2016年黄浦区中考数学二模试卷及答案
2016年上海中考数学二模18题专题训练汇编

二模18题汇编【题型一】旋转类型(崇明2015二模18)如图,Rt中,,,将绕点逆时针旋转,得到,连接,那么的长是【参考答案】(黄浦2015二模18)如图,Rt△中,,将△绕点逆时针旋转,旋转后的图形是△,点的对应点落在中线上,且点是△的重心,与相交于点,那么【参考答案】(杨浦015二模18)如图,将☐绕点旋转到☐的位置,其中点、、分别落在点、、处,且点、、、在一直线上,如果点恰好是对角线的中点,那么的值是【参考答案】(长宁、金山2015二模18)如图,在中,,,将绕着点旋转得,点的对应点,点的对应点,如果点在边上,那么点和点之间的距离等于【参考答案】(闸北2015二模18)如图,底角为的等腰绕着点顺时针旋转,使得点与边上的点重合,点与点重合,联结、,若,,则【参考答案】(嘉定、宝山2015二模18)如图,等边的边长为6,点在边上,且,将绕点顺时针方向旋转,点与点的对应点分别记作点与点,联结交于点,那么的值为【参考答案】【题型二】翻折类型(奉贤2015二模18)如图,在中,,,,点在上,将△沿直线翻折后,点落在点处,边交边于点,如果∥,那么的值是【参考答案】(静安、青浦2015二模18)如图,在中,,,是中线,将沿直线翻折后,点落在点,那么的长为【参考答案】(闵行2015二模18)如图,已知在中,,,将翻折,使点与点重合,折痕交边于点,交边于点,那么的值为【参考答案】(普陀2015二模18)如图①,在矩形中,将矩形折叠,使点落在边上,这时折痕与边和边分别交于点、点,然后再展开铺平,以、、为顶点的△称为矩形的“折痕三角形”,如图②,在矩形中,,,当“折痕△”面积最大时,点的坐标为【参考答案】xyDCA(B )O②①(松江2015二模18)如图,已知梯形中,∥,,,,是上一点,将沿着直线翻折,点恰好与点重合,则【参考答案】(徐汇2015二模18)如图,在中,,,,是的中线,将沿直线翻折,点是点的对应点,点是线段上的点,如果,那么的长是【参考答案】(浦东2015二模18)在中,,,,点在边上,,垂足为点,将沿直线翻折,翻折后点的对应点为点,当为直角时,的长是【参考答案】【题型三】平移(虹口2015二模18)已知中,,(如图所示),将沿射线方向平移个单位得到,顶点、、分别与、、对应,若以点、、为顶点的三角形是等腰三角形,且为腰,则的值是【参考答案】或。
2016年虹口区初三数学二模卷及答案

2016年虹口区初三数学二模卷一、选择题:(本大题共6题,每题4分,满分24分)1.(﹣2)3的计算结果是()A.6 B.﹣6 C.﹣8 D.82.下列根式中,与是同类二次根式的是()A. B. C.D.3.不等式2x+4≤0的解集在数轴上表示正确的是()A.B.C.D.4.李老师对某班学生“你最喜欢的体育项目是什么?”的问题进行了调查,每位同学都选择了其中的一项,现把所得的数据绘制成频数分布直方图(如图).如图中的信息可知,该班学生最喜欢足球的频率是()A.12 B.0。
3 C.0.4 D.405.如图所示的尺规作图的痕迹表示的是()A.尺规作线段的垂直平分线B.尺规作一条线段等于已知线段C.尺规作一个角等于已知角D.尺规作角的平分线6.下列命题中,正确的是()A.四边相等的四边形是正方形B.四角相等的四边形是正方形C.对角线垂直的平行四边形是正方形D.对角线相等的菱形是正方形二、填空题:(本大题共12题,每题4分,满分48分)7.当a=1时,|a﹣3|的值为.8.方程的解为.9.已知关于x的方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是.10.试写出一个二元二次方程,使该方程有一个解是,你写的这个方程是(写出一个符合条件的即可).11.函数y=的定义域是.12.若A(﹣,y1)、B(,y2)是二次函数y=﹣(x﹣1)2+图象上的两点,则y1y2(填“>”或“<"或“=").13.一个不透明纸箱中装有形状、大小、质地等完全相同的7个小球,分别标有数字1、2、3、4、5、6、7,从中任意摸出一个小球,这个小球上的数字是奇数的概率是.14.已知某班学生理化实验操作测试成绩的统计结果如下表:成绩(分) 4 5 6 7 8 9 10人数 1 2 2 6 9 11 9则这些学生成绩的众数是分.15.如图,在梯形△ABCD中,E、F分别为腰AD、BC的中点,若=,=,则向量=(结果用表示).16.若两圆的半径分别为1cm和5cm,圆心距为4cm,则这两圆的位置关系是.17.设正n边形的半径为R,边心距为r,如果我们将的值称为正n边形的“接近度”,那么正六边形的“接近度”是(结果保留根号).18.已知△ABC中,AB=AC=5,BC=6(如图所示),将△ABC沿射线BC方向平移m个单位得到△DEF,顶点A、B、C分别与D、E、F对应.若以点A、D、E为顶点的三角形是等腰三角形,且AE为腰,则m的值是.三、解答题:(本大题共7题,满分78分)19.先化简,再求值:,其中x=8.20.已知一个二次函数的图象经过A(0,﹣1)、B(1,5)、C(﹣1,﹣3)三点.(1)求这个二次函数的解析式;(2)用配方法把这个函数的解析式化为y=a(x+m)2+k的形式.21.如图,在△ABC中,CD是边AB上的中线,∠B是锐角,且sinB=,tanA=,BC=2,求边AB的长和cos∠CDB的值.22.社区敬老院需要600个环保包装盒,原计划由初三(1)班全体同学制作完成.但在实际制作时,有10名同学因为参加学校跳绳比赛而没有参加制作.这样,该班实际参加制作的同学人均制作的数量比原计划多5个,那么这个班级共有多少名同学?23.如图,在四边形ABCD中,AB∥DC,E、F为对角线BD上两点,且BE=DF,AF∥EC.(1)求证:四边形ABCD是平行四边形;(2)延长AF,交边DC于点G,交边BC的延长线于点H,求证:AD•DC=BH•DG.24.如图,在平面直角坐标系xOy中,直线AB过点A(3,0)、B(0,m)(m>0),tan∠BAO=2.(1)求直线AB的表达式;(2)反比例函数y=的图象与直线AB交于第一象限内的C、D两点(BD<BC),当AD=2DB 时,求k1的值;(3)设线段AB的中点为E,过点E作x轴的垂线,垂足为点M,交反比例函数y=的图象于点F,分别联结OE、OF,当△OEF∽△OBE时,请直接写出满足条件的所有k2的值.25.如图,在Rt△ABC中,∠ACB=90°,AC=2.