C16012课后测验

合集下载

西师大版二年级数学下册期末检测考试复习课后练习

西师大版二年级数学下册期末检测考试复习课后练习

西师大版二年级数学下册期末检测考试复习课后练习班级:_____________ 姓名:_____________选择题1. 花坛里栽了6行月季,每行6棵,其中12棵是黄色的,剩下的是红色的,红色月季有多少棵?列式是( )。

A .6×6=36(棵)B .6×6-12= 24(棵)C .36 +12 = 48(棵)2. 用减法验算294+406=700的算式是( )。

A .406+294B .700-2943. 从上面观察正确的是(________)。

A .B .C .D .以上都不对4. 最大的三位数再加上()就是最小的四位数。

A .900B .990C .15. 算一算,选一选。

1.三年级一班有学生46人,三年级二班有学生41人,这两班一共有( )学生。

A .87人B .75人C .86人2.比42多55的数是多少?正确的列式是( )。

A .84+55B .55-42C .42+55计算题6. 我知道,也会填。

1.小火车上应填的数字是多少?______ ______ ______ ______ ______2.在横线上填上合适的数。

87-______=54 35+______=67 41+______=82 61-______=207. 用竖式计算,有*的题要验算①56÷9 ②514+658③*269+454 验算:④547+283-322⑤804-309 ⑥*900-753 验算:8. 算一算,填一填。

(1)(2)(3)9. 口算我能行,玩转加减法。

24÷4=______ 4×8=______ 10÷2=______ 20÷5=______ 10÷5=______ 12÷3=______ 3×9=______ 5÷1=______ 18÷3=______ 20÷4=______ 6÷2=______ 6÷6=______ 16÷4=______ 6×5=______ 7×7=______ 32+4=______10. 看谁算的又快又准。

苏教版四年级下册数学期末测试卷及含答案(易错题)

苏教版四年级下册数学期末测试卷及含答案(易错题)

苏教版四年级下册数学期末测试卷及含答案一、选择题(共5题,共计20分)1、下面哪个数字不是轴对称数字( )A.80B.58C.882、行驶相同的路程,甲车用了5小时,乙车用了6小时,甲乙两车的速度比是()A.5:6B.6:5C. :D.不能确定3、34□9041≈350万,□中填()A.0B.9C.44、教室里小芳的位置用数对表示是(5,6),那么她同桌的位置用数对表示可能是()A.(4,6)B.(5,5)C.(5,7)5、用计算器计算6501-519+7020=()A.1640B.13002C.2000D.6021二、填空题(共8题,共计24分)6、最小的四位数与最大的两位数的积是________,差是________。

7、观察下面两幅图,写出每幅图所表示的数,并比较两个数的大小。

________8、三角形内角和________度,四边形内角和________度,六边形内角和________度。

9、小明坐在教室第6列第2行,他的位置用数对表示是________,小英的位置是(3,4),她坐在第________列第________行。

10、用7、0、5、3、8、2六个数字组成最大的六位数是________,组成最小的六位数是________。

11、三角形具有________性,它的内角和是________。

12、两个因数的积是2.4,如果一个因数扩大10倍,另一个因数不变,积是________,如果一个因数扩大100倍,另一个因数缩小为原数的,积是________,如果两个因数同时扩大10倍,积是________.13、________个二百万是三千万,与100000相邻的两个数的和是________。

三、判断题(共4题,共计8分)14、所有的三角形都是轴对称图形。

()15、30507099读作:三千零五十万七千零九十九。

()16、一个等腰三角形它的顶角小于90 ,这个三角形一定是锐角三角形。

()17、打陀螺既是旋转也是平移现象。

豫教版2019年六年级数学下学期能力检测试题 附解析

豫教版2019年六年级数学下学期能力检测试题 附解析

乡镇(街道) 学校 班级 姓名 学号 ………密……….…………封…………………线…………………内……..………………不……………………. 准…………………答…. …………题…绝密★启用前豫教版2019年六年级数学下学期能力检测试题 附解析题 号 填空题 选择题 判断题 计算题 综合题 应用题 总分得 分考试须知:1、考试时间:100分钟,本卷满分为100分。

2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。

3、请在试卷指定位置作答,在试卷密封线外作答无效,不予评分。

一、填空题(共10小题,每题2分,共计20分)1、在长5dm ,宽3dm 的长方形纸上剪出直径是4cm 的圆,至多可以剪( )个。

2、解放军战士进行射击训练,四个战士每人射击了20发子弹,共有4发子弹没有击中,这次训练的命中率是( )。

3、甲乙两地相距26km ,在地图上的距离是5.2cm ,这幅地图的比例尺是( )。

4、小明集邮的数量占小华的2/3,把( )看作单位“1”。

5、甲乙两数的平均数是14,这两个数的比是4:3,那么乙数是( )。

6、一个正方体木块的棱长是2dm ,现在把它削成一个最大的圆柱。

削成的圆柱侧面积是( )dm2,削成的圆柱的体积占原来正方体体积的( )%。

7、填上适当的单位或数字:数学试卷的长度约是60________;你的脉搏一分钟大约跳________次;8个鸡蛋大约有 500________;小刚跑一百米的时间大约是14________;一间教室的占地面积大约是40________;7.2小时=________ 小时________分:2千克60克=________千克。

8、五月份销售额比四月份增加15%,五月份销售额是四月份的( )%,四月份销售额比五月份少( )%。

9、有20千克糖,每1/2千克装1包,可以装( )包。

10、一个三角形的三个内角度数之比是3:2:1,那么这个三角形是( )三角形。

豫教版2019年六年级数学下学期综合练习试卷 附答案

豫教版2019年六年级数学下学期综合练习试卷 附答案

乡镇(街道) 学校 班级 姓名 学号 ………密……….…………封…………………线…………………内……..………………不……………………. 准…………………答…. …………题…绝密★启用前豫教版2019年六年级数学下学期综合练习试卷 附答案题 号 填空题 选择题 判断题 计算题 综合题 应用题 总分得 分考试须知:1、考试时间:100分钟,本卷满分为100分。

2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。

3、请在试卷指定位置作答,在试卷密封线外作答无效,不予评分。

一、填空题(共10小题,每题2分,共计20分)1、大正方形的边长是2厘米,小正方形的边长是1厘米,大正方形和小正方形面积的比是( )。

2、一个三角形的周长是36厘米,三条边的长度比是5:4:3,其中最长的一条边是( )厘米。

3、在比例尺是1:6000000的地图上量得A 、B 两城之间的距离是25厘米,A 、B 两城之间的实际距离是( )千米。

4、五年级(1)班同学共植树50棵,成活率是98%,没有成活的树有( )棵。

5、在比例尺是1:100000的地图上量得甲、乙两地之间的距离是20厘米,甲、乙两地之间的实际距离是( )千米。

6、 六(1)班今天到校48人,请病假1人,请事假1人,该班出勤率是( )%。

7、甲数的2/5是乙数的5/6,乙数是12,甲数是( )。

8、教室的顶灯需要换一个灯泡,灯泡距地面2.6米,张老师身高1.80米,他踩在一根高0.6米的凳子上,张老师( )换灯泡。

(填“能”或“不能”) 9、 0.4:0.25化简比是( ),比值是( )。

10、某车间有200人,某一天有10人缺勤,这天的出勤率是( )。

二、选择题(共10小题,每题1.5分,共计15分)1、将圆柱的侧面展开,将得不到一个( )。

A 、正方形 B 、梯形 C 、平行四边形2、王宏4月5日在银行存了活期储蓄2000元,月利率是0.12%,到6月5日,他可以得到税后利息是多少元?(税后利息为5%)正确的列式是( )。

