画出下列图形: ①到点P 的距离等于2cm 的点的集合; ②到点Q 的距离等于3cm 的点的集合;(2)在所画图中,到点P 的距离等于2cm ;且到点Q 的距离等于3cm 的点有几个?请在图中将它们画出来.(3)在所画图中,到点P 的距离小于或等于2cm ;且到点Q 的距离大于或等于3cm 的点的集合是怎样的图形?把它画出来. 【自我检测】1.到定点O 的距离为2cm 的点的集合是以 为圆心, 为半径的圆.2.正方形的四个顶点在以 为圆心,以 为半径的圆上.3.矩形ABCD 边AB=6cm,AD=8cm ,(1)若以A 为圆心,6cm 长为半径作⊙A ,则点B 在⊙A______,点C 在⊙A_______,点D 在⊙A________,AC 与BD 的交点O 在⊙A_________;(2)若作⊙A ,使B 、C 、D 三点至少有一个点在⊙A 内,至少有一点在⊙A 外,则⊙A 的半径r 的取值范围是_______.4.一个点与定圆最近点的距离为4cm, 与最远点的距离是9cm ,则圆的半径是5.如图,已知在⊿ABC 中,∠ACB=900,AC=12,AB=13,CD ⊥AB,以C 为圆心,5为半径作⊙C ,试判断A,D,B 三点与⊙C 的位置关系6.如左下图,一根长4米的绳子,一端拴在树上,另一端拴着 一只小狗.请画出小狗的活动区域.7.已知:如右上图,△ABC ,试用直尺和圆规画出过A ,B ,C 三点的⊙O .8.△ABC 中,∠A=90°,AD⊥BC 于D ,AC=5cm ,AB=12cm ,以D 为圆心,AD 为半径作圆,则三个顶点与圆的位置关系是什么?画图说明理由.9.如右图,(1)若点O 为⊙O 的圆心,则线段__________是圆O 的半径; 线段________是圆O 的弦,其中最长的弦是______; ______是劣弧;______是半圆.(2)若∠A =40°,则∠ABO =______,∠C =______,∠ABC =______.10.已知:如图,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ,CD 的延长线交于E ,若AB =2DE ,∠E =18°,求∠C 及∠AOC 的度数.小狗24.1.1圆(第2课时)【自主学习】 (一)复习巩固: 1.圆的集合定义.2.点与圆的三种位置关系.3.已知⊙O 的半径为5cm ,点P 是⊙O 外一点,则OP 的长可能是( ) A. 3 cm B. 4cm C. 5cm D.6cm (二)新知导学 1.与圆有关的概念①弦:连结圆上任意两点的 叫做弦. ②直径:经过 的弦叫做直径.③弧: ,弧分为:半圆( 所对的弧叫做半圆)、劣弧(小于 的弧)和优弧(大于 的弧).④同心圆: 相同, 不相等的两个圆叫做同心圆. ⑤等圆:能够互相 的两个圆叫做等圆.⑥等弧:在 或 中,能够互相 的弧叫做等弧. 2.同圆或等圆的性质:在同圆或等圆中,它们的 相等. 【合作探究】1.圆心都为O 的甲、乙两圆,半径分别为r 1和r 2,且r 1<OA <r 2,那么点A 在( ) A. 甲圆内 B.乙圆外 C. 甲圆外、乙圆内 D. 甲圆内、乙圆外2.下列判断:①直径是弦;②两个半圆是等弧;③优弧比劣弧长,其中正确的是( ) A. ① B.②③ C. ①②③ D.①③ 【自我检测】1.已知⊙O 中最长的弦为16cm ,则⊙O 的半径为________cm . 2.过圆内一点可以作出圆的最长弦_____条. 3.下列语句中,不正确的个数是( )①直径是弦; ②弧是半圆; ③长度相等的弧是等弧; •④经过圆内任一定点可以作无数条直径. A .1个 B .2个 C .3个 D .4个 4.下列语句中,不正确的是( )A .圆既是中心对称图形,又是旋转对称图形B .圆既是轴对称图形,又是中心对称图形C .当圆绕它的圆心旋转89°57′时,不会与原来的圆重合D .圆的对称轴有无数条,对称中心只有一个5.等于31圆周的弧叫做( )A .劣弧B .半圆C .优弧D .圆6.如图,⊙O 中,点A 、O 、D 以及点B 、O 、C 分别在一条直线上,图中弦的条数有(• )第6题ABCA .2条B .3条C .4条D .5条7.以已知点O 为圆心,已知线段a 为半径作圆,可以作( ) A .1个 B .2个 C .3个 D .无数个8.如图,CD 是⊙O 的直径,∠EOD=84°,AE 交⊙O 于点B ,且AB=OC ,求∠A 的度数.9.如图,在△ABC 中,∠ACB=90°,∠A=40°;以C 为圆心、CB 为半径的圆交AB•于点D ,求∠ACD 的度数.10.如图,CD 是⊙O 的弦,CE=DF ,半径OA 、OB 分别过E 、F 点. 求证:△OEF 是等腰三角形.11.如图,在⊙O 中,半径OC 与直径AB 垂直,OE=OF,则BE 与CF 的大小关系如何?并说明理由。

