人教版九上数学之《旋转》全章复习与巩固--巩固练习(提高)(1)

合集下载

人教版九年级数学上册《旋转》知识点及复习题

人教版九年级数学上册《旋转》知识点及复习题

第三单元旋转一、旋转1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。

2、性质(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角等于旋转角。

二、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2、性质(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

考点五、坐标系中对称点的特征(3分)1、关于原点对称的点的特征两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)2、关于x轴对称的点的特征两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)3、关于y轴对称的点的特征两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)单元测试1.下列正确描述旋转特征的说法是()A.旋转后得到的图形与原图形形状与大小都发生变化.B.旋转后得到的图形与原图形形状不变,大小发生变化.C.旋转后得到的图形与原图形形状发生变化,大小不变.D.旋转后得到的图形与原图形形状与大小都没有变化.2.下列描述中心对称的特征的语句中,其中正确的是()A.成中心对称的两个图形中,连接对称点的线段不一定经过对称中心B.成中心对称的两个图形中,对称中心不一定平分连接对称点的线段C.成中心对称的两个图形中,对称点的连线一定经过对称中心,但不一定被对称中心平分D.成中心对称的两个图形中,对称点的连线一定经过对称中心,且被对称中心平分3.4.下列图形中即是轴对称图形,又是旋转对称图形的是()A.(l)(2)B.(l)(2)(3)C.(2)(3)(4)D.(1)(2)(3(4)5.下列图形中,是中心对称的图形有()①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形。

新人教版九年级上册数学[图形的旋转--重点题型巩固练习]

新人教版九年级上册数学[图形的旋转--重点题型巩固练习]

新人教版九年级上册初中数学重难点有效突破知识点梳理及重点题型巩固练习图形的旋转--巩固练习【巩固练习】一. 选择题1.(2015•洛阳模拟)如图四个圆形网案中,分别以它们所在网的圆心为旋转中心,顺时针旋转72°后,能与原图形完全重合的是()A.B.C.D.2.下列图形绕某点旋转180°后,不能与原来图形重合的是( )3. 有下列四个说法,其中正确说法的个数是( ).①图形旋转时,位置保持不变的点只有旋转中心;②图形旋转时,图形上的每一个点都绕着旋转中心旋转了相同的角度;③图形旋转时,对应点与旋转中心的距离相等;④图形旋转时,对应线段相等,对应角相等,图形的形状和大小都没有发生变化.A.1个 B.2个 C.3个 D.4个4.如图,4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是( ).A.点A B.点B C.点C D.点D5.如图,△ADE绕点D的顺时针旋转,旋转的角是∠ADE,得到△CDB,那么下列说法错误的是( ).A.DE平分∠ADB B.AD=DC C.AE∥BD D.AE=BC6. 如图,在正方形ABCD中,E为DC边上的点,连结BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连结EF,若∠BEC=60°,则∠EFD的度数为( )A.10°B.15°C.20°D.25°二.填空题7.如图,△ABC与△ADE都是直角三角形,∠C与∠AED都是直角,点E在AB上,∠D=30°,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点______,至少旋转了_____.8. 针表的分针匀速旋转一周需要60分钟,则经过15分钟,分针旋转了__________.9.正三角形绕其中心至少旋转__________ ,可与其自身重合.10. 一个平行四边形ABCD绕其对角线的交点旋转,至少要旋转________,才可与其自身重合.11.(2015•吉林)如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为cm.12. 如图,P是正三角形ABC内的一点,且PA=6,PB=8,•PC=10,若将△PAC绕点A逆时针旋转后,•得到△P′AB,•则点P•与点P′之间的距离为_____,∠APB=_______.三.综合题13.(2015•湖北)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.14. 如图,E 是正方形ABCD 的边BC 上一点,F 是DC 的延长线上一点,且∠BAE=∠FAE. 求证:BE+DF=AF.15.如图,O 是边长为a 的正方形ABCD 的中心,将一块半径足够长、圆心角为直角的扇形纸板的圆心放在O 点处,并将纸板绕O 点旋转,其半径分别交AB 、AD 于点M N 、,求证:正方形ABCD 的边被纸板覆盖部分的总长度为定值a321B MC D N O A【答案与解析】一、选择题1.【答案】D ;【解析】A 图形顺时针旋转120°后,能与原图形完全重合,A 不正确;B 图形顺时针旋转90°后,能与原图形完全重合,B 不正确;C 图形顺时针旋转180°后,能与原图形完全重合,C 不正确;D 图形顺时针旋转72°后,能与原图形完全重合,D 正确,故选:D .2.【答案】B3.【答案】D4.【答案】B【解析】连接对应点111,,PP MM NN ,做三条线段的垂直平分线,交点即是旋转中心。

(完整版)人教版九年级数学上册《旋转》知识点及复习题.docx

(完整版)人教版九年级数学上册《旋转》知识点及复习题.docx

新启航,新学习,新收获!第三单元旋转一、旋转1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。

2、性质( 1)对应点到旋转中心的距离相等。

( 2)对应点与旋转中心所连线段的夹角等于旋转角。

二、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2、性质(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

4、中心对称图形把一个图形绕某一个点旋转 180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

考点五、坐标系中对称点的特征( 3 分)1、关于原点对称的点的特征两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’( -x ,-y )2、关于 x 轴对称的点的特征两个点关于x 轴对称时,它们的坐标中,x 相等, y 的符号相反,即点P( x, y)关于 x 轴的对称点为 P’( x, -y )两个点关于y 轴对称时,它们的坐标中,y 相等, x 的符号相反,即点P(x, y)关于 y 轴的对称点为 P’( -x, y)单元测试1.下列正确描述旋转特征的说法是()A.旋转后得到的图形与原图形形状与大小都发生变化.B.旋转后得到的图形与原图形形状不变,大小发生变化.C.旋转后得到的图形与原图形形状发生变化,大小不变.D.旋转后得到的图形与原图形形状与大小都没有变化.2.下列描述中心对称的特征的语句中,其中正确的是()A.成中心对称的两个图形中,连接对称点的线段不一定经过对称中心B.成中心对称的两个图形中,对称中心不一定平分连接对称点的线段C.成中心对称的两个图形中,对称点的连线一定经过对称中心,但不一定被对称中心平分D.成中心对称的两个图形中,对称点的连线一定经过对称中心,且被对称中心平分3.4.下列图形中即是轴对称图形,又是旋转对称图形的是()A.( l )( 2)B.( l )( 2)( 3)C.( 2)( 3)( 4)D.( 1)( 2)( 3( 4)5.下列图形中,是中心对称的图形有()①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形。

人教版数学九年级上学期课时练习- 《旋转》全章复习与巩固(巩固篇)(人教版)

人教版数学九年级上学期课时练习- 《旋转》全章复习与巩固(巩固篇)(人教版)