点D、E分别在边BC、AB上,ED⊥BC,以AE 为半径的⊙A交DE的延长线于点F.(1)当D为边BC中点时(如图1),求弦EF的长;(2)设,EF=y,求y关于x的函数解析式及定义域;(不用写出定义域);(3)若DE过△ABC的重心,分别联结BF、AF、CE,当∠AFB=90°时(如图2),求的值.2016年上海市虹口区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.(﹣2)3的计算结果是()A.6 B.﹣6 C.﹣8 D.8【考点】有理数的乘方.【分析】根据有理数的乘方的定义进行计算即可得解.【解答】解:(﹣2)3=﹣8.故选C.【点评】本题考查了有理数的乘方的定义,是基础题,熟记概念是解题的关键.2.下列根式中,与是同类二次根式的是()A. B. C.D.【考点】同类二次根式.【分析】运用化简根式的方法化简每个选项.【解答】解:A、=2,故A选项不是;B、=2,故B选项是;C、=,故C选项不是;D、=3,故D选项不是.故选:B.【点评】本题主要考查了同类二次根式,解题的关键是熟记化简根式的方法.3.不等式2x+4≤0的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:移项得,2x≤﹣4,系数化为1得,x≤﹣2.在数轴上表示为:.故选C.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.4.李老师对某班学生“你最喜欢的体育项目是什么?”的问题进行了调查,每位同学都选择了其中的一项,现把所得的数据绘制成频数分布直方图(如图).如图中的信息可知,该班学生最喜欢足球的频率是()A.12 B.0.3 C.0。
2016浦东新区中考二模卷(数学)

2016浦东新区二模卷一、 选择题(本大题共6题,每题4分,满分24分) 1.2016的相反数是 ( )。
(A ); (B )-2016; (C )(D )2016. 2.已知一元二次方程 下列判断正确的是( )。
(A )该方程无实数解; (B )该方程有两个相等的实数解; (C )该方程有两个不相等的实数解; (D )该方程解的情况不确定. 3.下列函数的图像在每一个象限内,y 随x 的增大而增大的是( )。
(A ); (B ) ; (C )(D ) . 4.如果从1,2,3这三个数字中任意选取两个数字组成一个两位数,那么这个两位数是素数的概率等于( )。
(A ); (B ); (C )(D ).5.下图是上海今年春节七天最高气温( )的统计结果:这七天最高气温的众数和中位数是( )。
(A ) ; (B )14,17; (C ) (D )17,15.6.如图,△ABC 和△AMN 都是等边三角形,点M 是△ABC 的重心,那么的值为( )。
(A ); (B ); (C )(D ).二、 填空题:(本大题共12题,每题4分,满分48分) 7.计算:=________。
CB8.不等式的解集是__________。
9.分解因式:8-2=____________。
10.计算:=____________。
11.方程的解是_____________。
12.已知函数,那么。
13.如图,传送带和地面所成的斜坡的坡度为1: ,它把物体从地面送到离地面9米高的地方,则物体从A到B所经过的路程为___________米。
第13题图14.正八边形的中心角等于__________度。
15.在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图。
根据图中数据,估计该校1200名学生一周的课外阅读时间不少于6小时的人数是___________。
2023年上海市黄浦区中考二模数学试题(含答案解析)

2023年上海市黄浦区中考二模数学试题学校:___________姓名:___________班级:___________考号:___________A.任选两个角,测量它们的角度;B.测量四条边的长度;C.测量两条对角线的长度;D.测量两条对角线的交点到四个顶点的距离.【答案】D【分析】利用矩形的判定定理逐个选项查看即可.【详解】选项A中任意两个角只能判定一对角互补或相等,或两个直角,有可能为直角梯形,判断四边形为矩形需要3个角是直角,选项A错误;选项B中,四条边的关系为对边相等,可能仅是平行四边形,选项B错误;选项C中,对角线长度相等但是不是平行四边形时,仅为普通四边形,选项C错误;选项D中,根据对角线交点到四个顶点的距离分别相等,判断对角线互相平分则为平行四边形,又通过对角线相等判断为矩形.故选D.【点睛】矩形的判定定理有3条,三个角是直角的四边形;对角线相等的平行四边形;有一个角是直角的平行四边形.熟练的应用判定定理是解题的关键.二、填空题【答案】170【分析】根据频数直方图可知40人中有34再估计200人中完成时间少于90分钟的人数即可.【详解】解:由题意得:4102020017040++⨯=(人)【点睛】本题考查三角形的重心,属于中考常考题型.16.在直角坐标平面内,已知点EF GH ∥ ,∴四边形EFGH 时平行四边形,3EH FG ∴==,∴四边形EFGH 的周长为如图2,当OEF HOG ≌1EF OG ∴==,OF GH =,3FG = ,312OF FG OG ∴=-=-=,2GH ∴=,90EFO ∠=︒ ,90OEF EOF ∴∠+∠=︒,90HOG EOF ∴∠+∠=︒,(180EOH HOG ∴∠=︒-∠+∠三、解答题将12y =代入③,得23x =所以,原方程的解是101x y =⎧⎨=-⎩,1132x y =⎧⎨=⎩.【点睛】此题考查了二元二次方程组,熟练掌握二元二次方程组的解法是解题的关键.21.小丽与妈妈去商场购物,商场正在进行打折促销,规则如下:优惠活动一:任选两件商品,第二件半价(两件商品价格不同时,低价商品享受折扣);优惠活动二:所有商品打八折.(两种优惠活动不能同享)(1)如果小丽的妈妈看中一件价格600元的衣服和一双500元的鞋子,那么她选择哪个优惠活动会更划算?请通过计算说明;(2)如果小丽的妈妈想将之前看中的鞋子换成一条裤子,当裤子价格(裤子价格低于衣服价格)低于多少元时,小丽会推荐妈妈选择优惠活动二?为什么?【答案】(1)选择伏惠活动一更划算,见解析(2)当裤子价格低于400元时,推荐选择优惠活动二,见解析【分析】(1)分别计算出两种优惠活动的总价格,再比较那个价格更低即可得解答;(2)按照优惠活动列出不等式解答.