C16012课后测验100分

C16012课后测验100分
A. 大连商品交易所
B. 上海期货交易所
C. 郑州商品交易所
D. 中国金融期货交易所
描述:我国主要期货交易所及交易品种
您的答案:C
题目分数:10
此题得分:10.0
批注:
二、多项选择题
4. 个人期货客户服务的核心在于( )。
A. 铜
B. 铁合金
C. 黄金
D. 螺纹钢
描述:我国主要期货交易所及交易品种
您的答案:D,C,A
题目分数:10
此题得分:10.0
批注:
6. 为期货客户提供的信息类服务包括( )等方面。
A. 价格信息
B. 供需信息
C. 定制信息
D. 宏观、政策案:D,C,A,B
题目分数:10
此题得分:10.0
批注:
7. 以下关于我国期货市场个人期货客户的特点描述正确的是( )。
A. 是价格波动风险的承受者
B. 是市场流动性的主要提供者
您的答案:正确
题目分数:10
此题得分:10.0
批注:
10. 郑州商品交易所的大豆、豆油、豆粕几个品种包含了大豆生产产业链的主要环节。( )
描述:我国主要期货交易所及交易品种
您的答案:错误
题目分数:10
此题得分:10.0
批注:
试卷总得分:100.0
一、单项选择题
1. 下列( )不是大连商品交易所上市交易的期货品种。
A. 玉米
B. 菜籽粕
C. 豆粕
D. 焦炭
描述:我国主要期货交易所及交易品种
您的答案:B
题目分数:10

试题小班数学期末试题

试题小班数学期末试题

试题小班数学期末试题一、选择题1. 小明购买了一本书,原价为80元,商家打9折,此时小明需要支付多少钱?A. 70元B. 72元C. 73元D. 75元2. 若x+4=10,则x的值为:A. 4B. 6C. 10D. 143. 在一个等边三角形ABC中,AB的长度为10cm,点D、E分别是边AB的中点和边BC的中点,连接DE,则三角形ABD与三角形CDE的面积比为:A. 1:2B. 1:4C. 1:64. 若49a = 7,则a的值为:A. 2B. 3C. 4D. 55. 已知一个数的6倍加上8等于44,这个数是:A. 4B. 6C. 7D. 8二、填空题1. 4 x 5 = _______2. 2 + 3 x 4 = _______3. 18 ÷ 3 + (4 - 1) = _______4. 73 + (-23) = _______5. 7² - 3³ = _______三、解答题1. 解方程:3x + 5 = 202. 计算:75 ÷ 5 x (4 - 2)计算过程:3. 已知一个三角形ABC,AB = 6cm,BC = 8cm,角C的度数为90°,求AC的长度。

解:4. 小明从上午9时30分学习到上午11时40分,共学习了多少时间?解:5. 若正方形的边长为x,则该正方形的周长和面积分别是多少?解:四、应用题1. 甲、乙两个人参加游戏,每人有5张红卡和3张蓝卡。

游戏规则如下:- 若两人同时出示红卡,则甲获得2分,乙获得1分;- 若两人同时出示蓝卡,则乙获得2分,甲获得1分;- 若一人出示红卡,一人出示蓝卡,则乙获得3分,甲获得0分。

问:若甲出示红卡,乙出示蓝卡,他们各自的得分是多少?2. 一辆汽车以每小时80公里的速度行驶2小时,然后以每小时60公里的速度行驶3小时,最后以每小时40公里的速度行驶4小时。

求汽车行驶的总路程。

3. 小明今年的体重比去年多上了15%,今年的体重是去年体重的多少?4. 某商品原价为120元,现在打7折出售。

P126 练习123 完成练习册课后作业

P126  练习123  完成练习册课后作业

25.1.1随机事件(第一课时)知识与技能:通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。

过程与方法:历经实验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念。

情感态度和价值观:体验从事物的表象到本质的探究过程,感受到数学的科学性及生活中丰富的数学现象。

重点:随机事件的特点难点:对生活中的随机事件作出准确判断教学程序设计一、创设情境,引入课题1.问题情境下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边下山;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)水往低处流;(5)酸和碱反应生成盐和水;(6)三个人性别各不相同;(7)一元二次方程x2+2x+3=0无实数解。

【设计意图:首先,这几个事件都是学生能熟知的生活常识和学科知识,通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性。

】2.引发思考我们把上面的事件(1)、(4)、(5)、(7)称为必然事件,把事件(2)、(3)、(6)称为不可能事件,那么请问:什么是必然事件?什么又是不可能事件呢?它们的特点各是什么?【设计意图:概念也让学生来完成,把课堂尽量多地还给学生,以此来体现自主学习,主动参与原理念。

】二、引导两个活动,自主探索新知活动1:5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。

签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。

小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。

请考虑以下问题:(1)抽到的序号是0,可能吗?这是什么事件?(2)抽到的序号小于6,可能吗?这是什么事件?(3)抽到的序号是1,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?根据学生回答的具体情况,教师适当地加点拔和引导。