人教版九年级数学上册导学案:24.1.1圆

人教版九年级数学上册导学案:24.1.1圆

一、自主预习(自学课本79页至80页完成下列填空题)1、动手操作(1)以1厘米为半径能画几个圆?以点O为圆心能画几个圆?(2)以O为圆心1厘米为半径能画几个圆,画出来.2、自学课本79页至80页,根据你画圆的过程,给出圆的定义。

3、在你画的圆中,有哪些与圆相关的概念。

4确定一个圆的条件有几个?5、你能画两个半径相等的圆吗?能画两个圆心相同的圆吗?归纳:相等的圆叫等圆;相同的圆叫同心圆.等弧:二、合作探究1、判断(1)直径是弦,弦是直径. ()(2)弧就是半圆,半圆是弧.()(3)两段圆弧,较长的是优弧,较短的是劣弧. ()(4)长度相等的两条弧是等弧. ()(5)半圆所对的弦是直径,直径所对的弧是半圆. ()2、如图已知OA、OB、OC是⊙O的三条半径,∠AOC=∠BOC,M、N分别为OA,OB的中点,求证:MC=NC三、展示交流1、下列说法中,结论错误的是()A.直径相等的两个圆是等圆B.长度相等的两条弧是等弧C.圆中最长的弦是直径D.一条弦把圆分成两条弧,这两条弧可能是等弧2、如图,AB是⊙O的直径,D、C在⊙O上,AD∥OC,∠DAB=60°,科目数学班级:学生姓名课题24.1.1圆课型新授课时 1 主备教师备课组长签字学习目标:1.经历形成圆的概念的过程,理解圆的定义2.理解弦、弧等和圆有关的概念学习重点1、理解圆及圆有的有关概念2、理解弧、弦等概念学习难点圆的概念的形成过程和圆的定义·AC BM NO连接AC,求∠DAC四、随堂检测1、判断题:①同一个圆的直径的长是半径的2倍.()②直径是最长的弦.最长的弦是直径 . ()③过圆心的线段是直径.()2、已知⊙O内一点P,它到圆的最小距离是2 cm,最大距离是8 cm,则⊙O的半径是多少cm?3、已知:如图,在⊙O中,AB,CD为直径。

求证:AD∥BC。

人教版九年级数学上册 24.1.1 圆 精品导学案 新人教版

人教版九年级数学上册 24.1.1 圆 精品导学案 新人教版

圆 课题:24.1.1圆序号 :学习目标:1、知识与技能:明确圆的两种定义、弦、弧等概念,澄清“圆是圆周而非圆面”、“等弧不是长度相等的弧”等模糊概念。

2.过程与方法:从感受圆在生活中大量存在及圆的形成过程,理解圆的有关概念。

3、情感.态度与价值观:以问題形式引入,激发学生的求知欲,并在运用数学知识解答问题的活动中获得成功体验,建立学习的信心。

学习重点:圆和圆的有关概念 “圆是圆周而非圆面”、“等弧不是长度相等的弧” 等模糊概念。

学习难点:理解概念所表达的含义,抓住概念的关键点和核心,探求问题的本质。

导学过程一、课前预习:阅读课本P78---79的有关内容,完成《导学》教材导读中的问题及自主测评。

.二、课堂导学:1.情境导入:前面我们已经学习了一些基本的直线形----三角形.四边形等,在此基础上,进一步研究一个基本的曲线形----圆。

在我们的日常生活中,圆形物体随处可见,你知道为什么要设计成圆形吗?这是因为圆不仅是一种最基本.最常见的平面图形,而且圆还具有不少特殊的性质呢?2.出示任务 , 自主学习:阅读教材78.79页的有关内容,尝试解决下面的问题:(1)圆指的是“圆周”还是“圆面”?为什么?(2)车轮为什么做成圆形 ?(3)半径和直径都是弦吗?直径和弦是什么关系?(4)半圆是弧吗?半圆和弧是什么关系?什么是等弧?3.合作探究:《导学》难点探究和展题设计三、展示 与反馈:检查预习情况,解决学生疑惑。