【详解】(1)解:选择优惠活动一更划算,理由如下:活动一价格:6005000.5850+⨯=(元),活动二价格:()6005000.8880+⨯=(元),∵850880<,∴选择优惠活动一更划算.(2)解:当裤子价低于400元时,推荐选择优惠活动二,设裤子的价格为(600)x x <元,则活动一的价格为()6000.5x +元;活动二的价格为()4800.8x +元,由题意,得6000.54800.8x x +>+,解,得400x <.∴当裤子价格低于400元时,推荐选择优惠活动二.【点睛】本题考查了方案选择问题,一元一次不等式与实际问题,审清题意找出等量关系是解题的关键.(1)求弦AB 的长;(2)求图中阴影部分面积(结果保留【答案】(1)23AB =(2)23S π=阴∵弦AB 垂直平分OP ,∴112OQ OP ==.在Rt OBQ △中,=BQ ∵半径OP 垂直AB ,∴AQ BQ=∵ BC BP =,∴BC BP =,BOC ∠=又∵OC OB =,∴OBC △是等边三角形.∴60BCO ∠=︒,(1)求证:BF DE =;(2)延长AB 交射线EF 于点【答案】(1)见解析(2)见解析AF AE =,90EAF ∠=∴45AFE AEF ∠=∠=︒,四边形ABCD 是正方形,∴45ADB BDC =∠=∠°,∴135ADE AFG ∠=∠= ,由(1)知EAD BAF ∠=∠ADE AFG ∴ ∽,(1)求抛物线的表达式;(2)设抛物线与x轴的另一个交点为(3)点D坐标是()0,4的长.【答案】(1)2y x=+(2)点P的坐标是3 2⎛-⎝(3)410MN=【分析】(1)先利用一次函数解析式求出点物线的表达式即可;(2)先求出抛物线的对称轴是直线在AC的垂直平分线上,由PB PA=,求出a(3)先说明点M,()2,34+-m m m,点(1)已知3sin 5DBC ∠=,①当4EC =时,求BCH V 的面积;②以点H 为圆心,HM 为半径作圆有且仅有一个公共点,求CE (2)延长AH 交边BC 于点P 【答案】(1)①725BHC S =;②(2)102xx-【分析】(1)①联结AC 交函数可得,CO BO 的长,再由CEGD 是平行四边形,可得继而得到BE ME =,再由EH 485H x r BH ==-,45OH =后分两种情况:当两圆外切时,当两圆内切时,即可求解;∵四边形ABCD 是菱形,∴OC BO ⊥.在Rt BOC 中,10BC =,∴sin 6CO BC DBC =⋅∠=,∴8BO =,∵EH BD ⊥,∴EH CO ∥,∴BH BE BO BC =,即104810BH -=∴245BH =.∴1122BHC S OC BH =⨯=⨯ ②在菱形ABCD 中,AB 又∵GD CE =,∴四边形CEGD 是平行四边形,∴EG D C ∥,∴EG AB ∥,∴EMB ABD ∠=∠.又∵ABD CBD ∠=∠,由(1)得:HM BH =,EG HQ EN AB ∴∥∥,∴,HQP CEN QHP ∠=∠∠=∴HQP CEN ∽ ,∴HP HQ CN CE=,又∵EH BD ⊥,∴11022x HQ BE -==.。
最新黄浦区中考数学二模试卷(含答案)

黄浦区2017年九年级学业考试模拟考数 学 试 卷 2017年4月(满分150分,考试时间100分钟)一、选择题:(本大题共6题,每题4分,满分24分) 1.单项式324z xy 的次数是( )(A )3;(B )4;(C )5;(D )6.2.下列方程中无实数解的是( )(A )02=+x ; (B )02=-x ; (C )02=x ; (D )02=x. 3.下列各组数据中,平均数和中位数相等的是( )(A )1,2,3,4,5; (B )1,3,4,5,6;(C )1,2,4,5,6; (D )1,2,3,5,6.4.二次函数()322---=x y 图像的顶点坐标是( )(A )(2,3);(B )(2,﹣3);(C )(﹣2,3);(D )(﹣2,﹣3).5.以一个面积为1的三角形的三条中位线为三边的三角形的面积为( )(A )4;(B )2;(C )41; (D )21. 6.已知点A (4,0),B (0,3),如果⊙A 的半径为1,⊙B 的半径为6,则⊙A 与⊙B 的位置关系是( )(A )内切; (B )相交;(C )外切;(D )外离.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:()=32x .8.因式分解:=-224y x . 9.不等式组⎩⎨⎧≥+<-01202x x 的解集是 .10.方程222=-x 的解是 .11.若关于x 的方程0322=+-k x x 有两个相等的实数根,则k 的值为 . 12.某个工人要完成3000个零件的加工,如果该工人每小时能加工x 个零件,那么完成这批零件的加工需要的时间是 小时.13.已知二次函数的图像经过点(1,3)和(3,3),则此函数图像的对称轴与x 轴的交点坐标是 .14.从1到10这10个正整数中任取一个,该正整数恰好是3的倍数的概率是 . 15.正八边形的每个内角的度数是 .16.在平面直角坐标系中,点A (2,0),B (0,-3),若OC OB OA =+,则点C 的坐标为.梯形,则AB ∶BC = .18.如图,矩形ABCD ,将它分别沿AE 和AF 折叠,恰好使点B 、D 落到对角线AC 上点M 、N处,已知MN =2,NC =1,则矩形ABCD 的面积是 . 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:))11212sin 30-++-︒.20.(本题满分10分)解方程:21416222+=---+x x x x .21.(本题满分10分)如图,在△ABC 中,∠ACB =90°,∠A =15°,D 是边AB 的中点,DE ⊥AB 交AC 于点E . (1)求∠CDE 的度数; (2)求CE ∶EA .DCBA小明家买了一台充电式自动扫地机,每次完成充电后,在使用时扫地机会自动根据设定扫地时间,来确定扫地的速度(以使每次扫地结束时尽量把所储存的电量用完),下图是“设定扫地时间”与“扫地速度”之间的函数图像(线段AB ),其中设定扫地时间为x 分钟,扫地速度为y 平方分米/分钟.