专题23.9 《旋转》全章复习与巩固(巩固篇)(专项练习)一、单选题1.下列与杭州亚运会有关的图案中,中心对称图形是( )A .B .C .D .2.如图,将AOB 绕着点O 顺时针旋转,得到COD △(点C 落在AOB 外),若30AOB ∠=︒,10BOC ∠=︒,则最小旋转角度是( )A .20°B .30°C .40°D .50°3.如图,在正方形网格中,△ABC 绕某点旋转一定的角度得到A B C ''',则旋转中心是点( )A .OB .PC .QD .M4.如图,菱形 ABCD 的对角线 AC 、BD 交于点 O ,将△BOC 绕着点 C 旋转 180°得到B O C '',若AC =2,5AB '=,则菱形 ABCD 的边长是( )A .3B .4CD 5.如图,在钝角ABC 中,35BAC ∠=︒,将ABC 绕点A 顺时针旋转70︒得到ADE ,点B ,C 的对应点分别为D ,E ,连接BE .则下列结论一定正确的是( )A .ABC AED ∠=∠B .AC DE = C .AD BE AC += D .AE 平分BED ∠6.如图,矩形ABCD 的顶点1,0A ,()0,2D ,()5,2B ,将矩形以原点为旋转中心,顺时针旋转75°之后点C 的坐标为( )A .()4,2-B .(-C .()2-D .(-7.如图,在Rt ABC △中,90ABC ∠=︒,AB BC ==ABC 绕点A 逆时针转60°得到AB C ''△,则BC '的长是( )A 1B .2C .D .8.如图,菱形ABCD 对角线交点与坐标原点O 重合,点()2,5A -,则点C 的坐标为( )A .()5,2-B .()2,5-C .()2,5D .()2,5--9.已知点()2,4P a a --关于原点对称的点在第三象限,则a 的取值范围在数轴上表示正确的是( )A .B .C .D .10.在如图所示的单位正方形网格中,ABC 经过平移后得到111A B C △,已知在AC 上一点()2.4,2P 平移后的对应点为1P ,点1P 绕点O 逆时针旋转180°,得到对应点2P ,则2P 点的坐标为( )A .()1.6,1--B .()1, 1.6--C .()1.6,1D .()1, 1.6-二、填空题11.若点P (a -1,5)与点Q (5,1-b )关于原点成中心对称,则a +b =___. 12.如图,在ABC 中,△C =90°,点D 、E 分别在AC 、BC 上,△CDE =45°,ECD 绕点D 顺时针旋转x 度(45<x <180)到11E C D △,则1BEE ∠等于______度.(用含x 的代数式表示)13.如图,AB =BC =CD ,AB △BC ,△BCD =30°,则△BAD =________°.14.如图,ABC 中,AB =2AC =,30BAC ∠=︒.将ABC 绕点A 逆时针旋转60°,得到ADE ,连接BE ,则BE =______.15.如图,BD 为ABCD 的对角线,点P 为ABD △内一点,连接PA 、PB 、PC 、PD ,若ABP △和BCP 的面积分别为3和13,则BDP △的面积为_________.16.如图,在直角坐标平面内,△ABC 的顶点()1,0A -,点B 与点A 关于原点对称,AB =BC ,△CAB =30°,将△ABC 绕点C 旋转,使点A 落在x 轴上的点D 处,点B 落在点E 处,那么BE 所在直线的解析式为______.17.如图,在矩形ABCD 中,AB =6BC =,点E 是直线BC 上的一个动点,连接DE ,将线段DE 绕着点D 顺时针旋转120︒得到线段DG ,连接AG ,则线段AG 的最小值为_________.18.如图,在平面直角坐标系中,点A ,B 的坐标分别为()1,0,(,将OAB 绕原点O 顺时针旋转60°再将其各边都扩大为原来的2倍,使得12OA OA =,12OB OB =,得到11OA B .将11OA B 绕原点顺时针旋转60°再将其各边都扩大为原来的2倍,使得212OA OA =,212OB OB =,得到22OA B △,…,如此继续下去,得到20222022OA B △,则点2022A 的坐标是______.三、解答题19.已知△ABC 的三个顶点的坐标分别为A (-5,0)、B (-2,3)、C (-1,0).(1)画出△ABC 关于坐标原点O 成中心对称的△A ′B ′C ′;(2)将△ABC 绕坐标原点O 顺时针旋转90°,画出对应的△A ′′B ′′C ′′;(3)若以A ′、B ′、C ′、D ′为顶点的四边形为平行四边形,则在第四象限中的点D ′坐标为 .20.如图,点D 在等边三角形ABC 的边BC 上,将△ABD 绕点A 旋转,使得旋转后点B 的对应点为点C .小明是这样做的:如图,过点C 画BA 的平行线l ,在l 上取CE BD =,连接AE ,则△ACE 即为旋转后的图形.你能说明小明这样做的道理吗?21.已知:如图,在△ABC中,△BAC=120°,以BC为边向形外作等边三角形BCD,把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,且A、C、E三点共线,若AB=3,AC=2,求△BAD的度数与AD的长.22.如图,ABC为等边三角形,点P是线段AC上一动点(点P不与A,C重合),连接BP,过点A作直线BP的垂线段,垂足为点D,将线段AD绕点A逆时针旋转60°得到线段AE,连接DE,CE(1) 求证:BD=CE(2) 延长ED交BC于点F,△ 求△CED的度数;△ 求证:F为BC的中点23.如图,在平面直角坐标系中,直线AB与x轴、y轴分别相交于A(6,0)、B(0,2)两点.(1) 直接写出直线AB 的关系式为 .(2) 点C 为y 轴上的一点,当BC =AC 时,求△ABC 的周长;(3) 点D 为x 轴上的一点,将线段DB 绕着点D 旋转90°得到DE ,若点E 恰好落在直线AB 上,求满足条件的其中一个点E 的坐标,并直接写出满足条件的其余点E 的坐标,24.【性质探究】(1)如图1,在Rt ABC △中,90BAC ∠=︒,AB =AC ,点D 在斜边BC 上,将△ABD 绕点A 逆时针旋转90°得到△ACE .△直线BD 与CE 的位置关系为______;△若点F 为BE 的中点,连接AF ,请探究线段AF 与CD 的数量关系,并给予证明.【拓展应用】(2)如图2,已知点E是正方形ABCD的边BC上任意一点,以AE为边作正方形AEFG,连接BG,点H为BG的中点,连接AH.若AB=4,BE=3,求AH的长.参考答案1.D【分析】根据中心对称图形的定义进行判断,即可得出答案.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解:A,不是中心对称图形,故此选项不符合题意;B. 不是中心对称图形,故此选项不符合题意;C. 不是中心对称图形,故此选项不符合题意;D.是中心对称图形,故选:D【点拨】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2.C【分析】直接利用已知得出△AOC的度数,再利用旋转的性质得出对应边之间夹角,得出答案即可.解:△△AOB= 30°,△BOC = 10°,△△AOC=△AOB+△COB = 30°+ 10°= 40°△将△AOB绕着点O顺时针旋转,得到△COD,△最小旋转角为△AOC = 40°.故选:C.【点拨】此题主要考查了旋转的性质,正确得出△AOC的度数是解题关键.3.B【分析】根据旋转的性质,对应点到旋转中心的距离相等,可得对应点连线的垂直平分线的交点即为旋转中心.解:如图,连接BB',AA',可得其垂直平分线相交于点P,∴旋转中心是点P.故选:B .【点拨】本题考查了旋转的性质,对应点连线的垂直平分线的交点即为旋转中心,熟练掌握旋转中心的确定方法是解题的关键.4.D【分析】根据菱形的性质、旋转的性质,得到1OA OC O C '===、OB OC ⊥、O B O C '''⊥、BC B C '=,根据5AB '=,利用勾股定理计算O B '',再次利用勾股定理计算B C '即可.解:△四边形ABCD 是菱形,且△BOC 绕着点C 旋转180°得到B O C '',2AC =,△1OA OC O C '===,OB OC ⊥,BC B C '=,△O B O C '''⊥,213O A AC O C ''=+=+=,△5AB '=,△4O B ''==,△B C '==△BC B C '== ABCD故选:D .【点拨】本题考查了菱形的性质、旋转的性质以及勾股定理等知识,熟练掌握菱形的基本性质并灵活运用勾股定理是解题的关键.5.D【分析】根据旋转可知△CAB △△EAD ,△CAE =70°,结合△BAC =35°,可知△BAE =35°,则可证得△CAB △△EAB ,即可作答.解:根据旋转的性质可知△CAB △△EAD ,△CAE =70°,△△BAE =△CAE -△CAB =70°-35°=35°,AC =AE ,AB =AD ,BC =DE ,△ABC =△ADE ,故A 、B 错误,△△CAB =△EAB ,△AC =AE ,AB =AB ,△△CAB △△EAB ,△△EAB △△EAD△△BEA =△DEA ,△AE 平分△BED ,故D 正确,△AD +BE =AB +BE >AE =AC ,故C 错误,故选:D .【点拨】本题考查了旋转的性质和全等三角形的判定与性质,求出△BAE =35°是解答本题的关键.6.D【分析】过点B 作BG △x 轴于G ,过点C 作CH △y 轴于H ,根据矩形的性质得到点C 的坐标,求出△COE =45°,OC C 作CE △x 轴于E ,过点C 1作C 1F △x 轴于F ,由旋转得△COC 1=75°,求出△C 1OF =30°,利用勾股定理求出OF ,即可得到答案.解:过点B 作BG △x 轴于G ,过点C 作CH △y 轴于H ,△四边形ABCD 是矩形,△AD =BC ,AB =CD ,AD ∥BC ,△CDA =△DAB =90°,△△HCD =△ADO =△BAG ,△△CHD =△BGA =90°,△△CHD △△AGB (AAS ),△1,0A ,()0,2D ,()5,2B ,△CH =AG =5-1=4,DH =BG =2,△OH =2+2=4,△C (4,4),△OE =CE =4,△△COE =45°,OC如图,过点C 作CE △x 轴于E ,过点C 1作C 1F △x 轴于F ,由旋转得△COC 1=75°,△△C 1OF =30°,△C 1F =12OC 1=12OC ,△OF =△点C 1的坐标为(-,故选:D .【点拨】此题考查了矩形的性质,旋转的性质,勾股定理,直角三角形30度角的性质,熟记各知识点并综合应用是解题的关键.7.A【分析】设AC 与BC '的交点为点O ,连接CC ',先利用勾股定理、旋转的性质可得2,60AC AC CAC ''==∠=︒,再根据等边三角形的判定与性质可得AC CC ''=,然后根据垂直平分线的判定与性质可得12,2OA AC OA BC '==⊥,最后利用勾股定理分别可得2,OB OC '==解:如图,设AC 与BC '的交点为点O ,连接CC ',90,ABC AB BC ∠=︒==2AC ∴,由旋转的性质得:2,60AC AC CAC ''==∠=︒,ACC '∴是等边三角形,AC CC ''∴=,BC '∴是线段AC 的垂直平分线,11,2OA AC OA BC '∴==⊥,在Rt AOB 中,1OB ==,在Rt AOC '△中,OC ',则1BC OB OC ''=+=故选:A .【点拨】本题考查了勾股定理、旋转的性质、等边三角形的判定与性质、垂直平分线的判定与性质等知识点,通过作辅助线,构造等边三角形是解题关键.8.B【分析】根据菱形的中心对称性,A 、C 坐标关于原点对称,利用横反纵也反的口诀求解即可. 解:△菱形是中心对称图形,且对称中心为原点,△A 、C 坐标关于原点对称,△C 的坐标为()2,5-,故选C . 【点拨】本题考查了菱形的中心对称性质,原点对称,熟练掌握菱形的性质,关于原点对称点的坐标特点是解题的关键.9.D【分析】根据点P(a−2,4−a)关于原点对称的点在第三象限,可得点P在第一象限,因此就可列出不等式,解不等式可得a的取值范围.解:△点P(a−2,4−a)关于原点对称的点在第三象限,△点P在第一象限,△20 40aa-⎧⎨-⎩>>,△24<<a,则a的取值范围在数轴上表示正确的是:故选:D.【点拨】本题主要考查不等式组的解法,根据不等式组的解集,在数轴上表示即可,关键在于点P的坐标所在的象限.10.C【分析】根据平移的性质得出,△ABC的平移方向以及平移距离,即可得出P1坐标,进而利用中心对称图形的性质得出P2点的坐标.解:△A点坐标为:(2,4),A1(﹣2,1),△点P(2.4,2)平移后的对应点P1为:(﹣1.6,﹣1),△点P1绕点O逆时针旋转180°,得到对应点P2,△P2点的坐标为:(1.6,1).故选:C.【点拨】此题主要考查了旋转的性质以及平移的性质,根据已知得出平移距离是解题关键.11.2【分析】根据关于原点对称的性质得到a-1+5=0,5+1-b=0,求出a、b,问题得解.解:△点P (a -1,5)与点Q (5,1-b )关于原点成中心对称,△a -1+5=0,5+1-b =0,△a =-4,b =6,△a +b =2.故答案为:2【点拨】本题考查了关于原点对称的点的坐标特点,熟知“两个点关于原点对称,则这两个点的横纵坐标都互为相反数”是解题关键.12.452x ⎛⎫+ ⎪⎝⎭ 【分析】根据旋转的性质可得1DE DE =,1EDE x ∠=,利用等腰三角形的性质和三角形内角和定理求出1E ED ∠和△CED 即可解决问题.解:如图,由旋转的性质可得:1DE DE =,1EDE x ∠=, △11809022x x E ED ︒-∠==︒-, △△C =90°,△CDE =45°,△△CED =45°, △1118018090454522x x BEE E ED CED ⎛⎫⎛⎫∠=︒-∠-∠=︒-︒--︒=+︒ ⎪ ⎪⎝⎭⎝⎭, 故答案为:452x ⎛⎫+ ⎪⎝⎭.【点拨】本题考查了旋转的性质,等腰三角形的性质以及三角形内角和定理,灵活运用各性质进行推理计算是解题的关键.13.15【分析】把CD 绕着点C 逆时针旋转60°到达CE 的位置,连接CE ,DE ,BE ,可得△CDE 是等边三角形,从而得到DE =CD =CE ,△DEC =60°,再由△BCD =30°,可得BC △DE ,然后根据AB =BC =CD ,可得BC =CE ,AB =DE ,从而得到()1180752BEC BCE ∠=︒-∠=︒,进而得到△BED =15°,再证得四边形ABED 是平行四边形,即可求解.解:如图,把CD 绕着点C 逆时针旋转60°到达CE 的位置,连接CE ,DE ,BE ,△△DCE =60°,CD =CE ,△△CDE 是等边三角形,△DE =CD =CE ,△DEC =60°,△△BCD =30°,△△BCE =30°,△△BCD =△BCE ,△BC △DE ,△AB =BC =CD ,△BC =CE ,AB =DE , △()1180752BEC BCE ∠=︒-∠=︒, △△BED =△BEC -△DEC =15°,△AB △BC ,△AB △DE ,△四边形ABED 是平行四边形,△△BAD =△BED =15°.故答案为:15【点拨】本题主要考查了图形的旋转,等边三角形的判定和性质,平行四边形的判定和性质,等腰三角形的性质,熟练掌握图形的旋转,等边三角形的判定和性质,平行四边形的判定和性质,等腰三角形的性质是解题的关键.14.3【分析】根据旋转的性质得出△CAE =60°,AC =AE =2,求出△BAE =90°,根据勾股定理求出即可.