四、课堂小结:如图,在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆.固定的端点O 叫做圆心线段OA 叫做半径A ·rO 以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”.圆的概念(1)圆上各点到定点(圆心O )的距离都等于定长(半径r );归纳:圆心为O 、半径为r 的圆可以看成是所有到定点O 的距离等于定长r 的点组成的图形.从画圆的过程可以出:(2)到定点的距离等于定长的点都在同一个圆上.五、达标检测:1、P80页练习 1.2.2、判断正误:1)、弦是直径 ( ) 2)半圆是弧; ( )3)过圆心的线段是直径;( ) 4)过圆心的直线是直径;( )5)半圆是最长的弧; ( ) 6)直径是最长的弦; ( )7)圆心相同,半径相等的两个圆是同心圆; ( )8)半径相等的两个圆是等圆; ( )9)等弧就是拉直以后长度相等的弧。

人教版九年级数学第24章《圆》24.1.1-4导学案

人教版九年级数学第24章《圆》24.1.1-4导学案

⼈教版九年级数学第24章《圆》24.1.1-4导学案第1课时 24.1.1 圆⼀、新知导学1.圆的定义:把线段op 的⼀个端点O ,使线段OP 绕着点O 在旋转,另⼀端点P 运动所形成的图形叫做圆,其中点O 叫做,线段OP 叫做 .以O 为圆⼼的圆记作 .2.圆的集合定义:圆是到的点的集合. 3、从圆的定义中归纳:①圆上各点到定点(圆⼼O )的距离都等于____ __;②到定点的距离等于定长的点都在____ _.4、圆的表⽰⽅法:以O 点为圆⼼的圆记作______,读作______.5、要确定⼀个圆,需要两个基本条件,⼀个是______,另⼀个是_____,其中_____确定圆的位置,______确定圆的⼤⼩.6;如图1,弦有线段,直径是,最长的弦是,优弧有;劣弧有。

⼆、合作探究1.判断下列说法是否正确,为什么?(1)直径是弦.()(2)弦是直径.()(3)半圆是弧.( ) (4) 弧是半圆.( )(5) 等弧的长度相等.( ) (6) 长度相等的两条弧是等弧.( )2.⊙O 的半径为2㎝,弦AB 所对的劣弧为圆周长的61,则∠AOB =,AB =3.已知:如图2,OAOB 、为O 的半径,C D 、分别为OA OB 、的中点,求证:(1);A B ∠=∠ (2)AE BE =4.对⾓线互相垂直的四边形的各边的中点是否在同⼀个圆上?并说明理由.三、⾃我检测1.到定点O 的距离为2cm 的点的集合是以为圆⼼,为半径的圆.2.正⽅形的四个顶点在以为圆⼼,以为半径的圆上.3.⼀个点与定圆最近点的距离为4cm, 与最远点的距离是9cm ,则圆的半径是4.下列说法正确的有()①半径相等的两个圆是等圆;②半径相等的两个半圆是等弧;③过圆⼼的线段是直径;④分别在两个等圆上的两条弧是等弧. A. 1个 B. 2个 C. 3个 D. 4个5.如图3,点A O D 、、以及点B O C 、、分别在⼀条直线上,则圆中有条弦. 6、下列说法正确的是(填序号)①直径是弦②弦是直径③半径是弦④半圆是弧,但弧不⼀定是半圆⑤半径相等的两个半圆是等弧⑥长度相等的两条弧是等弧⑦等弧的长度相等 7.圆O 的半径为3 cm ,则圆O 中最长的弦长为8.如图4,在ABC ?中,90,40,ACB A ∠=?∠=?以C 为圆⼼,CB 为半径的圆交AB 于点D ,求ACD ∠的度数.9、已知:如图5,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ,CD 的延长线交于E ,若AB =2DE ,∠E =18°,求∠C 及∠AOC 的度数.(图1)(图2)(图4)(图3)(图5)第2课时 24.1.2 垂直于弦的直径⼀、新知导学1.阅读教材p80有关“赵州桥”问题,思考能⽤学习过的知识解决吗?2. 阅读教材p80“探究”内容,⾃⼰动⼿操作,发现了什么?由此你能得到什么结论?归纳:圆是__ __对称图形,____________ ________都是它的对称轴;3. 阅读教材p80“思考”内容,⾃⼰动⼿操作:按下⾯的步骤做⼀做:(如图1)第⼀步,在⼀张纸上任意画⼀个⊙O ,沿圆周将圆剪下,作⊙O 的⼀条弦AB ;第⼆步,作直径CD ,使CD AB ⊥,垂⾜为E ;第三步,将⊙O 沿着直径折叠. 你发现了什么?归纳:(1)图1是对称图形,对称轴是 .(2)相等的线段有,相等的弧有 .⼆、合作探究活动1:(1)如图2,怎样证明“⾃主学习3”得到的第(2)个结论. 叠合法证明:(2)垂径定理:垂直于弦的直径弦,并且的两条弧.定理的⼏何语⾔:如图2 CD 是直径(或CD 经过圆⼼),且CD AB ⊥____________,____________,_____________∴推论:___________________________________________________________________________.活动2 :垂径定理的应⽤垂径定理的实际应⽤怎样求p80赵州桥主桥拱半径?解:如图3⼩结:(1)辅助线的常⽤作法:连半径,过圆⼼向弦作垂线段。