(1)求y 关于x 的函数解析式; (2)现在小明需要扫地机完成180平方米的扫地任务,他应该设定的扫地时间为多少分钟?23.(本题满分12分)如图,菱形ABCD ,以A 为圆心,AC 长为半径的圆分别交边BC 、DC 、AB 、AD 于点E 、F 、G 、H.(1)求证:CE =CF ; (2)当E 为弧中点时,求证:BE 2=CE •CB .FEDCBAHG如图,点A 在函数()40y x x =>图像上,过点A 作x 轴和y 轴的平行线分别交函数xy 1=图像于点B 、C ,直线BC 与坐标轴的交点为D 、E .(1)当点C 的横坐标为1时,求点B 的坐标; (2)试问:当点A 在函数()40y x x=>图像上运动时,△ABC 的面积是否发生变化?若不变,请求出△ABC 的面积;若变化,请说明理由;(3)试说明:当点A 在函数()40y x x=>图像上运动时,线段BD 与CE 的长始终相等.EB C ADxy O已知:Rt △ABC 斜边AB 上点D 、E ,满足∠DCE =45°.(1)如图1,当AC =1,BC,且点D 与A 重合时,求线段B E 的长; (2)如图2,当△ABC 是等腰直角三角形时,求证:AD 2+BE 2=DE 2;(3)如图3,当AC =3,BC =4时,设AD =x ,BE =y ,求y 关于x 的函数关系式,并写出定义域.(图1) (图2)(图3)C B ADE A D E C B (D ) E C B A黄浦区2017年九年级学业考试模拟考评分标准参考一、选择题(本大题6小题,每小题4分,满分24分)1.D ;2.D ;3.A ;4.B ;5.C ;6.A . 二、填空题:(本大题共12题,每题4分,满分48分) 7.6x ; 8.()()y x y x 22-+; 9.122x -≤<; 10.6±; 11.89; 12.x 3000; 13.(2,0); 14.103; 15.135; 16.(2,﹣3); 17.3∶1; 18.649+. 三、解答题:(本大题共7题,满分78分)19. 解:原式= ()()112221-++-+ —————————————————(8分)=3—————————————————————————————(2分) 20.解:()21622-=-+x x ———————————————————————(3分)01032=-+x x ————————————————————————(2分) 21=x ,52-=x ————————————————————————(2分) 经检验,21=x 是增根,——————————————————————(1分) 所以,原方程的根为5-=x .———————————————————(2分)21. 解:(1)在Rt △ABC 中,D 是斜边AB 的中点,∴DC =DA ,———————————————————————————(2分) ∴∠DCA =∠DAC =15°, —————————————————————(1分) ∴∠BDC =30°. ————————————————————————(1分)又DE ⊥AB ,即∠BDE =90°.∴∠CDE =60°. ————————————————————————(1分) (2)过点C 作DE 的垂线,垂足为F (如图). ———————————(1分) 设AD =2a ,则CD =AD =2a ,—————————————————————(1分) 在△CDF 中,∠CFD =90°,∠CDF =60°.∴CF =a 3.———————————————————————————(1分) 又DE ⊥AB ,∴CF ∥AB ,———————————————————————————(1分)∴CE ∶EA =CF ∶AD =3∶2. ———————————————————(1分)22. 解:(1)设b kx y +=1分)由题意得:⎩⎨⎧+=+=b k bk 10010020500,———————————————————(2分)解得:⎨⎧-=5k ,————————————————————————(1分)所以,解析式为6005+-=x y .(20100x ≤≤)——————————(1分) (2)设设定扫地时间为x 分钟. ———————————————————(1分)180平方米=18000平方分米. ————————————————————(1分) 由题意得:()180006005=+-x x ,————————————————(1分) 解得:602,1=x ,符合题意. ———————————————————(1分)答:设定扫地时间为60分钟. —————————————————————(1分) 23. 证:(1)联结AE 、AF . ————————————————————————(1分)由菱形ABCD ,得∠ACE =∠ACF . ——————————————————(1分) 又∵点E 、C 、F 均在圆A 上,∴AE =AC =AF ,——————————————————————————(1分) ∴∠AFC =∠ACF =∠ACE =∠AEC . —————————————————(1分) ∴△ACE ≌△ACF ,————————————————————————(1分)∴CE =CF . ———————————————————————————(1分) (2)∵E 是弧CG 中点,∴∠CAE =∠GAE ,令∠CAE =α.——————————————————(1分) 又菱形ABCD ,得BA =BC ,所以∠BCA =∠BAC =2α,—————————————————————(1分) 则∠AEC =2α=∠BAE +∠B .∴∠B =∠BAE ,——————————————————————————(1分) 所以BE =AE =AC .在△CAB 与△CEA 中,∠AEC =∠BCA =∠CAB ,∴△CAB ∽△CEA ,————————————————————————(1分) ∴CB CE CA CBCACA CE ∙=⇒=2,—————————————————(1分) 即CB CE BE ∙=2.———————————————————————(1分) 24. 解:(1)由点C 的横坐标为1,且AC 平行于y 轴,所以点A 的横坐标也为1,且位于函数xy 4=图像上,则()4,1A .—————(2分) 又AB 平行于x 轴,所以点B 的纵坐标为4,且位于函数x y 1=图像上,则⎪⎭⎫⎝⎛4,41B .