解:△将△ABC 绕点A 逆时针旋转60°得到△ADE ,AB =2AC = ,△60,CAE AC =AE =2,△△BAC =30°,△△BAE =30°+60°=90°,在Rt △BAE 中, 由勾股定理得:2222523,BEAB AE 故答案为:3.【点拨】本题考查了旋转的性质和勾股定理,能求出AE 的长度和求出△BAE 的度数是解此题的关键.15.10 【分析】由平行四边形和三角形的面积公式及平行四边形的性质可以得到BDP BCP ABP S S S =-,把已知ABP △和BCP 的面积分别为3和13代入计算即可得到答案. 解:由平行四边形和三角形的面积公式易得12ADP BCP ABCD SS S +=, 由平行四边形的性质可得12ABD ABCD SS =, △12ADP ABP BDP ABCD SS S S ++=, △BCP ABP BDP SS S =+, △13310BDP BCP ABP S S S =-=-=,故答案为10.【点拨】本题考查平行四边形的应用,熟练掌握平行四边形和三角形的面积公式及平行四边形的中心对称性是解题关键.16.y =【分析】如图,过点C 作CF △x 轴于点F ,根据关于原点对称的点的坐标特征可得点B 坐标,根据等腰三角形的性质可得AB =BC =2,利用外角性质可得△CBF =60°,利用含30°角的直角三角形的性质及勾股定理可得CF 、BF 的长,利用旋转的性质可得AB =CE =2,AC =CD ,△ECD =△ACB =30°,根据等腰三角形的性质可得△CDA =△CAD=30°,可得CE //AD ,可得点E 坐标,利用待定系数法即可得答案.解:如图,过点C 作CF △x 轴于点F ,△△ABC 的顶点()1,0A -,点B 与点A 关于原点对称,△()10B ,, △AB =BC =2.△△CAB =30°,△△ACB =△CAB =30°,△△CBF =△CAB +△ACB =60°,△BCF =30°,△BF =12BC =1,CF=△(C .△将△ABC 绕点C 旋转,使点A 落在x 轴上的点D 处,点B 落在点E 处,△AB =CE =2,AC =CD ,△CDA =△CAD=30°,△ECD =△ACB =30°,△CE //AD ,△(E .设直线BE 的解析式为()0y kx b k =+≠,△04k b k b +=⎧⎪⎨+⎪⎩解得:k b ⎧=⎪⎪⎨⎪=⎪⎩△BE所在直线的解析式为:y .故答案为:y =【点拨】本题考查关于原点对称的点的坐标特征,旋转的性质、等腰三角形的性质、含30°角的直角三角形的性质及勾股定理,30°角所对的直角边等于斜边的一半;图形旋转前后的对应边相等、对应角相等;熟练掌握相关性质及定理是解题关键.17【分析】将线段DC 绕点D 顺时针旋转120︒得到线段DC ',作直线GC '交AD 于K ,过点A 作AH GC '⊥于点H .当点E 在直线BC 上运动时,G 在直线GC '上运动,即点G 的运动轨迹是直线GC '.当点G 运动到H 时,AG 最小,最小值即为AH 的长度,利用旋转的性质,根据“边角边”的判定方法可证明DCE DC G '≌△△,进而利用全等三角形的性质以及旋转性质可求出AG 的最小值.解:如图所示,将线段DC 绕点D 顺时针旋转120︒得到线段DC ',作直线GC '交AD 于K ,过点A 作AH GC '⊥于点H .120,,,EDC EDC GDC CD C D DE DG '''∠=︒-∠=∠==DCE DC G '∴≌△△(SAS )90,GC D C KC D ''∴∠=∠=︒=∠如图所示,当点E 在直线BC 上运动时,G 在直线GC '上运动,即点G 的运动轨迹是直线GC '.∴当点G 运动到H 时,AG 最小,最小值即为AH 的长度.120,90,CDC CDA '∠=︒∠=︒30,KDC '∴∠=︒1,602C K DK C KD AKH ''∴=∠=︒=∠C D CD AB '===2,4C K DK '∴==6AD BC ==2AK AD DK ∴=-=在Rt AKH 中,60AKH ∠=︒11,2KH AK AH ∴===则线段AG【点拨】本题主要考查了矩形中的旋转变换,能够掌握旋转的性质以及正确作出辅助线找到点G 的轨迹是解决本题的关键.18.(22022,0)【分析】根据图形可知:首先△OAB 绕原点O 顺时针方向旋转60°,旋转6次后,正好旋转一周,规律是6次一循环,其次根据将其各边都扩大为原来的2倍,依此类推,得到OAn =2n ,进而得出答案.解:如图,1,0,(,△点A,B的坐标分别为()△OAB=90°,△OA=1,AB△△OBA=30°,△△AOB=60°,△每一次旋转角是60°,△旋转6次后,正好旋转一周,点A6在x轴的正半轴上,△2022÷6=337,△点A2022在x轴的正半轴上;△每次旋转后OA1=2OA,OB1=2OB,OA2=2OA1,OB2=2OB1,…△OA1=2=2,OA2=2OA1=2×2=22,OA3=2OA2=2×22=23,…依此类推,OAn=2n,当n=2022时,OA2022=22022,△点A2022在x轴的正半轴上,△点A2022的坐标是(22022,0).故答案为:(22022,0).【点拨】本题主要考查了旋转的性质、含30°锐角的直角三角形的性质、勾股定理、坐标与图形性质、规律型、点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.19.(1)见分析(2)见分析(3)(6,-2)【分析】(1)根据关于原点对称的点的横坐标与纵坐标都互为相反数解答;(2)根据网格结构找出点A、B、C绕坐标原点O顺时针旋转90°的点A″、B″、C″的坐标,然后顺次连接即可;(3)根据平行四边形的对边平行且相等解答.(1)如图所示,△A′B′C′就是求作的图形;(2)如图所示,△A′′B′′C′′就是求作的三角形;(3)如图所示,点D′坐标为(6,-2);【点拨】本题考查了利用旋转变换作图,平行四边形的性质,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.能,见分析【分析】直接利用等边三角形的性质结合全等三角形的判定方法进而得出答案.解:能.理由:△△ABC 为等边三角形,△60B BAC ∠=∠=,AC AB =.△//CE AB ,△60ACE BAC ∠=∠=,在△ABD 和△ACE 中,AB AC B ACE BD CE =⎧⎪∠=∠⎨⎪=⎩,△()ABD ACE SAS ∆≅∆△AD AE =,BAD CAE ∠=∠,△60DAE BAC ∠=∠=,△△ACE 即为旋转后的图形.【点拨】本题主要考查了旋转变换以及全等三角形的判定,正确应用等边三角形的性质是解题关键.21.△BAD =60°,AD 的长为5.【分析】由旋转的性质可得出△ADE =60°、DA =DE ,进而可得出△ADE 为等边三角形以及△DAE =60°,由点A 、C 、E 在一条直线上可得出△BAD =△BAC -△DAE =60°;由点A 、C 、E 在一条直线上可得出AE =AC +CE ,根据旋转的性质可得出CE =AB ,结合AB =3、AC =2可得出AE 的长度,再根据等边三角形的性质即可得出AD 的长度.解:△△ABD 绕着点D 按顺时针方向旋转60°后得到△ECD ,△△ADE =60°,DA =DE ,△△ADE 为等边三角形,△△DAE =60°.△点A 、C 、E 在一条直线上,△△BAD =△BAC -△DAE =120°-60°=60°.△点A 、C 、E 在一条直线上,△AE =AC +CE .△△ABD 绕着点D 按顺时针方向旋转60°后得到△ECD ,△CE =AB ,△AE =AC +AB =2+3=5.△△ADE 为等边三角形,△AD =AE =5.【点拨】本题考查了旋转的性质以及等边三角形的判定与性质,根据旋转的性质结合旋转角度为60°找出△ADE 为等边三角形是解题的关键.22.(1)见详解(2)△△DEC =30°;△见详解【分析】(1)由等边三角形的性质和旋转的性质可得△BAD =△CAE ,AB =AC ,AD =AE ,再利用SAS 可证△BAD △△CAE ,可得BD =CE ;(2)△根据AD △BD ,得出△ADB =90°,根据△BAD △△CAE ,得出△ADB =△AEC =90°,根据△AED =60°,利用图中角度计算即可;△过点C 作CG △BP ,交EF 的延长线于点G ,由等边三角形的性质和全等三角形的性质可得CG =BD ,△BDG =△G ,△BFD =△GFC ,可证△BFD △△CFG ,可得结论;(1)证明:△线段AD 绕点A 逆时针旋转60°得到线段AE ,△AD =AE ,△DAE =60°,△△ADE 是等边三角形,在等边△ABC 和等边△ADE 中,△ AB =AC ,AD =AE ,△BAD +△DAC =△CAE +△DAC =60°,△△BAD =△CAE ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, △△BAD △△CAE (SAS ),△BD =CE ;(2)解:△△AD △BD ,△△ADB =90°,△△BAD △△CAE△△ADB =△AEC =90°,△△AED =60°,△△DEC =△AEC -△AED =90°-60°=30°,△如图,过点C 作CG △BP 交DF 的延长线于点G ,△△G =△BDF ,由(1)可知,BD =CE ,△CEA =△BDA ,△AD △BP ,△△BDA =90°,△△CEA =90°,△△AED =60°,△△BDG =180°-△ADB -△ADE =30°,△△CED =△G =△BDG =30°,△CE =CG ,△BD =CG ,在△BDF 和△CGF 中,BDF G BFD CFG BD CG ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△BDF △△CGF (AAS ),△BF =FC ,即F 为BC 的中点.【点拨】本题考查了等边三角形的性质,全等三角形的判定和性质,旋转的性质,添加恰当辅助线构造全等三角形是本题的关键.23.(1)123y x =-+(2)20(3)点E 的坐标为(6,4)-或(3,1)【分析】(1)用待定系数法即可得直线AB 解析式,(2)由(6,0)A 、(0,2)B ,得AB =,设(0,)C m ,由BC AC =,可得22(2)36m m -=+,解得8m =-,即可得10BC =,10AC =,从而可得ABC ∆的周长为20AB BC AC ++=;(3)当D 在B 左侧时,过E 作EH x ⊥轴于H ,设OD n =,根据将线段DB 绕着点D 旋转90︒得到DE ,可得()EDH DBO AAS ∆≅∆,从而可得(2,)E n n --,把(2,)E n n --代入123y x =-+即可得(6,4)E -,当D 在B 右侧时,同理可得(3,1)E ',即可得答案.(1)解:设直线AB 解析式为y kx b =+,把(6,0)A 、(0,2)B 代入得:602k b b +=⎧⎨=⎩, 解得132k b ⎧=-⎪⎨⎪=⎩, ∴直线AB 解析式为123y x =-+, 故答案为:123y x =-+; (2)解:(6,0)A 、(0,2)B ,AB ∴=设(0,)C m ,则22(2)BC m =-,2236AC m =+,BC AC =,22(2)36m m ∴-=+,解得8m =-,22(82)100BC ∴=--=,2236(8)100AC =+-=,10BC ∴=,10AC =,ABC ∴∆的周长为101020AB BC AC ++=+=;(3)解:当D 在B 左侧时,过E 作EH x ⊥轴于H ,如图:设OD n =,将线段DB 绕着点D 旋转90︒得到DE ,90EDB ∴∠=︒,ED BD =,90EDH BDO DBO ∴∠=︒-∠=∠,90EHD DOB ∠=︒=∠,EDH DBO ∴∆∆≌(AAS ),2HD OB ∴==,HE OD n ==,2OH n ∴=+,(2,)E n n ∴--,把(2,)E n n --代入123y x =-+得: 1(2)23n n =---+, 解得4n =,(6,4)E ∴-,当D 在B 右侧时,同理可得(3,1)E ',综上所述,E 的坐标为(6,4)-或(3,1).【点拨】本题考查一次函数综合应用,涉及待定系数法,三角形周长,全等三角形判定与性质等知识,解题的关键是作辅助线,构造全等三角形.24.(1)△BD BC ⊥;△12AF CD =,证明见分析;(2 【分析】(1)△先证明△BAD =△CAE ,△ABC =△ACB =45°, 再证明△BAD △△CAE ,利用全等三角形的性质可得结论;△ 延长BA 至点G ,使AG =AB ,连接GE ,证明△ADC △△AEG ,可得CD =GE .延长F A 至点Q ,使AQ =AF ,连接GQ ,证明△ABF △△AGQ ,可得△BF A =△GQA ,BF =GQ ,证明四边形EFQG 是平行四边形,可得QF =GE .从而可得结论;(2)如图,连接DE 、DG ,证明△BAE △△DAG ,△DAG 可以由△BAE 绕点A 逆时针旋转90°得到.可得CE =1,CD =4.17,DE 延长AB 至N ,使AN =AB ,连接NG ,延长HA 至Q ,使AQ =AH ,连接NQ ,同理:由(1)中△可知12AH DE =,从而可得答案. 解:(1)△△将△ABD 绕点A 逆时针旋转90°得到△ACE ,△△DAE =△BAC =90°,AE =AD ,AC =AB△△BAD =△CAE ,△ABC =△ACB =45°,在△BAD 和△CAE 中,BA CABADCAE AD AE ,△△BAD △△CAE ,△△ABC =△ACE =45°,△△BCE =45°+45°=90°, 即BD CE ⊥ △12AF CD =,理由如下: 延长BA 至点G ,使AG =AB ,连接GE ,△将△ABD 绕点A 逆时针旋转90°得到△ACE ,△△DAE =△BAC =90°,AE =AD ,AC =AB =AG ,又△DAC =90°-△CAE =△GAE ,△△ADC △△AEG ,△CD =GE .延长F A 至点Q ,使AQ =AF ,连接GQ ,△AG =AB ,△BAF =△GAQ ,△△ABF △△AGQ ,△△BF A =△GQA ,BF =GQ ,△BE GQ ∥,即EF GQ ∥.△点F 为BE 的中点,△EF =BF =GQ ,△四边形EFQG 是平行四边形,△QF =GE .△12AF QF =,CD =GE , △12AF CD =. (2)如图,连接DE 、DG ,△四边形ABCD 和四边形AEFG 为正方形,△AB =AD=BC=CD ,AE =AG ,△BAD =△EAG =90°,又△BAE =90°-△EAD =△DAG ,△△BAE △△DAG ,△△DAG 可以由△BAE 绕点A 逆时针旋转90°得到.△AB =4,BE =3,△CE =1,CD =4. 221417,DE延长AB 至N ,使AN =AB ,连接NG ,延长HA 至Q ,使AQ =AH ,连接NQ ,同理:由(1)中△可知12AH DE =,△12AH DE ==. 【点拨】本题考查的是全等三角形的判定与性质,平行四边形的判定与性质,正方形的性质,勾股定理的应用,旋转的性质,作出合适的辅助线,构建全等三角形与平行四边形是解本题的关键.。