人教版九年级数学上册(教案):24.1.1圆

人教版九年级数学上册(教案):24.1.1圆
人教版九年级数学上册(教案):24.1.1圆
一、教学内容
人教版九年级数学上册(教案):24.1.1圆
本节课主要围绕以下内容展开:
1.圆的定义:平面上所有与定点的距离相等的点组成的图形称为圆。
2.圆的半径:连接圆心与圆上任意一点的线段。
3.圆的直径:通过圆心,并且两端都在圆上的线段。
4.圆的性质:圆上任意两点间的线段都是圆的弦,圆的直径是最长的弦;圆的半径垂直于弦,且平分弦;圆上有无数条对称轴,都通过圆心。
4.培养学生合作交流、探究发现的能力,通过小组讨论、动手操作等教学活动,提高团队协作和问题解实生活中的应用和美感的认识,提升数学学科素养。
三、教学难点与重点
1.教学重点
-圆的定义及其相关概念:圆、半径、直径、弦。这是本节课的核心内容,是后续学习圆的性质和计算的基础。
在总结回顾环节,学生对圆的知识点有了更深入的理解。但在课后,我收到一些学生的反馈,表示对于圆周率π的计算和应用仍有一定难度。针对这个问题,我计划在下一节课中进行专项讲解和练习,以确保学生能够熟练掌握。
1.丰富教学手段,利用多媒体、教具等辅助工具,帮助学生直观地理解圆的性质和计算方法。
2.设置更具启发性和实践性的问题,引导学生深入思考,提高问题解决能力。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆相关的实际问题,如圆的周长和面积的计算。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用圆规画圆,测量圆的半径和直径。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆的基本概念、重要性质和圆周率π。同时,我们也通过实践活动和小组讨论加深了对圆的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(二)弦、弧、半圆、等圆、等弧的概念 1.连接圆上任意两点的线段叫做弦,如图线段 AC,AB; 2.经过圆心的弦叫做直径,如图中线段 AB; 3.圆上任意两点间的部分叫做圆弧,简称弧,
B O A C
⌒ “以A、C为端点的弧记作AC,读作“圆弧AC”或
“弧AC” .圆的任意一条直径的两个端点把圆分 成两条弧, 每条弧都叫做半圆。 大于半圆的弧 (如 图所示 叫做优弧,小于半圆的弧(如
直观形象的初步 认知圆,培养学 生思考习惯 让学生亲自动手 进行实验, 探究, 得出结论,激发 学生的求知欲 望. 通过问题引导学 生探究,发现圆 的集合定义,初 步感知圆
因此,我们可以得到圆的集合定义:圆心为 O,半径为 r 的圆可以 看成是所有到定点 O 的距离等于定长 r 的点的集合.
3 ○.车轮为什么做成圆形的?
学生根据对定义的理解, 尝试说明直径与弦的区别 与联系 学生思考得到点与圆的 位置关系
进一步理解直径 与弦的概念
三、课堂训练 教师组织学生进行练习, 教师巡回检查,集体交流 补充: 评价,对于重点问题进行 1.以点 O 为圆心画圆可以画 个圆, 4 ㎝为半径画圆可以画 个圆 以 强化,点拨方法,对于共 2.下列说法错误的有( ) 性问题,做好补教,对于 好的做法,加以鼓励表扬. 1 经过 P 点的圆有无数个;○以 P 为圆心的圆有无数个;○半径为 3 2 3 ○ 教师并指导学生写出解答 ㎝且过 P 点的圆有无数个;4 以 P 为圆心, ○ 半径为 3 ㎝的圆有无数个; 过程,体会方法,总结规 A.1 个 B.2 个 C.3 个 D.4 个 律. 3.一个点到圆的最小距离是 4,最大距离是 9,则圆的半径是( ) A.5 或 13 B.6.5 C.2.5 D. 2.5 或 6.5