————(2分) (2)令⎪⎭⎫ ⎝⎛a a A 4,,由题意可得:⎪⎭⎫ ⎝⎛a a B 4,41,⎪⎭⎫⎝⎛a a C 1,. ———————(1分) 于是△ABC 的面积为:8934321144121=⨯⨯=-⨯-a a a a a a , ————(2分)所以△ABC 的面积不变,为89.———————————————————(1分) (3)分别延长AB 、AC 交坐标轴于点F 、G . —————————————(1分)则⎪⎭⎫⎝⎛a F 4,0,()0,a G . ∵DF ∥AC ,——————————————————————————(1分)∴314141=-==aa aBA FB BC DB ,即BC DB 31=.———————————(1分)同理CB CE 31=,所以BD =CE . ——————————————————————————(1分) 25. 解:(1)过点E 作EH ⊥BC 于H . ———————————————————(1分) ∵∠ACB =90°,∠ACE =45°,∴∠BCE =45°. 又AC =1,BC =3, ∴33tan =B .—————————————————————————(1分) 在△CEH 中,∠CHE =90°,∠HCE =45°,令CH =EH =x ,则在△BEH 中,BH =x BEH3tan =,BE =2x . 于是23333-=⇒+=x x x ,—————————————————(1分)∴BE =33-.—————————————————————————(1分)(2)∵△ABC 为等腰直角三角形,∴CA =CB .将△BCE 绕点C 旋转90°到△ACF 处,联结DF .(如图)——————(1分)则∠DCF =∠DCA +∠ACF =∠DCA +∠BCE =90°-45°=45°=∠DCE . ——(1分) 又CE =CF ,CD =CD .∴△DCE ≌△CDF ,———————————————————————(1分) ∴DE =DF .于是在△ADF 中,∠DAF =∠DAC +∠CAF=45°+45°=90°. ————————————(1分) ∴222AF DA DF +=,即222BE DA DE +=.—————————————————————(1分) C(3)将△ACD 绕点C 旋转90°到△QCP 处,点Q 恰好在边BC 上,联结PE ,并延长PQ 交边AB 于点T .(如图)同(2),易证△ECD ≌△ECP ,得DE =EP .又∠B +∠BQT =∠B +∠PQC =∠B +∠A =90°,∴∠BTQ =90°.又BQ =BC -CQ =BC -AC =1. ————————————————————(1分)在△ABC 中,∠ACB =90°,AC =3,BC =4,则AB =5,3sin 5B =,4cos 5B =. 于是在△BTQ 中,得53=TQ ,54=TB .——————————————(1分)所以在△PET 中,∠PTE =90°,PE =DE =y x --5,TE =45y -,PT =53+x , 有222TE PT PE +=,即()22254535⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=--y x y x ,————(1分)解得:28601505217x y x x -⎛⎫=≤≤ ⎪-⎝⎭———————————————(2分)CBADETQ P。
2016年上海市初三二模数学图形运动汇编

2016年上海市二模图形运动(旋转/翻折/平移)汇编(闵行)18. 如图,已知在ABC ∆中,AB AC =,1tan 3B∠=,将ABC ∆翻折,使点C 与点A 重合,折痕DE 交边BC 于点D ,交边AC 于点E ,那么BDDC的值为(虹口)18、已知ABC ∆中,5==AC AB ,6=BC (如图所示),将ABC ∆沿射线BC 方向平移m 个单位得到DEF ∆,顶点A 、B 、C 分别与D 、E 、F 对应,若以点A 、D 、E 为顶点的三角形是等腰三角形,且AE 为腰,则m 的值是;(奉贤)18.如图,已知钝角三角形ABC ,∠A=35°,OC 为边AB 上的中线,将△AOC 绕着点O 顺时针旋转,点C 落在BC 边上的点'C 处,点A 落在点'A 处,联结'BA ,如果点A 、C 、'A 在同一直线上,那么∠''C BA 的度数为 ▲ ;(松江)18、如图,梯形ABCD 中,//AD BC ,∠B=90°,AD =2,BC =5,E 是AB 上一点,将BCE ∆沿着直线CE 翻折,点B 恰好与D 点重合,则BE =________ ;(黄埔)18. 如图3,Rt △ABC 中,∠BAC =90°,将△ABC 绕点C 逆时针旋转旋转后的图形是△A ′B ′C ,点A 的对应点A ′落在中线AD 上,且点A ′是△ABC 的重心,A ′B ′与BC 相交于点E ,那么BE :CE = ▲ .ABC D A ′ B ′图3ECB (普陀)如图5○1,在矩形ABCD 中,将矩形折叠,使点B 落在边AD 上,这时折痕与边AD 和边BC 分别交于点E 、点F ,然后再展开铺平,以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”,如图5○2,在矩形ABCD 中,AB=2,BC=4,当“折痕△BEF ”面积最大时,点E 的坐标为(崇明)18.如图,Rt △ABC 中,∠ABC=90°,AB=BC=2,将△ABC 绕点C 逆时针旋转60°,得到△MNC ,连接BM ,那么BM 的长是 .(宝山/嘉定)18、如图3,点D 在边长为6的等边△ABC 的边AC 上,且AD =2,将△ABC 绕点C 顺时针方向旋转60°,若此时点A 和点D 的对应点分别记作点E 和点F ,联结BF 交边AC 与点G ,那么tan ∠AEG =___________.(闸北)18.如图,底角为的等腰△ABC 绕着点B 顺时针旋转,使得点A 与边BC 上的点D 重合,点C 与点E 重合,联结AD 、CE .已知tan =,AB=5,则CE= ▲ .FED图5(1)CBAαα34(第18题图)α CBA(杨浦)18.如图,将平行四边形ABCD 绕点A 旋转到平行四边形AEFG 的位置,其中点B 、C 、D 分别落在点E 、F 、G 处,且点B 、E 、D 、F 在一直线上,如果点E 恰好是对角线BD 的中点,那么ADAB的值是.(长宁/金山)18.如图,在ABC ∆中,5==AC AB ,8=BC ,将ABC ∆绕着点B 旋转的''BC A ∆,点A 的对应点'A ,点C 的对应点'C ,如果点'A 在BC 边上,那么点C 和点'C 之间的距离等于多少.(青浦/静安)18.如图,在△ABC 中,AB =AC =4,41cos =C ,BD 是中线,将△CBD 沿直线BD 翻折后,点C 落在点E ,那么AE 的长为 ▲ .(徐汇)18.如图4,在ABC ∆中,︒=∠90CAB ,6=AB ,4=AC ,CD 是ABC ∆的中线,将ABC ∆沿直线CD 翻折,点B '是点B 的对应点,点E 是线段CD 上的点,如果B BA CAE '∠=∠,那么CE 的长是__▲___.(第18题图)图4D BA C。