人教版九年级数学上册第三十章-旋转-巩固练习(含答案)

人教版九年级数学上册第三十章-旋转-巩固练习(含答案)

人教版九年级数学上册第三十章-旋转-巩固练习一、单选题1.如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,△ABD经旋转后到达△ACE的位置,那么旋转了( ).A. 75°B. 60°C. 45°D. 15°2.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是()A. (2,5)B. (5,2)C. (4,)D. (,4)3.如图所示,EF过矩形ABCD对角线的交点O,且分别交AB,CD于点E,F,若AB=3,BC=4,那么阴影部分的面积为()A. 4B. 12C. 6D. 34.下列图形中是中心对称图形的是()A. B. C. D.5.在平面直角坐标中,点P(-3,5)关于原点的对称点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.下列四个图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.7.风车应做成中心对称图形,并且不是轴对称图形,才能在风口处平稳旋转.现有一长条矩形硬纸板(其中心有一个小孔)和两张全等的矩形薄纸片,将纸片粘到硬纸板上,做成一个能绕着小孔平稳旋转的风车.正确的粘合方法是()A. B.C. D.8.平面直角坐标系内一点P(-2,3)关于原点对称的点的坐标是( )A. (3,-2)B. (2,3)C. (-2,-3)D. (2,-3)二、填空题9.如图,将△ABC(其中∠ABC = 60°,∠C = 90°)绕点B按顺时针转动一个小于180°的角度到△的位置,使得点A,B,在同一条直线上,那么旋转角度的大小等于________度10.作点A关于点O的对称点时,连接AO并延长________,即可得到点A的对称点;作某个图形关于点O的对称图形时,先作出图形的________关于点O的对称点,然后顺次连接各对称点即可.11.如图,已知直角三角形ABC中,∠C=90°,将△ABC绕点A逆时针旋转至△AED,使点C的对应点D恰好落在边AB上,E为点B的对应点.设∠BAC=α,则∠BED=________.(用含α的代数式表示)12.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是________.13.上图中的△A′B′C′是由△ABC绕点P旋转180°后得到的图形,根据旋转的性质回答下列问题:(1)PA与PA′的数量关系是________。

29初中数学九年级全册 《旋转》全章复习与巩固--知识讲解(提高)(1)

29初中数学九年级全册  《旋转》全章复习与巩固--知识讲解(提高)(1)