线性代数课后答案解析 第二版 同济大学出版社

线性代数课后答案解析  第二版  同济大学出版社

线性代数习题解答 同济大学出版社习题11.求下列各排列的逆序数:(1)1 2 3 4; (2)4 1 3 2;(3)4 1 5 3 2; (4)3 7 1 2 4 5 6; (5)1 3 … (21)n - 2 4 … (2)n ; (6)1 3 … (21)n - (2)n (22)n - … 2. 2.利用对角线法则计算下列二阶、三阶行列式:(1)3214---; (2)201141183---;(3)a b c b c a c a b ; (4)x y x y yx y x x yxy+++.3.在六阶行列式中,下列两项各应带什么符号: (1)233142561465a a a a a a ;(2)334214516625a a a a a a . 4.计算下列各行列式:(1)000100020010000000n n -; (2)1234214334124321------;(3)2100121001210012; (4)0451250201720343115023013-------;(5)abac aebdcd de bfcfef---; (6)1111111111111111x x y y+-+-.5.证明:(1)11121314152122232425313241425152000000000a a a a a a a a a a a a a a a a =; (2)2222111a abb aa b b +=3()a b -;(3)111111222222b cc a a bb c c a a b b c c a a b +++++++++=1112222ab ca b c a b c ; (4)222244441111a b c d a b c d a b c d ; ()()()()()a b a c a d b c b d =-----()()-+++c d a b c d ;(5)1221100001000001n n n x x xa a a a x a -----+111n n n n x a x a x a --=++++ .6.计算下列各n 阶行列式:(1)11aa,其中对角线上元素都是a ,未写出的元素都是0;(2)111x a a a x a a a x --- ;(3)123111100100100n a a a a,230≠其中n a a a ; (4)12111111111na a a +++,120n a a a ≠ 其中;(5)111222(1)(2)()(1)(2)()12111n n n n n n a a a n a a a n a a a n ---------------;(6)det(),n ij ij D a a i j ==-其中. 7.利用拉普拉斯定理计算下列各行列式:(1)320000430000002100003200000032000054;(2)3002034040030560; (3)112110000nnn nna b a b D c d c d =.解答习题11.(1)0;(2)4;(3)6;(4)7;(5)(1)2-n n ;(6)(1)-n n . 2.(1)-14;(2)-4;(3)3333---ab a b c ;(4)332()-+x y . 3.(1)正号;(2)负号. 4.(1)(1)(2)2(1)!---n n n ;(2)900;(3)5;(4)-799;(5)4abcdef ;(6)22x y . 5.提示:(1)用行列式定义证明;(2)、(3)、(4)用行列式性质证明;(5)用数学归纳法证明.6.(1)22(1)--n aa ;(2)1[1(1)](1)--+---n x n a x a ;(3)23121()()nn i ia a a a a =-∑ ;(4)1211()(1)=+∑nn i i a a a a ;(5)1()≥>≥-∏n i j i j ;(6)12(1)(1)2----n n n . 7.(1)2;(2)2;(3)1()=-∏niii i i a db c .习题21.有6名选手参加乒乓球比赛,成绩如下:选手1胜选手2,4,5,6负于选手3;选手2胜选手4,5,6负于选手1,3;选手3胜选手1,2,4负于选手5,6;选手4胜选手5,6负于选手1,2,3;选手5胜选手3,6负于选手1,2,4;若胜一场得1分,负一场得零分试用矩阵表示输赢状况,并排序.2.某种物资以3个产地运往4个销地,两次调运方案分别为矩阵A 与矩阵B .且357220430123A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,132021570648B ⎛⎫ ⎪= ⎪ ⎪⎝⎭试用矩阵表示各产地运往各销地两次的物资调运量.3.设111123111124111051A B ⎛⎫⎛⎫⎪ ⎪=-=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,,求32AB A -与TA B .4.某厂研究三种生产方法,生产甲、乙、丙三种产品,每种生产方法的每种产品数量用如下矩阵表示:234123241A ⎛⎫ ⎪= ⎪ ⎪⎝⎭甲乙丙方法一方法二方法三 若甲、乙、丙各种产品每单位的利润分别为10元,8元,7元,试用矩阵的乘法求出以何种方法获利最多.5.设12101312A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,,问(1)AB BA =吗?(2)()2222A B A AB B +=++吗?(3)()()22A B A B A B +-=-吗?6.举反例说明下列命题是错误的: (1)若2A O =,则A O =;(2)若2A A =,则A O =或A E =;(3)若AX AY =,且A O ≠,则X Y =. 7.设101A λ⎛⎫=⎪⎝⎭,求23kA A A ,,,. 8.设AB 、都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB BA =. 9.用伴随矩阵法求下列矩阵的逆阵:(1)1225⎛⎫ ⎪⎝⎭; (2)cos sin sin cos θθθθ-⎛⎫⎪⎝⎭; (3)121342541-⎛⎫ ⎪- ⎪ ⎪-⎝⎭; (4)1234012300120001⎛⎫⎪⎪ ⎪ ⎪⎝⎭. 10.解下列矩阵方程: (1)25465321X -⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(2)211113210432111X -⎛⎫-⎛⎫⎪= ⎪ ⎪⎝⎭ ⎪-⎝⎭;(3)010100143100001201001010120X -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.11.设方阵A 满足225A A E O +-=,证明3A E +可逆,并求其逆矩阵.12.已知对给定方阵A ,存在正整数k ,成立kA O =,试证E A -可逆,并指出()1E A --的表达式.13.设A 为3阶方阵,12A =,求()125A A -*-. 14.设方阵A 可逆,证明其伴随矩阵A *也可逆,且()()11AA -**-=.15.设131020101A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,2AB E A B +=+,求B .16.设三阶矩阵A B ,满足关系:16A BA A BA -=+,且100210041007A ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭, 求B .17.设033110123A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,2AX A X =+,求X .18已知AP P =Λ,其中100100210000211001P ⎛⎫⎛⎫⎪ ⎪=-Λ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,=,求A 及5A .19.设A B ,和A B +均可逆,证明11A B --+也可逆,并求其逆矩阵.20.将矩阵2131425442622140A -⎛⎫⎪-⎪= ⎪--- ⎪-⎝⎭化为行阶梯形矩阵,并求矩阵A 的一个最高阶非零子式.21.用初等变换法求下列矩阵的逆:(1)111211120⎛⎫ ⎪- ⎪ ⎪⎝⎭; (2)321315323⎛⎫⎪ ⎪ ⎪⎝⎭;(3)3201022112320121--⎛⎫⎪ ⎪ ⎪--- ⎪⎝⎭; (4)1357012300120001-⎛⎫⎪⎪⎪⎪⎝⎭.22.下列矩阵的秩.:(1)1234124511012⎛⎫ ⎪- ⎪ ⎪⎝⎭; (2)321312131370518---⎛⎫ ⎪-- ⎪ ⎪--⎝⎭; (3)1001310312011457⎛⎫⎪-⎪ ⎪-⎪⎝⎭; (4)24131121023636a -⎛⎫ ⎪- ⎪ ⎪⎝⎭.23.设A 为n 阶矩阵,且2A A =,证明()()R A R A E n +-=.24.设34432022O A O ⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭,求84A A ,. 25.设矩阵A 和B 均可逆,求分块矩阵O A B O ⎛⎫⎪⎝⎭的逆矩阵,并利用所得结果求矩阵005200218300520⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭的逆矩阵.解答习题21.123456110111200111311100400011500101600100⎛⎫⎪⎪⎪⎪⎪⎪⎪⎪⎝⎭,选手按胜多负少排序为1 2 3 4 5 6.2.357213202043215701230648 A B⎛⎫⎛⎫⎪ ⎪+=+⎪ ⎪⎪ ⎪⎝⎭⎝⎭48924191007611⎛⎫⎪= ⎪ ⎪⎝⎭.3.111123111 3331111242111111051111 AB A⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-=-----⎪⎪ ⎪⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭21322217204292-⎛⎫⎪=--⎪⎪-⎝⎭058123056124290051TTA B⎛⎫⎛⎫⎪ ⎪=---⎪ ⎪⎪ ⎪⎝⎭⎝⎭002123058559124056860051290⎛⎫⎛⎫⎛⎫⎪⎪ ⎪=---=-⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.4.1072844759A⎛⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪⎝⎭⎝⎭,方法一获利最多. (1)AB BA≠,因为34124638AB BA⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,,所以AB BA≠.