浦东新区2016二模数学试卷
浦东新区2016二模数学试卷(满分150分,考试时间100分钟)一、选择题:(本大题共6题,每题4分,满分24分) 1.2016的相反数是( )(A )12016;(B )-2016 ;(C )12016-; (D )2016.2.已知一元二次方程2320x x ++=,下列判断正确的是( )(A )该方程无实数解; (B )该方程有两个相等的实数解; (C )该方程有两个不相等的实数解; (D )该方程解的情况不确定. 3.下列函数的图像在每一个象限内,y 随着x 的增大而增大的是( )(A )1y x=-; (B )21y x =- ; (C )1y x = ; (D )1y x =--.4.如果从1、2、3这三个数字中任意选取两个数字组成一个两位数,那么这个两位数是素数的概率等于( )(A )12; (B )13; (C )14; (D )16. 5.下图是上海今年春节七天最高气温(℃)的统计结果:这七天最高气温的众数和中位数是( ) (A ) 15,17; (B )14,17; (C )17,14;(D )17,15.6.如图,△ABC 和△AMN 都是等边三角形,点M 是△ABC 的重心,那么AMNABCS S ∆∆的值为( ) (A )23; (B )13; (C )14; (D )49. 二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:1-31= . 8.不等式12x -<的解集是 . 9.分解因式:282a -= .ABCMN第6题图10.计算:()()322a b b a -+-=r r r r.113=的解是 .12.已知函数()f x =,那么f = .13.如图,传送带和地面所成的斜坡的坡度为1:3,它把物体从地面送到离地面9米高的地方,则物体从A 到B 所经过的路程为 米. 14.正八边形的中心角等于 度.15.在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于6小时的人数是 .16.已知:⊙O 1、⊙O 2的半径长分别为2和R ,如果⊙O 1与⊙O 2相切,且两圆的圆心距d=3,则R的值为 . 17.定义运算“﹡”:规定x ﹡y by ax +=(其中a 、b 为常数),若1﹡1=3,1﹡(1)-=1,则1﹡2= .18.在Rt △ABC 中,∠ACB =90°,BC =15,AC =20.点D 在边AC 上,DE ⊥AB ,垂足为点E ,将△ADE 沿直线DE 翻折,翻折后点A 的对应点为点P ,当∠CPD 为直角时,AD 的长是 . 三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:1012sin 4520168+2-⎛⎫︒-+ ⎪⎝⎭.20.(本题满分10分)解方程:228224x x x x x ++=+--. 21.(本题满分10分)如图,AB 是⊙O 的弦,C 是AB 上一点,∠AOC =90°,OA =4,OC =3,求弦AB 的长. 22.(本题满分10分,每小题5分)某工厂生产一种产品,当生产数量不超过40吨时,每吨的成本y (万元/吨)与生产数量x (吨)的函数关系式如图所示:(1)求y 关于x 的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为210万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)23.(本题满分12分,第(1)、(2)小题各6分) 如图,已知:四边形ABCD 是平行四边形, 点E 在边BA 的延长线上,CE 交AD 于点F ,∠ECA = ∠D .(1)求证:∆EAC ∽∆ECB ;(2)若DF = AF ,求AC ︰BC 的值.24.(本题满分12分,每小题4分)如图,二次函数242y ax ax =-+的图像与y 轴交于点A ,且过点(36)B ,.(1)试求二次函数的解析式及点A 的坐标;(2)若点B 关于二次函数对称轴的对称点为点C , 试求CAB ∠的正切值;(3)若在x 轴上有一点P ,使得点B 关于直线AP 的对称点1B 在y 轴上, 试求点P 的坐标.第24题图25.(本题满分14分,其中第(1)小题4分,第(2)、(3)小题各5分)如图,Rt △ABC 中,90ACB ∠=o ,6BC =,点D 为斜边AB 的中点,点E 为边AC 上的一个动点.联结DE ,过点E 作DE 的垂线与边BC 交于点F ,以,DE EF 为邻边作矩形DEFG .(1)如图1,当8AC =,点G 在边AB 上时,求DE 和EF 的长; (2)如图2,若12DE EF =,设AC x =,矩形DEFG 的面积为y ,求y 关于x 的函数解析式; (3)若23DE EF =,且点G 恰好落在Rt △ABC 的边上,求AC 的长.GFEC B第25题 图2A BC D EFG 第25题 图1浦东新区2015学年第二学期初三教学质量检测数学试卷参考答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分)1.B 2.C 3.A 4.A 5.C 6.B 二、填空题:(本大题共12题,每题4分,满分48分)7.328.3x < 9.2(2)(2)a a +- 10.a b --r r 11.4x =- 12. 313. 18 14.4515. 720. 16. 