初中数学九年级全册《旋转》全章复习与巩固--知识讲解(提高)【学习目标】1、通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质.2、通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形.3、能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用.4、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【知识网络】【要点梳理】要点一、旋转1.旋转的概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转..点O叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质: (1)对应点到旋转中心的距离相等(OA= OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;''').(3)旋转前、后的图形全等(△ABC≌△A B C要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转的作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点二、特殊的旋转—中心对称1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.要点三、平移、轴对称、旋转【典型例题】类型一、旋转1.如图1,ΔACB与ΔADE都是等腰直角三角形,∠ACB 和∠ADE都是直角,点C在AE上,如果ΔACB经逆时针旋转后能与ΔADE重合.①请指出其旋转中心与旋转角度;②用图1作为基本图形,经过怎样的旋转可以得到图2?【答案与解析】①旋转中心:点A;旋转角度:45°(逆时针旋转)②以点A为旋转中心,将图1顺时针(或逆时针)旋转90°三次得到图2.【总结升华】此类题型要把握好旋转的三个要素:旋转中心、旋转方向和旋转角度.举一反三:【变式】如图,在平面直角坐标系中,△ABC和△DEF为等边三角形,AB=DE,点B、C、D在x轴上,点A、E、F在y轴上,下面判断正确的是()A.△DEF是△ABC绕点O顺时针旋转90°得到的.B.△DEF是△ABC绕点O逆时针旋转90°得到的.C.△DEF是△ABC绕点O顺时针旋转60°得到的.D.△DEF是△ABC绕点O顺时针旋转120°得到的.【答案】A.类型二、中心对称2. 如图,△ABC中A(-2,3),B(-3,1),C(-1,2).⑴将△ABC向右平移4个单位长度,画出平移后的△A1B1C1;⑵画出△ABC关于x轴对称的△A2B2C2;⑶画出△ABC关于原点O对称的△A3B3C3;⑷在△A1B1C1,△A2B2C2,△A3B3C3中,△______与△______成轴对称,对称轴是______;△______与△______成中心对称,对称中心的坐标是______.【答案与解析】⑷△A2B2C2与△A3B3C3成轴对称,对称轴是y轴.△A3B3C3与△A1B1C1成中心对称,对称中心的坐标是(2,0).【总结升华】注意观察中心对称和旋转对称的关系.举一反三:【变式】如图是正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.【答案】类型三、平移、轴对称、旋转3.(2015•北京校级模拟)如图所示,△ABC,△ADE为等腰直角三角形,∠ACB=∠AED=90°.(1)如图1,点E在AB上,点D与C重合,F为线段BD的中点.则线段EF与FC的数量关系是;∠EFD的度数为;(2)如图2,在图1的基础上,将△ADE绕A点顺时针旋转到如图2的位置,其中D、A、C在一条直线上,F为线段BD的中点.则线段EF与FC是否存在某种确定的数量关系和位置关系?证明你的结论;(3)若△ADE绕A点任意旋转一个角度到如图③的位置,F为线段BD的中点,连接EF、FC,请你完成图3,并直接写出线段EF与FC的关系(无需证明).【思路点拨】(1)易得△EFC是等腰直角三角形,那么EF=FC,∠EFD=90°.(2)延长线段CF到M,使CF=FM,连接DM、ME、EC,易证△BFC≌△DFM,进而可以证明△MDE≌△CAE,即可证明EF=FC,EF⊥FC;(3)基本方法同(2).【答案与解析】解:(1)EF=FC,90°.(2)延长CF到M,使CF=FM,连接DM、ME、EC,如下图2∵FC=FM,∠BFC=∠DFM,DF=FB,∴△BFC≌△DFM,∴DM=BC,∠MDB=∠FBC,∴MD=AC,MD∥BC,∵ED=EA,∠MDE=∠EAC=135°,∴△MDE≌△CAE,∴ME=EC,∠DEM=∠CEA,∴∠MEC=90°,∴EF=FC,EF⊥FC(3)图形如下,结论为:EF=FC,EF⊥FC.【总结升华】延长过三角形的中线构造全等三角形是常用的辅助线方法,证明线段相等的问题可以转化为证明三角形全等的问题解决.举一反三:(1)求∠ABC的度数.(2)以点A为中心,把△ABD顺时针旋转60°,画出旋转后的图形.(3)求BD的长度.【答案】∴BC=4,∴∠ABC=30°(2)如图所示:(3)连接BE.由(2)知:△ACE≌△ADB,∴AE=AB,∠BAE=60°,BD=EC,∴∠EBC=90°,又BC=2AC=4,4.(2015•东西湖区校级模拟)如图,Rt△ABC中,AC=BC,∠ACB=90°,点E在线段AB上,CF⊥CE,CE=CF,EF交AC于G,连接AF.(1)填空:线段BE、AF的数量关系为,位置关系为;(2)当=时,求证:=2;(3)若当=n时,=,请直接写出n的值.【思路点拨】(1)在Rt△ABC中,AC=BC,∠ACB=90°,CF⊥CE,可推出∠ECB=∠ACF,且CE=CF,由此可得△ECB≌△FCA,即得BE=AF,∠CBE=∠CAF,且∠CBE+∠CAB=90°,故∠CAF+∠CAB=90°,即BE⊥AF;(2)作GM⊥AB于M,GN⊥AF于N,可得出GM=GN,从而有S△AEG=2S△AFG,即证=2;(3)根据(2)的推理过程,知S△AEG=nS△AFG,则,即可求得n的值.【答案与解析】(1)解:∵∠ACB=90°,CF⊥CE,∴∠ECB=∠ACF.又AC=BC,CE=CF,∴△ECB≌△FCA.∴BE=AF,∠CBE=∠CAF,又∠CBE+∠CAB=90°,∴∠CAF+∠CAB=90°,即BE=AF,BE⊥AF.(2)证明:作GM⊥AB于M,GN⊥AF于N,∵△ACF可由△BCE绕点C顺时针方向旋转90°而得到,∴AF=BE,∠CAF=∠CBE=45°.∴AE=2AF,∠CAF=∠CAB,∴GM=GN.∴S△AEG=2S△AFG,∴EG=2GF,∴=2.(3)解:由(2),得当=n时,S△AEG=nS△AFG,则,∴当n=时,=.【总结升华】此题综合运用了全等三角形的判定和性质、旋转的性质,能够从特殊推广到一般发现规律.5.已知:点P是正方形ABCD内的一点,连结PA、PB、PC,(1)若PA=2,PB=4,∠APB=135°,求PC的长.(2)若2222PB PC PA =+,请说明点P 必在对角线AC 上.∴AE=PC∵BE=BP,∠PBE=90°,PB=4 ∴∠BPE=45°,PE=又∵∠APB=135° ∴∠APE=90° ∴222AE AP EP =+ 即AE=6, 所以PC=6.(2)由(1)证得:∵2222PB PC PA =+ ∴222PA AE PE += ∴∠PAE=90° 即∠PAB+∠BAE=90° 又∵由(1)证得∠BAE=∠BCP ∴∠PAB+∠BCP=90 又∵∠ABC=90° ∴点A,P,C 三点共线, 即P 必在对角线AC 上.【总结升华】注意勾股定理及逆定理的灵活运用. 举一反三:【变式】如图,在四边形ABCD 中,AB=BC ,,K 为AB上一点,N为BC上一点.若的周长等于AB的2倍,求的度数.【答案】显然,绕点D顺时针方向旋转至6如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得它们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,使点B、C、F、D在同一条直线上,且点C与点F重合(在图3~图6中统一用F表示)小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.⑴将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F 重合,请你求出平移的距离;⑵将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;⑶将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH=DH.【答案与解析】⑴平移的距离为5cm(即)⑵⑶证明:在△AHE与△DHB1中∴△AHE≌△DHB1(AAS)∴AH=DH.【总结升华】注意平移和旋转综合运用时找出不变量是解题的关键.。