(2)()2222A B A AB B +≠++因为 2225A B ⎛⎫+=⎪⎝⎭()2222281425251429A B ⎛⎫⎛⎫⎛⎫+== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭但 2238681010162411812341527A AB B ⎛⎫⎛⎫⎛⎫⎛⎫++=++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以()2222A B A AB B +≠++(3)()()22A B A B A B +-≠- 因为 22022501A B A B ⎛⎫⎛⎫+=-=⎪ ⎪⎝⎭⎝⎭,,()()220206250109A B A B ⎛⎫⎛⎫⎛⎫+-== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,而 223810284113417A B ⎛⎫⎛⎫⎛⎫-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故()()22A B A B A B +-≠-6.(1)取1111A O ⎛⎫=≠ ⎪--⎝⎭,而2A O =; (2)取1000A ⎛⎫=⎪⎝⎭,有A O A E ≠≠,,而2A A =; (3)取101010000001A X Y ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,有X Y ≠,而AX AY =.7. 21010101121A AA λλλ⎛⎫⎛⎫⎛⎫===⎪⎪ ⎪⎝⎭⎝⎭⎝⎭;3210101021131A A A λλλ⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭;由此推出 ()10231kA k k λ⎛⎫==⎪⎝⎭,,下面利用数学归纳法证明这个结论. 当12k k ==,时,结论显然成立. 假设1k -时结论成立,即有 ()11011k Ak λ-⎛⎫=⎪-⎝⎭则对于k 时,有 ()11010101111kk A A A k k λλλ-⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,故结论成立. 8. 证明 由已知:T A A = TB B =充分性:由AB BA =,得T TAB B A =,所以()TAB AB =即 AB 是对称矩阵. 必要性:由()TAB AB =得,T T B A AB =所以BA AB =.9. (1) 公式法:1225A ⎛⎫= ⎪⎝⎭1A =112112225,2(1),2(1),1A A A A ==⨯-=⨯-=112112225221AA A A A *-⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭ 11A A A -*= 故 15221A --⎛⎫= ⎪-⎝⎭初等行变换法:()12102501AE ⎛⎫=⎪⎝⎭21212100121r r -⎛⎫−−−→ ⎪-⎝⎭12210520121r r --⎛⎫−−−→ ⎪-⎝⎭所以 15221A--⎛⎫= ⎪-⎝⎭. (2) 10A =≠ 故1A -存在11211222cos sin sin cos A A A A θθθθ===-=从而 1c o s s i n s i n c o s A θθθθ-⎛⎫=⎪-⎝⎭(3) 公式法;2A =, 故1A -存在 112131420A A A =-== 而 1222321361A A A =-==- 13233332142A A A =-==-故 11A A A -*=2101313221671-⎛⎫⎪ ⎪=-- ⎪⎪--⎝⎭初等行变换法:()121100342010541001AE -⎛⎫⎪=- ⎪ ⎪-⎝⎭ 2131351211000213100146501r r r r ---⎛⎫ ⎪−−−→-- ⎪ ⎪--⎝⎭3271211000213100011671r r --⎛⎫ ⎪−−−→-- ⎪ ⎪--⎝⎭2313120157102013610011671r r r r +---⎛⎫ ⎪−−−→-- ⎪ ⎪--⎝⎭3210021002013610011671r r +-⎛⎫ ⎪−−−→-- ⎪ ⎪--⎝⎭2122101001310103220011671r --⎛⎫ ⎪ ⎪−−−→-- ⎪- ⎪-⎝⎭所以 12101313221671A --⎛⎫⎪ ⎪=-- ⎪ ⎪--⎝⎭.(4)由对角矩阵的性质知 12110101n a a A a -⎛⎫ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪⎝⎭. 10. (1) 125461321X --⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭35461221--⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭22308-⎛⎫= ⎪⎝⎭(2) 1211113210432111X --⎛⎫-⎛⎫ ⎪= ⎪ ⎪⎝⎭ ⎪-⎝⎭10111312324323330⎛⎫-⎛⎫ ⎪=-- ⎪ ⎪⎝⎭ ⎪-⎝⎭22182533-⎛⎫⎪= ⎪-- ⎪⎝⎭ (3) 11143120120111X --⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪---⎝⎭⎝⎭⎝⎭243110111011212-⎛⎫⎛⎫⎛⎫= ⎪⎪⎪-⎝⎭⎝⎭⎝⎭66101301212⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭11104⎛⎫⎪= ⎪⎝⎭11. 由22A A E O --=得22A A E -= 两端同时取行列式: 22A A -=即 2A A E -=,故 0A ≠ 所以A 可逆,而22A E A +=2220A E A A +==≠ 故2A E +也可逆.由22A A E O --=得()2A A E E -=所以 11()2A A A E A E ---=,则11()2AA E -=- 又由22A A E O --=(2)3(2)4A E A A E E +-+=-(2)(3)4A E A E E +-=-所以 11(2)(2)(3)4(2)A E A E A E A E --++-=-+则 11(2)(3)4A E E A -+=-. 12.()11k E A E A A ---=+++ .13. 因为11AA A-*=,所以 ()1111111255522A A A A A A A -*-----=-=- ()31112288216A A A ---=-=-=-=-⨯=-.14. 由11AA A-*=,得1A A A *-=, 所以 当A 可逆时,有110nn A A A A-*-==≠,从而A *也可逆.因为1A A A *-=,所以()11A AA --*=又()()1111A A A A A**---==,所以()()()11111A AA AA A A -**--*--===15. 由2AB E A B +=+得()2A E B A E -=-即()()()A E B A E A E -=-+因为 0011010100A E -==-≠,所以()A E -可逆,则 201030102B A E ⎛⎫ ⎪=+= ⎪ ⎪⎝⎭.16.600020001⎛⎫⎪ ⎪ ⎪⎝⎭.17.033123110⎛⎫ ⎪- ⎪ ⎪⎝⎭18. 因为AP P =Λ,所以1A P P -=Λ;又 1P =-, 1100210411P --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,55115⎛⎫⎪Λ ⎪ ⎪⎝⎭= 所以 1100110021012102115411A P P ---⎛⎫⎛⎫⎛⎫⎪⎪⎪=Λ=-- ⎪⎪⎪ ⎪⎪⎪-⎝⎭⎝⎭⎝⎭100200611⎛⎫ ⎪= ⎪ ⎪--⎝⎭5100200611A ⎛⎫⎪= ⎪ ⎪--⎝⎭.19. 因为()1111A B A E CA B B B A ----+=+=+,由()()1A B A B E -++=得()()()()111111AB A A B B A B A B B ------++=++=则()()1111A B A A B B B B E ----++==所以11A B --+可逆,其逆为()1A B A B -+.20. 213241221312131425400124262001221400011r r r r r r A -+---⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪=−−−→ ⎪ ⎪---- ⎪ ⎪--⎝⎭⎝⎭ 32344221312131001200120000000100010000r r r r r r B -↔+--⎛⎫⎛⎫⎪⎪-- ⎪ ⎪−−−→−−−→= ⎪⎪⎪ ⎪⎝⎭⎝⎭B 的秩为3,其一个3阶非零子式为13112001--,对应于A 的3阶非零子式为131254262----. 故2131001200010000-⎛⎫⎪- ⎪⎪⎪⎝⎭即为矩阵A 的行阶梯形矩阵,矩阵A 的一个最高阶非零子式为131254262----. 21.(1)111222111444513444⎛⎫- ⎪ ⎪⎪- ⎪ ⎪ ⎪-- ⎪⎝⎭,(2)72363211211022⎛⎫- ⎪ ⎪-- ⎪ ⎪- ⎪⎝⎭,(3)11240101113621610--⎛⎫ ⎪-⎪ ⎪-- ⎪--⎝⎭,(4)131120012100120001--⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭. 22.(1)2,(2)3,(3)4,(4)当4a =-时,秩为2;当4a ≠-时,秩为3.24.34432022O A O ⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭,令13443A ⎛⎫= ⎪-⎝⎭ 22022A ⎛⎫= ⎪⎝⎭ 则12A O A OA ⎛⎫=⎪⎝⎭故8182A O A O A ⎛⎫=⎪⎝⎭8182A O OA ⎛⎫= ⎪⎝⎭8888816121210A A A A A ===444414426450052022O A O A OA O ⎛⎫⎪⎛⎫ ⎪==⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭25. nn s ns s A O E O C B OE ⨯⎛⎫⎪⎝⎭ 111n nA r ns ns s EO A O C B OE --⨯⎛⎫−−−→ ⎪⎝⎭()2111r Cr nns n ns EOA O OB C A E ---⨯⎛⎫−−−−−→ ⎪-⎝⎭左乘 ()121111s s B r nns n nsA O EO B C A B O E -----⨯⎛⎫−−−−→ ⎪ ⎪-⎝⎭左乘 11111s s n s n nA O A OBC A B C B -----⨯⎛⎫⎛⎫= ⎪ ⎪ ⎪-⎝⎭⎝⎭利用这个结果取103021121412A B C ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,则由11111ss n s n n A O A O B C A B C B -----⨯⎛⎫⎛⎫= ⎪ ⎪ ⎪-⎝⎭⎝⎭得 112040111113212A B --⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭,,114021201241111312113512224B CA ----⎛⎫⎛⎫⎛⎫⎛⎫=-⋅= ⎪⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭-,则 1124080111212262424A B --⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭,故 110002400012001212001213012482412143526-⎛⎫⎛⎫⎪ ⎪-⎪ ⎪=⎪ ⎪--⎪ ⎪--⎝⎭⎝⎭习题31.