1或5 17.4 18.358三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)解:原式=21-+……………………………………(8分)=1+2分) 20.(本题满分10分) 解方程:228224x x x x x ++=+--解:去分母得:()()2228x x x -++=……………………………………(4分) 整理得:220x x +-=……………………………………(2分) 解得:11x =,22x =-……………………………………(2分)经检验11x =是原方程的根,22x =-是原方程的增根………………………(1分) 原方程的根为1x =……………………………………(1分) 21.(本题满分为10分) 解:过点O 作OD ⊥AB 于D在Rt △AOC 中,222OA OC AC +=,AC = 5……………………………………(2分) 在Rt △AOC 中,4COS 5OA OAC AC ∠== ;……………………………………(2分)在Rt △ADO 中,COS DAOAD AO∠=, ……………………………………(2分) 所以AD OA AO AC =,165AD =.……………………………………(1分) 因为在⊙O 中,OD ⊥AB , 所以AB =2AD =5162⨯,……………………………………(2分) 所以AB =325.……………………………………(1分) 22.(本题满分10分,每小题5分)解: ⑴ 设函数解析式为y =kx +b ,将(0,10)、(40,6)分别代入y =kx +b得⎩⎨⎧+==.406,10b k b …………………………(2分)解之得⎪⎩⎪⎨⎧=-=.10,101b k …………………………(1分)所以y =110x -+10(0≤x ≤40)…………………………(1+1分) ⑵ 由(110x -+11)x =210 …………………………(2分) 解得x 1=30或x 2=70,…………………………(1分) 由于0≤x ≤40所以x =30…………………………(1分)答:该产品的生产数量是30吨…………………………(1分)23.(本题满分12分,第(1)、(2)小题各6分)(1)证明:因为,四边形ABCD 是平行四边形,所以,∠B = ∠D ,……………(2分) 因为∠ECA = ∠D ,所以∠ECA = ∠B ,………………(2分) 因为∠E = ∠E ,所以△ECA ∽△ECB ………………(2分)(2)解:因为,四边形ABCD 是平行四边形,所以,CD ∥AB ,即:CD ∥AE 所以CD DFAE AF=………………(1分) 因为DF=AF ,所以,CD=AE , ………………(1分)因为四边形ABCD 是平行四边形,所以,AB=CD ,所以AE=AB ,所以,BE =2AE , …(1分) 因为△ECA ∽△EBC 所以AE CE ACCE BE BC==………………(1分) 所以2212CE AE BE BE =⋅=,即:2CE BE =………………(1分)所以AC BC =.………………(1分)24.(1) 将点(3,6)B 代入解析式242y ax ax =-+, 可得:6912 2.a a =-+,解之得.34-=a ………………(2分) 所以二次函数解析式为2416233y x x =-++.………………(1分) 点A 的坐标为(0,2).………………(1分)(2)由题意, (1,6)C , 2BC =, 5AB =, 4tan 3CBA ∠=. ………………(1分)过点C 作CH AB ⊥于点H .∴85CH =, 65BH =, 195AH =………………(2分) ∴8tan 19CAB ∠=.………………(1分) (3) 由题意, 15AB AB ==, 从而点1B 的坐标为(0,3)-或(0,7).………………(2分) ① 若点1(0,3)B -, 设(,0)P x , 由1PB PB =, 有2222(3)63x x -+=+, 解得: 6x =, 即(6,0)P ………………(1分)② 若点1(0,7)B , 设(,0)P x , 由1PB PB =, 有2222(3)67x x -+=+,解得: 23x =-, 即2(,0)3P -………………(1分) 综合知, 点P 的坐标为(6,0)或2(,0)3-.25.(1) 如图, ∵152AD AB == ∴315544DE FG ==⨯=.………………(2分) 33154544416BG FG ==⨯=∴453551616DG =-=. 即1535,416DE EF ==.………………(2分)(2)过点D 作DH AC ⊥于点H , 从而3DH =. 易得△DHE ∽△ECF , 由12DE EF =, 可得26EC DH ==, 162EH x =-. ………………(3分)所以22223(6)64524x x DE x =+-=-+. ………………(1分)∴22212902x y DE EF DE x =⋅==-+.………………(1分)(3) 由题意,点G 可以在边BC 或者AB 上.①如左图 若点G 在边BC 上, 从而由3DE =,可知92EF =, 于是29AC EF ==;……(2分) ②如右图, 若点G 在边AB 上. 记AD DB a ==, 矩形边长2,3DE b EF b ==, 由△ADE ∽△FGB , 可得AD FGDE GB =, 即223a b b a b=-, 化简可得22340a ab b --=, 因式分解后有:4a b =, 即2AD DE =. 而由△ADE ∽△ACB , 所以2AC BC =, 从而12AC =.………………(3分)综上知,AC 的值为9或12.B。
2016年浦东新区初三二模及参考答案