2022年人教版初中数学9年级上册《旋转》全章复习与巩固--巩固练习(基础)及答案

2022年人教版初中数学9年级上册《旋转》全章复习与巩固--巩固练习(基础)及答案

2022年人教版初中数学9年级上册《旋转》全章复习与巩固--巩固练习(基础)一、选择题1.(2020•德州)如图,在△ABC 中,∠CAB=65°,将△ABC 在平面内绕点A 旋转到△AB ′C ′的位置,使CC ′∥AB ,则旋转角的度数为()A .35°B .40°C .50°D .65°2.如图,在等腰直角△ABC 中,B=90°,将△ABC 绕顶点A 逆时针方向旋转60°后得到△AB′C′,则等于().A.60°B.105°C.120°D.135°3.如图,如果一个四边形ABCD 旋转后能与另一个正方形重合,那以该图形所在的平面可以作旋转中心的点有()个.A、1B、2C、3D、4第2题第3题第4题4.如图,矩形OABC 的顶点O 为坐标原点,点A 在x 轴上,点B 的坐标为(2,1).如果将矩形0ABC 绕点O 旋转180°旋转后的图形为矩形OA 1B 1C 1,那么点B 1的坐标为().A.(2,1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,﹣l)5.如图,边长为1的正方形绕点逆时针旋转到正方形,图中阴影部分的面积为().A.B.C.D.6.右图可以看作是一个等腰直角三角形旋转若干次而生成的则每次旋转的度数可以是().A.90°B.60°C.45°D.30°第5题第6题7.轴对称与平移、旋转的关系不正确的是().A.经过两次翻折(对称轴平行)后的图形可以看作是原图形经过—次平移得到的B.经过两次翻折(对称轴不平行)后的图形可以看作是原图形经过—次平移得到的C.经过两次翻折(对称轴不平行)后的图形可以看作是原图形经过旋转得到的D.经过几次翻折(对称轴有偶数条且平行)后的图形可以看作是经过—次平移得到的8.在平面直角坐标系中,A点坐标为(3,4),将OA绕原点O逆时针旋转90°得到OA′,则点A′的坐标是().A.(-4,3)B.(-3,4)C.(3,-4)D.(4,-3)二.填空题9.正三角形绕中心旋转__度的整倍数之后能和自己重合.10.如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于_________.11.(2020•福州)如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是.12如图所示,四边形ABCD是正方形,点E是边CD上一点,点F是CB延长线上一点,且DE=BF,连结FE,此时△AEF是___.如果FB=1,EC=2,则正方形ABCD的面积是__.13.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,将腰CD以D为中心逆时针旋转90°至ED,连接AE、DE,△ADE的面积为3,则BC的长为_________.第12题第13题第14题14.如图,已知正方形ABCD的边长为3,E为CD边上一点,DE=1.以点A为中心,把△ADE顺时针旋转90°,得△ABE',连接EE',则EE'的长等于__________.15.如图,在平面直角坐标系中,点B的坐标是(1,0),若点A的坐标为(a,b),将线段BA绕点B顺时针旋转90°得到线段BA′,则点A′的坐标是_________.第15题第16题16.如图所示,将△ABC沿AB翻折后形成△ABE,再将△ABE绕点A顺时针旋转一定角度后,使点E与点C重合,若∠1:∠2:∠3=28:5:3.则此次旋转过程中的旋转角是________.三综合题17.(2020•衡阳)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(3,2)、B(3,5)、C(1,2).(1)在平面直角坐标系中画出△ABC关于x轴对称的△A1B1C1;(2)把△ABC绕点A顺时针旋转一定的角度,得图中的△AB2C2,点C2在AB上.①旋转角为多少度?②写出点B2的坐标.18.如图,在△ABC中,AB=AC,点P是△ABC内一点,且∠APB=∠APC.求证:BP=CP.19.已知:如图在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△FEC.(1)试猜想AE与BF有何关系?说明理由.(2)若△ABC的面积为3cm2,求四边形ABFE的面积;(3)当∠ACB为多少度时,四边形ABFE为矩形?说明理由.20.已知,点P是正方形ABCD内的一点,连PA、PB、PC.(1)将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图1).①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积;②若PA=2,PB=4,∠APB=135°,求PC的长.(2)如图2,若PA2+PC2=2PB2,请说明点P必在对角线AC上.【答案与解析】一.选择题1.【答案】C.【解析】∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C.2.【答案】 B.【解析】∠BAC′=∠BAB′+∠B′AC′=60°+45°=105°.2题图5题图3.【答案】C.【解析】旋转中心的点分别是点D,点C,和线段DC 的中点.4.【答案】C.5.【答案】C.【解析】,∴ADPB s'四边形=332=63⨯∴3=1-3s 阴影.6.【答案】 C.【解析】旋转的角度应该是45°的倍数.7.【答案】 B.8.【答案】 A.【解析】逆时针旋转90°,点A′在第二象限,利用三角形全等可得.二、填空题9.【答案】12O.10.【答案】21-;【解析】∵△ABC 绕点A 顺时针旋转45°得到△A ′B ′C ′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC ′=∠C ′=45°,∴AD ⊥BC ,B ′C ′⊥AB ,∴AD=BC=1,AF=FC ′=AC ′=1,∴图中阴影部分的面积等于:S △AFC ′﹣S △DEC ′=×1×1﹣×(﹣1)2=﹣1.故答案为:21-.11.【答案】31+.【解析】如图,连接AM ,由题意得:CA=CM ,∠ACM=60°,∴△ACM 为等边三角形,∴AM=CM ,∠MAC=∠MCA=∠AMC=60°;∵∠ABC=90°,AB=BC=,∴AC=2=CM=2,∵AB=BC ,CM=AM ,∴BM 垂直平分AC ,∴BO=AC=1,OM=CM •sin60°=,∴BM=BO+OM=1+,故答案为:1+.12.【答案】等腰直角三角形;9.【解析】由△ABF≌△ADE,得到AF=AE,∠BAF=∠DAE,即△AEF 是等腰直角三角形.12题图13题图13.【答案】5.【解析】做DF⊥BC,EG⊥AD,交AD 的延长线于点G ,则AD=BF,可证得△DEG≌△DCF,即EG=FC,又因为3ADEs=△,所以EG=3,即BC=BF+FC=AD+EG=5.14.【答案】25.【解析】∵AE=2231+=10=AE′,∴EE′=102=25⨯.15.【答案】(b+1,1-a).【解析】因为AC=b,BC=a-1,所以BD=b,A′D=a-1,又因为点B(1,0),所以OD=b+1,A′D=a-1,因为点A′在第四象限,所以点A′(b+1,a-1).16.【答案】80°.三.解答题17.【解析】解:(1)A (3,2)、B (3,5)、C (1,2)关于x 轴的对称点分别为A 1(3,﹣2),B 1(3,﹣5),C 1(1,﹣2),如图所示,(2)①∵A (3,2)、B (3,5)、C (1,2),∴AB=3,AC=2,BC=,∵,∴AB 2+AC 2=BC 2,∴∠CAB=90°,∵AC 与AC 2的夹角为∠CAC 2,∴旋转角为90°;②∵AB=AB 2=3,∴CB 2=AC+AB 2=5,∴B 2的坐标为(6,2).18.【解析】证明:将△ABP 沿逆时针旋转至△ACQ 的位置,则有△ABP≌△ACQ.∴AP=AQ,∠APB=∠AQC,BP=CQ.∵∠APB=∠APC,∴∠APC=∠AQC.连结PQ.则有∠1=∠2,∴∠APC-∠2=∠AQC-∠1,即:∠3=∠4,即在△CPQ 中,有CP=CQ.∴BP=CQ.∴BP=CP.19.【解析】,(1)AE 与BF 平行且相等,∵ABC 绕点C 顺时针旋转180°得到△FEC,∴△ABC 与△FEC 关于C 点中心对称,∴AC=CF,BC=CE,∴四边形ABFE 为平行四边形,∴;(2)∵AC=CF,∴S △BCF =S △ABC =3,∵BC=CE,∴S △ABC =S △ACE =3,∴S △CEF =S △BCF =3,∴S □ABFE =3×4=12(cm 2).(3)当∠ACB=60°时,四边形ABFE 为矩形,∵AB=AC,∴∠ABC=∠ACB=60°,∴AB=BC=CA,∴AF=BE,∴平行四边形ABFE 为矩形.20.【解析】(1)①S 阴影=②连结PP′,证△PBP′为等腰直角三角形,从而PC=6;(2)将△PAB 绕点B 顺时针旋转90°到△P′CB 的位置,由勾股逆定理证出∠P′CP=90°,再证∠BPC+∠APB=180°,即点P 在对角线AC 上.《旋转》全章复习与巩固--知识讲解(基础)【学习目标】1、通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质;2、通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形;3、能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用;4、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【知识网络】【要点梳理】要点一、旋转1.旋转的概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转..点O叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质:(1)对应点到旋转中心的距离相等(OA=OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;''').(3)旋转前、后的图形全等(△ABC≌△A B C要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转的作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点二、特殊的旋转—中心对称1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合(全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的).2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.要点三、平移、轴对称、旋转平移、轴对称、旋转之间的对比平移轴对称旋转相同点都是全等变换(合同变换),即变换前后的图形全等.不同点定义把一个图形沿某一方向移动一定距离的图形变换.把一个图形沿着某一条直线折叠的图形变换.把一个图形绕着某一定点转动一个角度的图形变换.图形要素平移方向平移距离对称轴旋转中心、旋转方向、旋转角度性质连接各组对应点的线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角都等于旋转角.对应线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.*对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角,即:对应点与旋转中心连线所成的角彼此相等.【典型例题】类型一、旋转1.数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,错误的是().A.甲 B.乙 C.丙 D.丁【答案】B.【解析】因为圆被平分为8部分,所以旋转45°,90°,135°均能与原图形重合.【总结升华】同一图形的旋转角可以是多个.举一反三:【变式】以图1的边缘所在直线为轴将该图案向右翻折180°后,再按顺时针方向旋转180°,所得到图形是().【答案】A.类型二、中心对称2.如图,△A′B′C′是△ABC旋转后得到的图形,请确定旋转中心、旋转角.【答案与解析】∵对应点到旋转中心的距离相等,即OA=OA′∴O点在AA′的垂直平分线上同理O点也在BB′的垂直平分线上∴两条垂直平分线的交点O就是旋转中心,∠AOA′的度数就是旋转角.【总结升华】中心对称的对应点到对称中心的距离相等,所以对称中心在对应点的垂直平分线上.举一反三:【变式】下列图形中,既是中心对称图形又是轴对称图形的是().A.B.C.D.【答案】A.类型三、平移、轴对称、旋转3.(2020•裕华区模拟)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a.将△BOC 绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当a=150°时,试判断△AOD的形状,并说明理由;(3)探究:当a为多少度时,△AOD是等腰三角形?【思路点拨】(1)根据旋转的性质可得出OC=OD,结合题意即可证得结论;(2)结合(1)的结论可作出判断;(3)找到变化中的不变量,然后利用旋转及全等的性质即可做出解答.【答案与解析】(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形.(2)解:当α=150°时,△AOD是直角三角形.理由是:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴△BOC≌△ADC,∴∠ADC=∠BOC=150°,又∵△COD是等边三角形,∴∠ODC=60°,∴∠ADO=∠ADC﹣∠ODC=90°,∵∠α=150°∠AOB=110°,∠COD=60°,∴∠AOD=360°﹣∠α﹣∠AOB﹣∠COD=360°﹣150°﹣110°﹣60°=40°,∴△AOD不是等腰直角三角形,即△AOD是直角三角形.(3)解:①要使AO=AD,需∠AOD=∠ADO,∵∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,∠ADO=α﹣60°,∴190°﹣α=α﹣60°,∴α=125°;②要使OA=OD,需∠OAD=∠ADO.∵∠OAD=180°﹣(∠AOD+∠ADO)=180°﹣(190°﹣α+α﹣60°)=50°,∴α﹣60°=50°,∴α=110°;③要使OD=AD,需∠OAD=∠AOD.∵∠OAD=360°﹣110°﹣60°﹣α=190°﹣α,∠AOD==120°﹣,∴190°﹣α=120°﹣,解得α=140°.综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形.【总结升华】本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明等)为载体,内容由浅入深,层层递进.试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力.举一反三:【变式】已知D是等边△ABC外一点,∠BDC=120º.求证:AD=BD+DC.【答案】∵△ABC为等边三角形,∴AB=AC,∠BAC=60°.将△ABD绕点A逆时针旋转60°,得到△EAC,∴△DAB≌△EAC,即∠ABD=∠ACE,∵四边形ABCD中,∠BDC=120º,∠BAC=60°,∴∠DBA+∠DCA=180°,即∠ACE+∠DCA=180°,点D,C,E三点共线.∴BD+DC=CE+DC=DE.又∵∠DBE=60°.∴△ADE是等边三角形,即DE=AD.∴BD+DC=AD.4.