设α=(1,1,0,-1)T ,β=(-2,1,0,0)T ,γ=(-1,-2,0,1)T ,求35αβγ-+.2.设34αβ+=(2,1,1,2)T 23αβ+=(-1,2,3,1)T求,αβ.3.解向量方程325X αβ-=其中,α=(3,5,7,9)T ,β=(-1,5,2,0)T .4.判断向量β能否由其余向量线性表示?若能,写出表示式.(1)β=(0,10,8,7)T ,1α=(-1,2,3,9)T ,2α=(1,3,1,0)T ,3α=(1,8,5,-2)T .(2)β=(1,2,1,1)T ,1α=(1,1,1,1)T ,2α=(1,1,-1,-1)T ,3α=(1,-1,1,-1)T ,4α=(1,-1,-1,1)T .5.设1α=(1+k ,1,1,1)T ,2α=(1,1+k ,1,1)T ,3α=(1,1,1+k ,1)T ,β=(1,3,2,1)T ,试问k 取何值时,β可由123,,ααα线性表示?并写出表示式.6.设1α=(1,0,2,3)T ,2α=(1,1,3,5)T ,3α=(1,-1,a +2,1)T ,4α=(1,2,4,a +8)T ,β=(1,1,b +3,5)T ,试问当,a b 为何值时.(1)β不能由1234,,,αααα线性表示;(2)β能由1234,,,αααα线性表示,且表示法唯一,并写出该表示式; (3)β能由1234,,,αααα线性表示,且表示法不唯一,并写出两个表示式.7.设向量β可由向量组12,,,m ααα 线性表示,但不能由121,,,m ααα- 线性表示,则向量组12,,,m ααα 与向量组121,,,,m αααβ- 等价.8.判断下列向量组是否线性相关?(1)1α=(2,2,7,-1)T ,2α=(3,-1,2,4)T ,3α=(1,1,3,1)T .(2)1α=(1,4,2,7)T ,2α=(3,2,4,5)T ,3α=(1,-1,2,2)T ,4α=(1,4,2,7)T .9.问k 取何值时下列向量组线性相关?线性无关?1α=(k ,2,1)T ,2α=(2,k ,0)T ,3α=(1,-1,1)T10.设向量组123,,ααα线性无关,112323βααα=--,21232βααα=++,3123βααα=-+,讨论向量组123,,βββ的线性相关性.11.已知向量组12,,,m ααα 线性无关,设112βαα=+,223βαα=+,…,11m m m βαα--=+,1m m βαα=+,讨论向量组12,,,m βββ 的线性相关性.12.设向量组12,,,m ααα 不含零向量,且αk (k =2,3,…,m)不能由121,,,k ααα- 线性表示,则向量组12,,,m ααα 线性无关.13.求下列向量组的秩及一个极大线性无关组,并用极大线性无关组线性表示其余向量.(1)1α=(2,1,3,-1)T ,2α=(3,-1,2,0)T ,3α=(1,3,4,-2)T ,4α=(4,-3,1,1)T .(2)1α=(1,2,3,-1)T ,2α=(3,2,1,-1)T ,3α=(2,3,1,1)T ,4α=(2,2,2,-1)T ,5α=(5,5,2,0)T .(3)1α=(1,2,-1,1)T ,2α=(2,0,k ,0)T ,3α=(0,-4,5,-2)T ,4α=(2,2,2,-1).(4)1α=(1,0,1,2)T ,2α=(0,1,1,2)T ,3α=(-1,1,0,k )T ,4α=(1,2,k ,6)T ,5α=(1,1,2,4)T .14.设12{,,,}m R ααα =12{,,,}t R βββ ,且12,,,m ααα 可由12,,,t βββ 线性表示,则向量组12,,,m ααα 与向量组12,,,t βββ 等价.15.设有两个向量组1α=(1,2,-1,3)T ,2α=(2,5,a ,8)T ,3α=(-1,0,3,1)T ;1β=(1,a ,2a -5,7)T ,2β=(3,3+a ,3,11)T ,3β=(0,1,6,2)T ,若1β可由123,,ααα线性表示,试判断这两个向量组是否等价?16.已知向量组1β=(0,1,-1)T ,2β=(a ,3,1)T ,3β=(b ,1,0)T 与向量组1α=(1,2,-3)T ,2α=(2,1,-1)T ,3α=(3,0,1)T 具有相同的秩,且3β可由123,,ααα线性表示,求,a b .17.判断下列集合是否是向量空间?为什么?若是向量空间,求出其维数及一个基. (1)V 1={(x 1,x 2,…,x n )T ∈R n |a 1x 1+a 2x 2 + … +a n x n =0},其中a i (i = 1,2,…,n )为R 中固定的数.(2)V 2={(x 1,x 2,…,x n )T ∈R n |a 1x 1+a 2x 2 + … +a n x n =1},其中a i (i = 1,2,…,n )为R 中固定的数.18.设123,,n R ααα∈.证明,若1122330k k k ααα++=且k 1k 2 ≠ 0,则L(α1,α3)=L(α2,α3).19.求下列向量生成子空间的维数与一个基.(1)1α=(-1,3,4,7)T ,2α=(2,1,-1,0)T ,3α=(1,2,1,3)T ,4α=(-4,1,5,6)T .(2)1α=(2,1,3,-1)T ,2α=(1,-1,3,-1)T ,3α=(4,5,3,-1)T ,4α=(1,5,3,-1)T .20.设1α=(1,0,-1)T ,2α=(2,1,1)T ,3α=(1,1,1)T ;1β=(3,1,4)T ,2β=(5,2,1)T ,3β=(1,1,-6)T .(1)证明123,,ααα与123,,βββ都是R 3的基; (2)求由基123,,ααα到基123,,βββ的过渡矩阵;(3)求坐标变换公式;(4)求α=(8,3,0)分别在基123,,ααα与基123,,βββ下的坐标.21.设α=(1,0,-1,0,1)T ,β=(0,1,0,2,0)T . (1)求αβ与的内积 [αβ,]; (2)求αβ与的长度||α||,||β||; (3)求αβ与的夹角θ.22.用施密特正交化方法将下列向量组标准正交化.(1)1α=(1,1,1,1)T ,2α=(3,3,-1,-1)T ,3α=(-2,0,6,8)T ; (2)1α=(1,1,1,0)T ,2α=(1,0,1,0)T ,3α=(-1,2,3,0)T . 23.求与向量1α=(1,0,-1,2)T ,2α=(0,1,1,0)T 都正交的向量. 24.判别下列矩阵是否为正交矩阵?并说明理由.(1)1100221100221111222211112222⎛⎫ ⎪⎪⎪ ⎪⎪ ⎪-- ⎪ ⎪ ⎪-- ⎪⎝⎭,(2)11133311022211666⎛⎫⎪⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭25.设,n R αβ∈,A 是n 阶正交矩阵,证明:(1)[,A A αβ]=[,αβ]; (2)||A α||=||α||;(3)A α与A β的夹角等于α与β的夹角. 26.证明,若12,,,n ααα 是R n 的一组标准正交基,A 是n 阶正交矩阵,则12,,,n A A A ααα 也是R n 的一组标准正交基.解答习题31.(0,-8,0,2)T2.α=(10,-6,-10,2)T ,β=(-7,4,7,-1)T 3.X =12(14,-10,11,27)T 4.(1)能,β=α1+α3.(2)能,β=14(5α1+α 2 - α3 - α4) 5.k =3,β=13(2α2+α3) 6.(1)1,0a b =-≠,(2)12311,(2(1))1a b a b b a βααα≠-=-+++++ (3)2131,0.2a b βαβαα=-===-或8.(1)线性无关.(2)线性相关.9.k =3或k =-2时线性相关;k ≠3且k ≠ -2时线性无关. 10.线性无关.11.m 是奇数时线性无关,m 是偶数时线性相关.13.(1)秩=2;α1,α2是极大线性无关组;α3=2α1-α2,α4=-α1+2α2. (2)秩=3;α1,α2,α3是极大线性无关组;α4=121122αα+,α5=α2+α3. (3)k ≠3时:秩=4.k =3时:秩=3;α1,α2,α4是极大线性无关组;α3=-2α1+α2.(4)k ≠ 0且k ≠ 3时:秩=4;α1,α2,α3,α4是极大线性无关组;α5=α1+α2. k =3时:秩=3;α1,α2,α3是极大线性无关组;α4=α1+2α2,α5=α1+α2. k =0时:秩=3;α1,α2,α4是极大线性无关组;α3=-α1+α2,α5=α1+α2. 15.a =4,β1,β2,β3可由α1,α2,α3线性表示,但β1,β2,β3与α1,α2,α3不等价. 16.a =20,b = 5.17.(1)V 1是向量空间.当a i = 0 (i = 1,2,…,n)时:V 1=R n ;dimV 1 = n ;坐标单位向量ε1,ε2,…,εn 是V 1的基.当a i = 0 (i = 1,2,…,n)不全零时:dimV 1 = n -1;不妨设a 1≠0,则e 1 = (-a 2,a 1,0,…,0)T ,e 2 = (-a 3,0,a 1,…,0),…,e n -1 = (-a n ,0,…,a 1)是V 1的基.(2)V 2不是向量空间.19.(1)dimL(α1,α2,α3,α4) = 2;基是α1,α2. (2)dimL(α1,α2,α3,α4) = 3;基是α1,α2,α4.20.(2)317527408-⎛⎫⎪- ⎪ ⎪-⎝⎭;(3)112233317527408x y x y x y -⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭;(4)3,2,1与11145,,444--. 21.(1)0;(2)3,5;(3)2π.22.(1)123111(1,1,1,1),(2,2,2,2),(11,1,1)242T TT e e e ==--=--,. (2)123111(1,1,1,0),(1,2,1,0),(1,0,1,0)362T T T e e e ==-=-. 23.(-4,-2,2,3).24.(1)是正交矩阵;(2)是正交矩阵.习题41. 用消元法解下列线性方程组:(1)123412341234 2 0,3 630,51050;x x x x x x x x x x x x ++-=⎧⎪+--=⎨⎪++-=⎩ (4)23y z 4,2y 4z 5,38y 2z 13,4 y 9z 6;x x x x ++=⎧⎪-+=-⎪⎨+-=⎪⎪-+=-⎩2.三个工厂分别有3吨、2吨和1吨的产品要送到两个仓库储藏,两个仓库各储藏产品4吨和2吨,用ij x 表示从第i 个工厂送到第j 个仓库的产品数(1,2,3;1,2i j ==),试列出ij x 所满足的关系式,并求解由此得到的线性方程组.3.写出一个以x 1222341001c c -⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(12,c c ∈ )为全部解的齐次线性方程组.4.确定,a b 的值使下列齐次线性方程组有非零解,并在有非零解时,求其全部解:(1)1231231232 30,3470, 20;x x x x x x x x ax -+=⎧⎪-+=⎨⎪-+=⎩ (2)123123123 0,0, 20.ax x x x bx x x bx x ++=⎧⎪++=⎨⎪++=⎩5.λ取何值时,下列非齐次线性方程组有唯一解、无解或有无限多个解?