1 2 3 4.判断:○直径不是弦,弦不是直径;○直径是圆中最长的弦;○圆 4 上任意两点间的部分叫弧;○一条弦
完成课本 80 页练习
让学生通过练习 进一步理解概 念,培养学生的 应用意识和能力
5.如右图,在⊙O 中,点 A,O,D 以及点 B,O,C 分别在同一条直线上, 则图中弦的条数是( A.2 条 B.3 条 ) D.5 条 归纳提升,加强 学习反思,帮助 学生养成系统整 理知识的习惯 C.4 条
1 ○.圆上各点到定点(圆心 O)的距离有什么规律? 2 ○到定点(圆心 O)的距离等于定长的点又有什么特点?
师生行为 从常见圆形物体引入课 题,引起学生思考
设 计 意 图
教师引导学生欣赏图片, 学生观察,思考,对圆进 行直观认识 学生用圆规画圆,观察体 验,归纳总结,合作交流, 发现结论 老师提问,学生尝试作答, 教师点评总结,得到 (1)图上各点到定点(圆 心 O)的距离都等于定长 (半径 r)(2)到定点的 ; 距离等于定长的点都在同 一个圆上. 教师提出问题,引发学生 思考,并运用刚学的知识 解释说明
四、小结归纳 1.圆的定义:
1 2 ○.描述性;○.集合定义
让学生尝试归纳,总结, 发言,体会,反思,教师 点评汇总
2.弦、弧、半圆、等圆、等弧的概念 3.直径与弦的区别与联系 五、作业设计 补充作业: 若 d 为⊙O 直径,m 为⊙O 的一条弦,请判断直径 d 与弦 m 的大小关 系是怎样的? 板 课题 描述性定义 集合定义 书 设 计 归纳 巩固深化提高
教学过程设计
教 学 程 序 及 教 学 内 容 一、导语: 车轮、齿轮、水杯等常见物品为什么做成圆形的?从这节课开始 就来进一步认识圆,研究圆的有关性质,用圆的知识解决一些实际问 题. 二、探究新知 (一)圆的概念 1.有关圆的图片欣赏 2.用圆规画圆 根据画圆的过程给出圆的描述性定义,及圆心、半径的概念,强 调“在一个平面内”.根据圆的定义可知“圆”指的是“圆周”而非 “圆面”. 3.圆的表示方法和读法 4.从集合角度对圆刻画
弦、弧、半圆的概念
圆的定义 圆的表示
等圆、等弧的概念




2
作 课 类 别 教 学 媒 体 知 识 教 学 目 标 技 能 过 程 方 法 情 感 态 度 教学重点 教学难点
课 题
24.1.1 多媒体

课 型
新授
1.了解圆的有关概念,并灵活运用圆的概念解决一些实际问题. 2.结合图形理解弧、等弧、弦、等圆、半圆、直径等有关概念. 通过举出生活中常见圆的例子,经历观察画圆的过程,多角度体会和认识圆. 激发学生观察、探究、发现数学问题的兴趣和欲望. 圆、弧、等弧、弦、等圆、半圆、直径等有关概念的理解 圆、弧、等弧、弦、等圆、半圆、直径等有关概念的区别与联系.
学生结合图形理解弦、直 径、弧、优弧、劣弧、半 圆、等圆、等弧的概念.
学生理解概念,
⌒)叫做劣弧. ⌒ 图所示AC或 BC
4.能够重合的圆叫等圆.半径相等的圆是等圆, 等圆的半径一定相等.
1
5.在同圆或等圆中,能够互相重合的弧叫等弧 6.直径与弦的区别与联系是什么? (三)点与圆的位置关系
1 ○.平面上的圆把平面分成几部分? 2 ○.点与圆的位置关系有几种?
相关文档
最新文档