如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=CD.求证:BD2=AB2+BC2.【思路点拨】利用AD=CD可以将△BCD绕点D逆时针旋转60°,从而把条件集中到一个三角形中.【答案与解析】证明:∵AD=CD,∠ADC=60°,∴△BCD绕点D逆时针旋转60°,得到△EAD,∴∠BDE=∠CDA=60°,△BCD≌△EAD.∴BC=AE,BD=DE,∠DAE=∠DCB,∴△BDE为等边三角形.∴BE=BD.∵在四边形ABCD中,∠ABC=30°,∠ADC=60°,∴∠DCB+∠DAB=270°,即∠DAE+∠DAB=270°.∴∠BAE=90°.∵在Rt△BAE中,,∴.【总结升华】由求证可知应该建立一个直角三角形,再由已知知道有30°,60°的角,有等线段,可以构想通过旋转构建直角三角形.5、正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上(1)如图连结DF、BF,试问:当正方形AEFG绕点A旋转时,DF、BF的长度是否始终相等?若相等请证明;若不相等请举出反例.(2)若将正方形AEFG绕点A顺时针方向旋转,连结DG,在旋转过程中,能否找到一条线段的长度与线段DG的长度相等,并画图加以说明.【答案与解析】(1)如图,DF、BF的长度不是始终相等,当点F旋转到AB边上时,DF>AD>BF.(2)线段BE=DG如图:∵正方形ABCD和正方形AEFG∴AD=AB,AG=AE,∠1+∠2=∠2+∠3∴∠DAG=∠BAE∴△ADG≌△ABE∴DG=BE【总结升华】利用旋转图形的不变性确定全等三角形.举一反三:【变式】(2020•沈阳)如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,求AK的长?【答案与解析】解:连接BH,如图所示:∵四边形ABCD和四边形BEFG是正方形,∴∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB,∠CBE=30°,∴∠ABE=60°,在Rt△ABH和Rt△EBH中,,∴Rt△ABH≌△Rt△EBH(HL),∴∠ABH=∠EBH=∠ABE=30°,AH=EH,∴AH=×=1,∴EH=1,∴FH=﹣1,在Rt△FKH中,∠FKH=30°,∴KH=2FH=2(﹣1),∴AK=KH﹣AH=2(﹣1)﹣1=2﹣3;故答案为:233 .6.如图,已知△ABC为等腰直角三角形,∠BAC=900,E、F是BC边上点且∠EAF=45°.求证:.【思路点拨】通过求证可以猜测要证得直角三角形,所以可以考虑旋转.【答案与解析】∵△ABC为等腰直角三角形且∠BAC=90°∴AB=AC,将△CAF绕点A顺时针旋转90°,如图,得到∴∴,,,,∴,连结,则在中,,∴①,又∵,∵.又∵,∴在与中,.∴②,∴由①②得:.【总结升华】旋转性质:旋转前,后的图形全等.《旋转》全章复习与巩固--巩固练习(提高)【巩固练习】一、选择题1.在下列四个图案中,既是轴对称图形,又是中心对称图形的是().2.时钟钟面上的分针从12时开始绕中心旋转120°,则下列说法正确的是().A.此时分针指向的数字为3B.此时分针指向的数字为6C.此时分针指向的数字为4D.分针转动3,但时针却未改变3.如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是().A.M或O或N B.E或O或C C.E或O或N D.M或O或C4.如图,菱形OABC的一边OA在x轴上,将菱形OABC绕原点O顺时针旋转75°至OA′B′C′的位置,若OB=,∠C=120°,则点B′的坐标为().A.(3,)B.(3,)C.(,)D.(,)第3题第4题第5题5.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为().A.30,2B.60,2C.60,D.60,6.(2020•乌鲁木齐)如图,将斜边长为4的直角三角板放在直角坐标系xOy 中,两条直角边分别与坐标轴重合,P 为斜边的中点.现将此三角板绕点O 顺时针旋转120°后点P 的对应点的坐标是()A .(,1)B .(1,﹣)C .(2,﹣2)D .(2,﹣2)7.下列图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们的共性是都可以由一个“基本图案”通过连续旋转得来,旋转的角度是().A.30°B.45°C.60°D.90°8.在平面直角坐标系中,将点A 1(6,1)向左平移4个单位到达点A 2的位置,再向上平移3个单位到达点A 3的位置,△A 1A 2A 3绕点A 2逆时针方向旋转900,则旋转后A 3的坐标为().A.(-2,1)B.(1,1)C.(-1,1)D.(5,1)二.填空题9.(2020•扬州)如图,已知Rt △ABC 中,∠ACB=90°,AC=6,BC=4,将△ABC 绕直角顶点C 顺时针旋转90°得到△DEC .若点F 是DE 的中点,连接AF ,则AF=.10.如图,正方形ABCD 的边长为4cm,正方形AEFG 的边长为1cm.如果正方形AEFG 绕点A 旋转,那么C、F 两点之间的最小距离为_________cm.11.绕一定点旋转180°后与原来图形重合的图形是中心对称图形,正六边形就是这样的图形.小明发现将正六边形绕着它的中心旋转一个小于180°的角,也可以使它与原来的正六边形重合,请你写出小明发现的一个旋转角的度数:_____________________.12.如图所示,在Rt△ABC中,∠A=90°,AB=AC=4cm,以斜边BC上距离B点cm的H为中心,把这个三角形按逆时针方向旋转90°至△DEF,则旋转前后两个直角三角形重叠部分的面积是___cm2.13.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,将腰CD以D为中心逆时针旋转90°至ED,连接AE、DE,△ADE的面积为3,则BC的长为_________.14.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A逆时针旋转后与△ACP′重合,如果AP=3,那么线段PP′的长等于________.15.如图,在直角坐标系中,已知点P0的坐标为(1,0),进行如下操作:将线段OP按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2,如此重复操作下去,得到线段OP3,OP4,…,则:(1)点P5的坐标为__________;(2)落在x轴正半轴上的点Pn坐标是_________,其中n满足的条件是________.16.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P绕着原点O按逆时针方向旋转60°得点P 1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是__________.三综合题17.如图,已知,点P是正方ABCD内一点,且AP∶BP∶CP=1∶2∶3.求证:∠APB=135°.18.如图,已知点D是△ABC的BC边的中点,E、F分别是AB、AC上的点,且DE⊥DF.求证:BE+CF>EF19.(2020•黄冈中学自主招生)阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP 逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是.参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是.(结果可以不化简)20.如图14―1,14―2,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F.⑴如图14―1,当点E在AB边的中点位置时:①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是;②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是;③请证明你的上述两猜想.⑵如图14―2,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此时DE与EF有怎样的数量关系.【答案与解析】一、选择题1.【答案】C.2.【答案】C.【解析】分针每5分钟转动30.3.【答案】A.【解析】因为以M或O或N为旋转中心两个图形能够完全重合.4.【答案】D.【解析】因为是菱形,所以可得为等腰直角三角形. 5.【答案】C.【解析】△BDC为正三角形,所以△FDC为直角三角形,∠DCF=30°,DF=1,FC=,即求得.6.【答案】B.【解析】根据题意画出△AOB绕着O点顺时针旋转120°得到的△COD,连接OP,OQ,过Q作QM⊥y 轴,∴∠POQ=120°,∵AP=OP,∴∠BAO=∠POA=30°,∴∠MOQ=30°,在Rt△OMQ中,OQ=OP=2,∴MQ=1,OM=,则P的对应点Q的坐标为(1,﹣),故选B7.【答案】D.8.【答案】C.【解析】232,1),A (2,4),A (即旋转90°后3A 坐标为(-1,1).二、填空题9.【答案】5.【解析】作FG ⊥AC ,根据旋转的性质,EC=BC=4,DC=AC=6,∠ACD=∠ACB=90°,∵点F 是DE 的中点,∴FG ∥CD∴GF=CD=AC=3EG=EC=BC=2∵AC=6,EC=BC=4∴AE=2∴AG=4根据勾股定理,AF=5.10.【答案】32;【解析】当点F 在正方形ABCD 的对角线AC 上时,CF=AC﹣AF,当点F 不在正方形的对角线上时由三角形的三边关系可知AC﹣AF<CF<AC+AF,∴当点F 在正方形ABCD 的对角线AC 上时,C、F 两点之间的距离最小,∴CF=AC﹣AF=4﹣=32cm.故答案为:32.11.【答案】60°或120°.【解析】正六边形的中心角是60°.12.【答案】1.【解析】证明△FHC 和△FHG 是等腰直角三角形,且腰长为,即得.13.【答案】5.【解析】做DF⊥BC,EG⊥AD,交AD 的延长线于点G ,则AD=BF,可证得△DEG≌△DCF,即EG=FC,又因为3ADEs△,所以EG=3,即BC=BF+FC=AD+EG=5.14.【答案】32.【解析】由旋转可知△APP′是等腰直角三角形,所以PP′=32.15.【答案】(1),(2)落在x 轴正半轴上的点P n 坐标是,其中n 满足的条件是n=8k (k=0,1,2,…)16.【答案】(-1,).【解析】首先求得12,P P 的坐标,即可求得3P 坐标.三.解答题17.【解析】证明:将△APB 绕点B 沿顺时针方向旋转90°至△CP′B 位置(如图),则有△APB≌△CP′B.∴BP′=BP,CP′=AP,∠PBP′=90°,∠APB=∠CP′B.设CP′=AP=k,则BP′=BP=2k,CP=3k,在Rt△BP′P 中,BP′=BP=2k,∴∠BP′P=45°.=(3k)2=CP2,∴∠CP′P=90°,∴∠CP′B=∠CP′P+∠BP′P=90°+45°=135°,即∠APB=135°.18.【解析】证明:将△BDE 绕点D 沿顺时针方向旋转180°至△CDG 位置,则有△BDE≌△CDG.∴BE=CG,ED=DG.∵DE⊥DF,即DF⊥EG.∴EF=FG,在△FCG 中CG+CF>FG,即BE+CF>EF.19.【解析】解:(1)如图2,∵△ABP 逆时针旋转60°得到△A ′BC ,∴∠A ′BA=60°,A ′B=AB ,AP=A ′C ∴△A ′BA 是等边三角形,∴A ′A=AB=BA ′=2,在△AA ′C 中,A ′C <AA ′+AC ,即AP <6,则当点A ′A 、C 三点共线时,A ′C=AA ′+AC ,即AP=6,即AP 的最大值是:6;故答案是:6.(2)如图3,∵Rt △ABC 是等腰三角形,∴AB=BC .以B 为中心,将△APB 逆时针旋转60°得到△A'P'B .则A'B=AB=BC=4,PA=P ′A ′,PB=P ′B ,∴PA+PB+PC=P ′A ′+P'B+PC .∵当A'、P'、P 、C 四点共线时,(P'A+P'B+PC )最短,即线段A'C 最短,∴A'C=PA+PB+PC ,∴A'C 长度即为所求.过A'作A'D ⊥CB 延长线于D .∵∠A'BA=60°(由旋转可知),∴∠1=30°.∵A'B=4,∴A'D=2,BD=2,∴CD=4+2.在Rt △A'DC 中A'C====2+2;∴AP+BP+CP的最小值是:2+2(或不化简为).故答案是:2+2(或不化简为).20.【解析】⑴①DE=EF;②NE=BF.③证明:∵四边形ABCD是正方形,N,E分别为AD,AB的中点,∴DN=EB∵BF平分∠CBM,AN=AE,∴∠DNE=∠EBF=90°+45°=135°∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°,∴∠NDE=∠BEF∴△DNE≌△EBF∴DE=EF,NE=BF⑵在DA边上截取DN=EB(或截取AN=AE),连结NE,点N就使得NE=BF成立(图略)此时,DE=EF.《旋转》全章复习与巩固(提高)知识讲解【学习目标】1、通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质.2、通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形.3、能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用.4、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【知识网络】【要点梳理】要点一、旋转1.旋转的概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转..点O叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质:(1)对应点到旋转中心的距离相等(OA=OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;''').(3)旋转前、后的图形全等(△ABC≌△A B C要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转的作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点二、特殊的旋转—中心对称1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合(全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的).2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.要点三、平移、轴对称、旋转平移、轴对称、旋转之间的对比平移轴对称旋转相同点都是全等变换(合同变换),即变换前后的图形全等.不同点定义把一个图形沿某一方向移动一定距离的图形变换.把一个图形沿着某一条直线折叠的图形变换.把一个图形绕着某一定点转动一个角度的图形变换.图形要素平移方向平移距离对称轴旋转中心、旋转方向、旋转角度性质连接各组对应点的线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角都等于旋转角.对应线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.*对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角,即:对应点与旋转中心连线所成的角彼此相等.【典型例题】类型一、旋转1.如图1,ΔACB 与ΔADE 都是等腰直角三角形,∠ACB 和∠ADE 都是直角,点C 在AE 上,如果ΔACB 经逆时针旋转后能与ΔADE 重合.。