并在有无限多个解时求解:(1)1231232123 1, , ;x x x x x x x x x λλλλλ⎧++=⎪++=⎨⎪++=⎩ (2)123123123(2) 2 21, 2(5) 42, 2 4(5) 1.x x x x x x x x x λλλλ-+-=⎧⎪+--=⎨⎪--+-=--⎩6.设A 是实矩阵,证明()()T R A A R A =.7.求下列齐次线性方程组的基础解系:(1)123412341234 81020,24 5 0,38 620;x x x x x x x x x x x x -++=⎧⎪++-=⎨⎪++-=⎩ (2)123412341234232 0,35420,87630;x x x x x x x x x x x x --+=⎧⎪++-=⎨⎪++-=⎩8.设12,αα是某个齐次线性方程组的基础解系,证明:1212,2αααα+-也是该线性方程组的基础解系.9.设A 是n 阶方阵,0Ax =只有零解,求证:对任意的正整数k ,0kA x =也只有 零解.10.设A 22139528-⎛⎫=⎪-⎝⎭,求一个42⨯矩阵B ,使AB =0,且R (B )2=.11.求一个齐次线性方程组,使它的基础解系由下列向量组成:1ξ0123⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,2ξ3210⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭. 12.求下列非齐次线性方程组的通解:(1)1212341234 5,2 21,53220;x x x x x x x x x x +=⎧⎪+++=⎨⎪+++=⎩ (2)123412341234 52311,536 1,242 6.x x x x x x x x x x x x -+-=⎧⎪++-=-⎨⎪+++=-⎩13.证明:线性方程组121232343454515,,,,x x a x x a x x a x x a x x a -=-=-=-=-=.有解的充分必要条件是123450a a a a a ++++=.14.设四元非齐次线性方程组Ax b =的系数矩阵A 的秩为2,已知它的三个解向量为1η,2η,3η,其中1η4321⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,2η1351⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,3η2632-⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,求该方程组的通解.15.设矩阵A 121201101t t t ⎛⎫⎪= ⎪ ⎪⎝⎭,齐次线性方程组0Ax =的基础解系含有两个线性无关的解向量,试求方程组0Ax =的全部解.16.设A 21120131,11λμ⎛⎫ ⎪= ⎪ ⎪⎝⎭b 010⎛⎫ ⎪= ⎪ ⎪⎝⎭,η1111⎛⎫ ⎪- ⎪= ⎪ ⎪-⎝⎭,如果η是方程组Ax b =的一个解,试求方程组Ax b =的全部解.17.设η*是非齐次线性方程组Ax b =的一个解,1ξ,2ξ,…,n r ξ-是对应的齐次线性方程组的一个基础解系,证明:(1)η*,1ξ,2ξ,…,n r ξ-线性无关;(2) η*,η*+1ξ,…,η*+n r ξ-线性无关.18.若1η,2η,…,s η为非齐次线性方程组Ax b =的s 个解,12,,,s k k k 为常数,且121s k k k +++= ,证明:1k 1η+2k 2η+…+s k s η也是非齐次线性方程组Ax b =的解. 19.设非齐次线性方程组Ax b =的系数矩阵A 的秩为r ,1η,2η,…,1n r η-+是它的1n r -+个线性无关的解,试证:它的任一解可表示为x =1k 1η+2k 2η+…+1n r k -+1n r η-+,其中1211n r k k k -++++= .20.用克拉默(Cramer )法则解下列方程组:(1)1234123412341234 5, 2 42,23 52,3 2110;x x x x x x x x x x x x x x x x +++=⎧⎪+-+=-⎪⎨---=-⎪⎪+++=⎩ (2)12342345123234345 0,0,23 2, 23 2,23 2.x x x x x x x x x x x x x x x x x +++=⎧⎪+++=⎪⎪++=⎨⎪++=-⎪⎪++=⎩21.判断齐次线性方程组12312312322 0,240,5820;x x x x x x x x x +-=⎧⎪-+=⎨⎪+-=⎩ 是否仅有零解.22.问,λμ取何值时,齐次线性方程组123123123 0,0, 20;x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩ 有非零解?23.问λ取何值时,齐次线性方程组123123123(1) 2 40,2(3) 0, (1)0;x x x x x x x x x λλλ--+=⎧⎪+-+=⎨⎪++-=⎩有非零解?24.证明:平面上三条不同的直线0,0,0ax by c bx cy a cx ay b ++=++=++=相交于一点的充分必要条件是 0a b c ++=.解答习题41.(1)11221121234222110,(,)00001x c c x c c c c c x x c -+-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==+∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ . (2)212121210x c y c c z c ----⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,(c ∈ ).2.ij x (1,2,3;1,2i j ==)所满足的关系式为:111221223132112131122232 3,2,1,4, x x x x x x x x x x x x +=+=+=++=++=1112212231322,6;x x x x x x ⎧⎪⎪⎪⎪⎨⎪⎪⎪+++++=⎪⎩ 11121212211122213123221111221122100101101001x c c x c c x c c c x c x c x c ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--==++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(12,c c ∈ ). 3.134234220,340.x x x x x x -+=⎧⎨+-=⎩4.(1)123111x c x c c x c --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,(c ∈ ).(2)当0b =或10a -=时,即0b =或1a =时,齐次线性方程组有非零解.当1a =时,有1231001x c x c x c --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,(c ∈ ).当0b =时,有1231(1)11x c x a c c a x c --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,(c ∈ ).5.(1)当1,2λ≠-时,非齐次线性方程组有唯一解;当2λ=-时,非齐次线性方程组无解;当1λ=时,非齐次线性方程组有无限多个解,有1122112321111010001x c c x c c c x c ----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪==++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(12,c c ∈ ). (2)当1λ≠且10λ≠时,非齐次线性方程组有唯一解; 当10λ=时,非齐次线性方程组无解;当1λ=时,非齐次线性方程组有无数多个解,有112211232122122010001x c c x c c c x c -+-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪==++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(12,c c ∈ ).7.(1)1ξ43410-⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭,2ξ01401⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭, (2)1ξ11971901⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭,2ξ219141910⎛⎫- ⎪ ⎪ ⎪-= ⎪ ⎪⎪ ⎪⎝⎭.10.115118008B -⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭11.12312420,230.x x x x x x -+=⎧⎨-+=⎩12.(1)x 111161,01702c -⎛⎫-⎛⎫ ⎪ ⎪⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(c ∈ ).(2)x 1291172211,72001010c c ⎛⎫⎛⎫- ⎪ ⎪⎛⎫⎪ ⎪ ⎪- ⎪ ⎪ ⎪-=++ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪⎝⎭⎝⎭(12,c c ∈ ).14.x 1131221()(),c c ηηηηη=+-+-(12,c c ∈ ).15.x 121011,1001c c ⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(12,c c ∈ ).16.λμ=,当12λ=,非齐次线性方程组有无限多个解,x 1211122311,100001c c ⎛⎫⎛⎫--⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪-=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(12,c c ∈ ). 当12λ≠,非齐次线性方程组有无限多个解,有x 011122,112201c -⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(c ∈ ).20.(1)12341231x x x x ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭, (2)1234511111x x x x x ⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪ ⎪ ⎪= ⎪ ⎪-⎪ ⎪ ⎪⎪⎝⎭⎝⎭.21.齐次线性方程组仅有零解.22.当0μ=或1λ=时,齐次线性方程组有非零解. 23.当0,23λ=或时,齐次线性方程组有非零解.习题51.求下列矩阵的特征值和特征向量.(1)3151⎛⎫ ⎪-⎝⎭;(2)200202311-⎛⎫ ⎪ ⎪ ⎪⎝⎭;(3)122212221⎛⎫ ⎪ ⎪ ⎪⎝⎭,(4)1111111111111111⎛⎫⎪-- ⎪ ⎪-- ⎪--⎝⎭. 2.证明下列各题:(1)设A 是幂等矩阵(即满足2A A =),则A 的特征值只能0是或1;. (2)设A 是正交矩阵,则A 的实特征值的绝对值为1.3.已知3阶矩阵A 的特征值为1,0,2-,计算行列式2A A E -+.4.已知3阶矩阵A 的特征值为1,2,3-,计算行列式*|32|A A E ++.5.设,A B 都是n 阶方阵,且A 可逆,证明AB 与BA 相似.6.判断矩阵⎪⎪⎪⎭⎫ ⎝⎛----=201335212A 可否对角化,若能的话,将它化为标准形.7.设矩阵20022311A a -⎛⎫ ⎪= ⎪ ⎪⎝⎭与10002000b -⎛⎫ ⎪Λ= ⎪ ⎪⎝⎭相似,求,a b ;并求一个可逆矩阵P ,使1P AP -=Λ.8.设20131405A a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,问a 为何值时,矩阵A 可对角化?9.试求一个正交的相似变换矩阵,将下列实对称矩阵化为对角矩阵:(1)120222023-⎛⎫ ⎪-- ⎪ ⎪-⎝⎭;(2)400031013⎛⎫ ⎪ ⎪ ⎪⎝⎭;(3)222254245-⎛⎫ ⎪- ⎪ ⎪--⎝⎭;(4)0111101111011110-⎛⎫ ⎪- ⎪ ⎪- ⎪-⎝⎭. 10.将矩阵102012220A -⎛⎫⎪= ⎪ ⎪⎝⎭用两种方法对角化:(1)求一个可逆矩阵P ,使1P AP -为对角阵;(2)求一个正交矩阵T ,使1T AT -为对角矩阵.11.设3阶矩阵A 的特征值为1232,1,2λλλ=-==;对应的特征向量依次为1231101,1,1101ξξξ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,求矩阵A .12.设3阶实对称矩阵A 的特征值1231,0,1λλλ=-==;属于12,λλ的特征向量依次为12221,221ξξ⎛⎫⎛⎫⎪ ⎪==- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,求一个正交矩阵T ,使1T AT -为对角矩阵.13.设3阶实对称矩阵A 的特征值1231,1λλλ=-==;属于特征值11λ=-的特征向量为1011ξ⎛⎫⎪= ⎪ ⎪⎝⎭,求矩阵A .14.设120020211⎛⎫ ⎪= ⎪ ⎪---⎝⎭A ,求100A . 15.在某国,每年有比例为p 的农村居民移居城镇,有比例为q 的城镇居民移居农村.假设该国总人数不变,且上述人口迁移的规律也不变.把n 年后农村人口和城镇人口占总人数的比例依次记为n x 和n y (1)n n x y +=.(1)求11n n x y ++⎛⎫⎪⎝⎭与n n x y ⎛⎫⎪⎝⎭的关系式并写成矩阵形式:11++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭n n n n x x A y y ; (2)设目前农村人口与城镇人口相等,即001212x y ⎛⎫ ⎪⎛⎫= ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭,求n n x y ⎛⎫⎪⎝⎭.解答习题51.(1)1212112,4;,15λλξξ⎛⎫⎛⎫=-=== ⎪ ⎪-⎝⎭⎝⎭;(2)1231230011,2,2;(,,)210111λλλξξξ-⎛⎫ ⎪=-==-=- ⎪ ⎪⎝⎭;(3)1231231011,5;(,,)011111λλλξξξ⎛⎫ ⎪==-== ⎪ ⎪--⎝⎭; (4)12341234111111002,2;(,,,)10101001λλλλξξξξ-⎛⎫ ⎪⎪=-==== ⎪ ⎪⎝⎭. 3.9. 4.-25.6.A 不可对角化.7.100110,2;210,21112---⎛⎫⎛⎫ ⎪ ⎪==-=-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭a b P P AP .8.3=a .9.(1)12213332122,13335212333-⎛⎫ ⎪⎛⎫ ⎪ ⎪ ⎪=--=- ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪- ⎪⎝⎭T T AT ; (2)10102110,422411022-⎛⎫⎪ ⎪⎛⎫ ⎪ ⎪==⎪ ⎪ ⎪ ⎪⎝⎭ ⎪-⎪⎝⎭T T AT ;(3)12251153511452,115351052033-⎛⎫-- ⎪ ⎪⎛⎫ ⎪ ⎪⎪=-= ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭T T AT ;(4)111112261211111122612,1211026123310212-⎛⎫-⎪ ⎪⎛⎫ ⎪-- ⎪⎪ ⎪⎪== ⎪ ⎪- ⎪ ⎪-⎝⎭ ⎪ ⎪ ⎪⎝⎭T T AT . 10.(1)11223221,02123-⎛⎫⎛⎫⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭P P AP ;(2)11223333221,03333212333-⎛⎫ ⎪⎛⎫ ⎪ ⎪⎪=-= ⎪ ⎪ ⎪- ⎪⎝⎭ ⎪- ⎪⎝⎭T T AT . 11.233453442--⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭A .12.12213331122,03331212333-⎛⎫ ⎪-⎛⎫ ⎪ ⎪⎪=-= ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪- ⎪⎝⎭T T AT . 13.100001010⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A .14.101100100100122002050(12)13⎛⎫⎪- ⎪= ⎪ ⎪- ⎪⎝⎭A. 15.(1)1111++-⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭n n n n x x p q y y p q ;(2)2()(1)12()2()(1)⎛⎫⎛⎫+---= ⎪⎪++---⎝⎭⎝⎭n n n n x q p q p q y p q p q p p q .习题61.证明:123000000a a a ⎛⎫⎪ ⎪ ⎪⎝⎭与23100000a a a ⎛⎫ ⎪⎪ ⎪⎝⎭合同. 2.写出下列二次型的矩阵表示: (1)121323422f x x x x x x =-++;(2)2224424f x xy y xz z yz =+++++;(3)22221234121314232424264f x x x x x x x x x x x x x x =+++-+-+-.3.设A 是一个n 阶对称矩阵.如果对任一个n 维列向量x ,都有0Tx Ax =,试证0A =. 4.用拉格朗日配方法化下列二次型为标准形. (1)123422x x x x -;(2)22121213222x x x x x x ++-.*5.用初等变换法化下列二次型为标准形.(1)12132346x x x x x x -+;(2)222123232334x x x x x +++.6.用正交变换法化下列二次型为标准形.(1)22212312132325228x x x x x x x x x +++++;(2)121314232434 222222x x x x x x x x x x x x +--++. 7.求一个正交变换把二次曲面的方程22234545101x xy y xz z yz ++-+-=化成标准方程.8.化下列二次型为规范形.(1)22212312133524x x x x x x x +++-;(2)22212312232422x x x x x x x +++-.9.证明:秩等于r 的对称矩阵可以表成r 个秩等于1的对称矩阵之和. 10.判别下列二次型是否正定:(1)2221231231223(,,)2342f x x x x x x x x x x =+-++;(2)2222123412341213142434(,,,)3919242612f x x x x x x x x x x x x x x x x x x =+++-++--.11.t 满足什么条件时,下列二次型是正定的:(1)222123123121323(,,)5224f x x x x x x tx x x x x x =+++-+; (2)2221231231223(,,)2322f x x x x x x tx x x x =++-+.12.试证:如果A 是正定矩阵,那么A 的主子式全大于零. 13.试证:如果A 是正定矩阵,那么 (1)(0)kA k >是正定矩阵; (2)1A -是正定矩阵.14.试证:如果,A B 是同阶正定矩阵,那么A B +也是正定矩阵.*15.试证:实二次型12(,,,)n f x x x 是半正定的充分必要条件是12(,,,)n f x x x 的正惯性指数等于它的秩.*16.试证:实二次型12(,,,)T n f x x x x Ax = 是半正定的充分必要条件是A 的特征值全大于或等于零.解答习题62.(1)112323021(,,)201110x f x x x x x -⎛⎫⎛⎫ ⎪⎪=- ⎪⎪ ⎪⎪⎝⎭⎝⎭;(2)121(,,)242121x f x y z y z ⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪⎝⎭⎝⎭;(3)1212343411211132(,,,)23101201x x f x x x x x x --⎛⎫⎛⎫ ⎪⎪-- ⎪⎪= ⎪⎪ ⎪⎪--⎝⎭⎝⎭.4.(1)1132133244242222222222222222x y yx y yx y yx y y⎧=+⎪⎪⎪=-⎪⎪⎨⎪=+⎪⎪⎪=-+⎪⎩,22221234f y y y y=+--;(2)112322323x y y yx yx y y=+-⎧⎪=⎨⎪=-+⎩,222123f y y y=--.5.(1)112321233233626526x y y yx y y yx y y⎧=--⎪⎪⎪=--⎨⎪⎪=+⎪⎩,222123f y y y=+-;(2)1122332311221122x yx y yx y y⎧⎪=⎪⎪=+⎨⎪⎪=-⎪⎩,22212325f y y y=++.6.(1)11232233323x y y yx y yx y=-+⎧⎪=-⎨⎪=⎩,2221235f y y y=+-;(2)1124212431344134111222111222111222111222x y y yx y y yx y y yx y y y⎧=++⎪⎪⎪=-+-⎪⎪⎨⎪=-++⎪⎪⎪=+-⎪⎩,222212343f y y y y=-+++.7.4133212133221213322x u v y u v w z u v w ⎧=+⎪⎪⎪=-++⎨⎪⎪=-+⎪⎩,222111u v +=.8.(1)112322323522122x y y y x y x y y ⎧=-+⎪⎪⎪=⎨⎪⎪=-+⎪⎩,222123f y y y =-+; (2)112322333111222222212x y y y x y y x y ⎧=--⎪⎪⎪=+⎨⎪⎪=⎪⎩222123f y y y =++. 10.(1)负定;(2)正定. 11.(1)0.80t -<<;(2)151533t -<<.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、单项选择题
1. 以下()属于郑州商品交易所上市交易的期货品种。