人教版九年级数学上册《旋转》知识点及复习题

人教版九年级数学上册《旋转》知识点及复习题

人教,版,九年级,数学,上册,《,旋转,》,知识点,第三单元旋转一、旋转1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。

2、性质(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角等于旋转角。

二、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2、性质(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

考点五、坐标系中对称点的特征(3分)1、关于原点对称的点的特征两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)2、关于x轴对称的点的特征两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)3、关于y轴对称的点的特征两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)单元测试3.5.下列图形中,是中心对称的图形有()①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形。

A.5个 B.2个 C.3个 D.4个7.将图形按顺时针方向旋转900后的图形是( )A B C D8.将一图形绕着点O顺时针方向旋转700后,再绕着点O逆时针方向旋转1200,这时如果要使图形回到原来的位置,需要将图形绕着点O什么方向旋转多少度?()A、顺时针方向 500B、逆时针方向 500C、顺时针方向 1900D、逆时针方向 190010.如下左图,ΔABC和ΔADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,ΔABC绕着A点经过逆时针旋转后能够与ΔADE重合得到图23—A—4,再将图23—A—4作为“基本图形”绕着A点经过逆时针连续旋转得到右图.两次旋转的角度分别为().A.45°,90° B.90°,45° C.60°,30° D.30°,60°11.下列这些美丽的图案都是在“几何画板”软件中利用旋转的知识在一个图案的基础上加工而成的,每一个图案都可以看作是它的“基本图案”绕着它的旋转中心旋转得来的,旋转的角度为()A. B. C. D.13.下列大写字母A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z旋转90°和原来形状一样的有,旋转180°和原来形状一样的有.14.钟表的分针匀速旋转一周需要60分钟,它的旋转中心是____________,经过20分钟,分针旋转了____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.后《旋转》全章复习与巩固--巩固练习(提高)【巩固练习】一、选择题1.在下列四个图案中,既是轴对称图形,又是中心对称图形的是().2.时钟钟面上的分针从12时开始绕中心旋转120°,则下列说法正确的是().A.此时分针指向的数字为3B.此时分针指向的数字为6C.此时分针指向的数字为4D.分针转动3,但时针却未改变3.如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是().A.M或O或N B.E或O或C C.E或O或N D.M或O或C4.如图,菱形OABC的一边OA在x轴上,将菱形OABC绕原点O顺时针旋转75°至OA′B′C′的位置,若OB=,∠C=120°,则点B′的坐标为().A.(3,)B.(3,)C.(,)D.(,)第3题第4题第5题5.如图,在△R t ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为()A.30,2B.60,2C.60,D.60,6.(2015乌鲁木齐)如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°点P的对应点的坐标是()A.(,1)B.(1,﹣)C.(2,﹣2)D.(2,﹣2)7.下列图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们的共性是都可以由一个“基本图案”通过连续旋转得来,旋转的角度是().A .30°B .45°C .60°D .90°8.在平面直角坐标系中,将点 A 1(6,1)向左平移 4 个单位到达点 A 2 的位置,再向上平移 3 个单位到 达点 A 3 的位置, △A 1A 2A 3 绕点 A 2 逆时针方向旋转 900,则旋转后 A 3 的坐标为( ).A.(-2,1)B.(1,1)C.(-1,1)D.(5,1)二. 填空题9. (2015 扬州)如图,已知 △Rt ABC 中,∠ACB=90°,AC=6,BC=4△,将 ABC 绕直角顶点 C 顺时 针旋转 90°△得到 DEC .若点 F 是 DE 的中点,连接 AF ,则 AF=.10.如图,正方形 ABCD 的边长为 4cm ,正方形 AEFG 的边长为 1cm .如果正方形 AEFG 绕点 A 旋转,那么 C 、F 两点之间的最小距离为 _________ cm .11.绕一定点旋转 180°后与原来图形重合的图形是中心对称图形,正六边形就是这样的图形.小明 发现将正六边形绕着它的中心旋转一个小于 180°的角,也可以使它与原来的正六边形重合,请你写 出小明发现的一个旋转角的度数:_____________________.12.如图所示,在 △R t ABC 中,∠A =90°,AB =AC =4cm ,以斜边 BC 上距离 B 点cm 的 H 为中心,把这个三角形按逆时针方向旋转 △90°至 DEF ,则旋转前后两个直角三角形重叠部分的面积是___cm 2.13.如图,直角梯形 A BCD 中,AD ∥BC ,AB ⊥BC ,AD=2,将腰 CD 以 D 为中心逆时针旋转 90°至 ED ,连 接 AE 、△D E , ADE 的面积为 3,则 BC 的长为_________.14. 如图,△ABC 是等腰直角三角形,BC 是斜边,P 为△ABC 内一点,将△ABP 绕点 A 逆时针旋转后与 △ACP ′重合,如果 AP=3,那么线段 PP ′的长等于________.15.如图,在直角坐标系中,已知点P 0 的坐标为(1,0),进行如下操作:将线段 OP 0 按逆时针方向 旋转 45°,再将其长度伸长为 OP 0 的 2 倍,得到线段 OP 1;又将线段 OP 1 按逆时针方向旋转 45°,长 度伸长为 OP 1 的 2 倍,得到线段 OP 2,如此重复操作下去,得到线段 OP 3,OP 4,…,则:(1)点 P 5 的坐标为__________;(2)落在 x 轴正半轴上的点 P n 坐标是_________,其中 n 满足的条件是________.16.在平面直角坐标系中,已知点 P 0 的坐标为(1,0),将点 P 0 绕着原点 O 按逆时针方向旋转 60°得点 P 1,延长 OP 1 到点 P 2,使 OP 2=2OP 1,再将点 P 2 绕着原点 O 按逆时针方向旋转 60°得点 P 3,则点 P 3 的坐标 是__________.三 综合题17. 如图,已知,点 P 是正方 ABCD 内一点,且 AP ∶BP ∶CP=1∶2∶3.求证:∠APB =135°.18.如图,已知点 D 是△ABC 的 BC 边的中点,E 、F 分别是 AB 、AC 上的点,且 DE ⊥DF .求证: BE + CF >EF得19.(2015•黄冈中学自主招生)阅读下面材料:小伟遇到这样一个问题:如图1△,在ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°△到A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是.参考小伟同学思考问题的方法,解决下列问题:如图3,等腰△Rt ABC.边AB=4,P△为ABC内部一点,则AP+BP+CP的最小值是.(结果可以不化简)20.如图14―1,14―2,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F.⑴如图14―1,当点E在AB边的中点位置时:①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是;②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是;③请证明你的上述两猜想.⑵如图14―2,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此时DE与EF有怎样的数量关系.A 2 ,【答案与解析】一、选择题 1.【答案】C.2.【答案】C.【解析】分针每 5 分钟转动 30.3.【答案】A.【解析】 因为以 M 或 O 或 N 为旋转中心两个图形能够完全重合. 4.【答案】D.【解析】因为是菱形,所以可得为等腰直角三角形.5.【答案】C.【解析】△BDC 为正三角形,所以△FDC 为直角三角形,∠DCF=30°,DF=1,FC=,即求得.6.【答案】B.【解析】根据题意画出△AOB 绕着 O 点顺时针旋转 120°得到的△COD,连接 OP ,OQ ,过 Q 作 QM⊥y轴,∴∠POQ=120°, ∵AP=OP,∴∠BAO=∠POA=30°, ∴∠MOQ=30°,在 Rt△OMQ 中,OQ=OP=2, ∴MQ=1,OM= ,则 P 的对应点 Q 的坐标为(1,﹣ ),故选 B7.【答案】D. 8.【答案】C.【解析】 (2,1),A 3 (2,4), 即旋转 90°后 A 3坐标为(-1,1).二、填空题9.【答案】5.【解析】作 FG ⊥AC ,根据旋转的性质,EC=BC=4,DC=AC=6,∠ACD=∠ACB=90° ∵点 F 是 DE 的中点, ∴FG ∥CD∴GF= CD= AC=3EG= EC= BC=2∵AC=6,EC=BC=4 ∴AE=2 ∴AG=4根据勾股定理,AF=5.1212310.【答案】32;【解析】当点F在正方形ABCD的对角线AC上时,CF=AC﹣AF,当点F不在正方形的对角线上时由三角形的三边关系可知AC﹣AF<CF<AC+AF,∴当点F在正方形ABCD的对角线AC上时,C、F两点之间的距离最小,∴CF=AC﹣AF=4﹣=32cm.故答案为:32.11.【答案】60°或120°.【解析】正六边形的中心角是60°.12.【答案】1.【解析】证明△FHC和△FHG是等腰直角三角形,且腰长为13.【答案】5.【解析】做DF⊥BC,EG⊥AD,交AD的延长线于点G,则AD=BF,,即得.可证得△DEG≌△DCF,即EG=FC,又因为s△ADE3,所以EG=3,即BC=BF+FC=AD+EG=5.14.【答案】32.【解析】由旋转可知△APP′是等腰直角三角形,所以PP′=32.15.【答案】(1),(2)落在x轴正半轴上的点Pn坐标是,其中n满足的条件是n=8k(k=0,,,…)16.【答案】(-1,).【解析】首先求得P,P的坐标,即可求得P坐标.三.解答题17.【解析】证明:将△APB绕点B沿顺时针方向旋转90°至△CP′B位置(如图),则有△APB≌△CP′B.∴BP′=BP,CP′=AP,∠PBP′=90°,∠APB=∠CP′B.设CP′=AP=k,则BP′=BP=2k,CP=3k,在△R t BP′P中,BP′=BP=2k,∴∠BP′P=45°.=(3k)2=CP2,∴∠CP′P=90°,∴∠CP′B=∠CP′P+∠BP′P=90°+45°=135°,即∠APB=135°.18.【解析】证明:将△BDE绕点D沿顺时针方向旋转180°至△CDG位置,则有△BDE≌△CDG.∴BE=CG,ED=DG.∵DE⊥DF,即DF⊥EG.∴EF=FG,在△FCG中CG+CF>FG,即BE+CF>EF.19.【解析】解:(1)如图2,∵△ABP逆时针旋转60°△得到A′BC,∴∠A′BA=60°,A′B=AB,AP=A′C∴△A′BA是等边三角形,∴A′A=AB=BA′=2,在△AA′C中,A′C<AA′+AC,即AP<6,则当点A′A、C三点共线时,A′C=AA′+AC,即AP=6,即AP的最大值是:6;故答案是:6.(2)如图3,∵△Rt ABC是等腰三角形,∴AB=BC.以B为中心,将△APB逆时针旋转60°△得到A'P'B.则A'B=AB=BC=4,P A=P′A′,PB=P′B,∴P A+PB+PC=P′A′+P'B+PC.∵当A'、P'、P、C四点共线时,(P'A+P'B+PC)最短,即线段A'C最短,∴A'C=P A+PB+PC,∴A'C长度即为所求.过A'作A'D⊥CB延长线于D.∵∠A'BA=60°(由旋转可知),∴∠1=30°.∵A'B=4,∴A'D=2,BD=2,∴CD=4+2.在△Rt A'DC中A'C====2+2;∴AP+BP+CP的最小值是:2+2故答案是:2+2(或不化简为(或不化简为).).20.【解析】⑴①DE=EF;②NE=BF.③证明:∵四边形ABCD是正方形,N,E分别为AD,AB的中点,∴DN=EB∵BF平分∠CBM,AN=AE,∴∠DNE=∠EBF=90°+45°=135°∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°,∴∠NDE=∠BEF∴△DNE≌△EBF∴DE=EF,NE=BF⑵在DA边上截取DN=EB(或截取AN=AE),连结NE,点N就使得NE=BF成立(图略)此时,DE=EF.。

相关文档
最新文档