A. 豆油
B. 鸡蛋
C. 小麦
D. 豆粕
描述:我国主要期货交易所及交易品种
您的答案:C
题目分数:10
此题得分:10.0
2. 世界上第一张商品期货标准化合约是由()推出的。

A. 芝加哥商业交易所(CME)
B. 伦敦金属交易所(LME)
C. 芝加哥期货交易所(CBOT)
D. 纽约商业交易所(NYMEX)
描述:期货市场的发展及主要功能
您的答案:C
题目分数:10
此题得分:10.0
3. 我国最早成立的期货交易所是()。

A. 大连商品交易所
B. 上海期货交易所
C. 郑州商品交易所
D. 中国金融期货交易所
描述:我国主要期货交易所及交易品种
您的答案:C
题目分数:10
此题得分:10.0
二、多项选择题
4. 个人期货客户服务的核心在于()。

A. 提高投机类期货客户分析、交易能力
B. 提高客户交易稳定性与盈利能力
C. 为期货市场提供充足的流动性
D. 提高期货市场功能发挥水平
描述:个人期货客户服务核心
您的答案:B,A,C,D
题目分数:10
此题得分:10.0
5. 目前,我国的期货交易所有()。

A. 大连商品交易所
B. 上海期货交易所
C. 郑州商品交易所
D. 中国金融期货交易所
描述:我国主要期货交易所及交易品种
您的答案:A,B,D,C
题目分数:10
此题得分:10.0
6. 以下关于期货市场说法正确的是()。

A. 是期货合约交易的市场
B. 以保证金方式运行,不需要100%的资金支付
C. 可以双向交易
D. 是单向交易的市场
描述:期货市场的发展及主要功能
您的答案:A,C,B
题目分数:10
此题得分:10.0
7. 目前中国金融期货交易所上市的期货品种有()。

A. 沪深300指数期货
B. 上证50指数期货
C. 中证500指数期货
D. 5年期国债期货
E. 10年期国债期货
描述:我国主要期货交易所及交易品种
您的答案:A,D,C,E,B
题目分数:10
此题得分:10.0
8. 以下关于我国期货市场个人期货客户的特点描述正确的是()。

A. 是价格波动风险的承受者
B. 是市场流动性的主要提供者
C. 平均资金规模偏低
D. 群体庞大,需求繁杂
描述:个人期货客户特点
您的答案:D,B,C,A
题目分数:10
此题得分:10.0
三、判断题
9. 期货价格和对应的现货价格具有高度的相关性。

()
描述:期货市场的发展及主要功能
您的答案:正确
题目分数:10
此题得分:10.0
10. 郑州商品交易所的大豆、豆油、豆粕几个品种包含了大豆生产产业链的主要环节。

()
描述:我国主要期货交易所及交易品种
您的答案:错误
题目分数:10
此题得分:10.0
试卷总得分:100.0。

相关文档
最新文档