2016年浦东新区初三二模教案(8)一、选择题(本大题共6题,每题4分,满分24分) 1、2016的相反数是( )A 、20161; B 、2016-; C 、20161-; D 、2016. 2、已知一元二次方程0232=++x x ,下列判断正确的是( )A 、该方程无实数解;B 、该方程有两个相等的实数解;C 、该方程有两个不相等的实数解;D 、该方程解的情况不确定. 3、下列函数的图像在每一个象限内,y 随着x 的增大而增大的是( )A 、x y 1-=;B 、12-=x y ;C 、xy 1=; D 、1--=x y .4、如果从1、2、3这三个数字中任意选取两个数字组成一个两位数,那么这个两位数是素数的概率等于( )A 、21;B 、31;C 、41;D 、61.5、下图1是上海今年春节七天最高气温(C ︒)的统计结果,这七天最高气温的众数和中位数是( ) A 、15和17; B 、14和17; C 、17和14; D 、17和15.图1 图26、如图2,ABC △和AMN △都是等边三角形,点M 是ABC △的重心,那么ABCAMNS S △△的值为( )A 、32;B 、31;C 、41;D 、94.二、填空(本大题共12题,每题4分,满分48分)7、计算:=-|131|. 8、不等式21<-x 的解集是 .9、分解因式:=-228a .10、计算:=-+-)2(2)(3 . 11、方程35=-x 的 解是 . 12、已知函数26)(2+=x x f ,那么=)2(f .13、如图3,传送带和地面所成的斜坡的坡度为3:1,它把物体从地面送到离地面9米高的地方,则物体从A 到B 所经过的路程为 米.图3 图414、正八边形的中心角等于 度.15、在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图4所示的条形统计图。
上海市浦东新区2016届中考数学二模试卷(解析版) (8)
浦东新区2015学年第二学期初三教学质量检测 数学试卷(满分150分,考试时间100分钟)一、选择题:(本大题共6题,每题4分,满分24分) 1.2016的相反数是( )(A )12016; (B )-2016 ; (C )12016- ; (D )2016.2.已知一元二次方程2320x x ++=,下列判断正确的是( )(A )该方程无实数解; (B )该方程有两个相等的实数解; (C )该方程有两个不相等的实数解; (D )该方程解的情况不确定. 3.下列函数的图像在每一个象限内,y 随着x 的增大而增大的是( )(A )1y x =-; (B )21y x =- ; (C )1y x= ; (D )1y x =--. 4.如果从1、2、3这三个数字中任意选取两个数字组成一个两位数,那么这个两位数是素数的概率等于( )(A )12; (B )13; (C )14; (D )16. 5.下图是上海今年春节七天最高气温(℃)的统计结果:这七天最高气温的众数和中位数是( ) (A ) 15,17; (B )14,17; (C )17,14;(D )17,15.6.如图,△ABC 和△AMN 都是等边三角形,点M 是△ABC 的重心,那么AMNABCS S ∆∆的值为( ) (A )23;(B )13; (C )14; (D )49.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:1-31= . 8.不等式12x -<的解集是 . 9.分解因式:282a -= .10.计算:()()322a b b a -+-=.11.方程53x -=的解是 . 12.已知函数26()2f x x =+,那么(2)f = .13.如图,传送带和地面所成的斜坡的坡度为1:3,它把物体从地面送到离地面9米高的地方,则物体从A 到B 所经过的路程为 米. 14.正八边形的中心角等于 度.ABCMN第6题图15.在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于6小时的人数是 .16.已知:⊙O 1、⊙O 2的半径长分别为2和R ,如果⊙O 1与⊙O 2相切,且两圆的圆心距d=3,则R 的值为 .17.定义运算“﹡”:规定x ﹡y by ax +=(其中a 、b 为常数),若1﹡1=3,1﹡(1)-=1,则1﹡2= .18.在Rt △ABC 中,∠ACB =90°,BC =15,AC =20.点D 在边AC 上,DE ⊥AB ,垂足为点E ,将△ADE 沿直线DE 翻折,翻折后点A 的对应点为点P ,当∠CPD 为直角时,AD 的长是 . 三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:1012sin 4520168+2-⎛⎫︒-+ ⎪⎝⎭.20.(本题满分10分)解方程:228224x x x x x ++=+--.21.(本题满分10分)如图,AB 是⊙O 的弦,C 是AB 上一点,∠AOC =90°,OA =4,OC =3,求弦AB的长.22.(本题满分10分,每小题5分)某工厂生产一种产品,当生产数量不超过40吨时,每吨的成本y (万元/吨)与生产数量x (吨)的函数关系式如图所示:(1)求y 关于x 的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为210万元时,求该产品的生产数量. (注:总成本=每吨的成本×生产数量)23.(本题满分12分,第(1)、(2)小题各6分)如图,已知:四边形ABCD 是平行四边形, 点E 在边BA 的延长线上,CE 交AD 于点F ,∠ECA = ∠D . (1)求证:∆EAC ∽∆ECB ;(2)若DF = AF ,求AC ︰BC 的值.24.(本题满分12分,每小题4分)如图,二次函数242y ax ax =-+的图像与y 轴交于点A ,且过点(36)B ,. (1)试求二次函数的解析式及点A 的坐标;(2)若点B 关于二次函数对称轴的对称点为点C , 试求CAB ∠的正切值;(3)若在x 轴上有一点P ,使得点B 关于直线AP 的对称点1B 在y 轴上, 试求点P 的坐标.第24题图25.(本题满分14分,其中第(1)小题4分,第(2)、(3)小题各5分)如图,Rt △ABC 中,90ACB ∠= ,6BC =,点D 为斜边AB 的中点,点E 为边AC 上的一个动点.联结DE ,过点E 作DE 的垂线与边BC 交于点F ,以,DE EF 为邻边作矩形DEFG .(1)如图1,当8AC =,点G 在边AB 上时,求DE 和EF 的长; (2)如图2,若12DE EF =,设AC x =,矩形DEFG 的面积为y ,求y 关于x 的函数解析式; (3)若23DE EF =,且点G 恰好落在Rt △ABC 的边上,求AC 的长.GFEDC BA第25题 图2A BC D EFG 第25题 图1浦东新区2015学年第二学期初三教学质量检测数学试卷参考答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分)1.B 2.C 3.A 4.A 5.C 6.B 二、填空题:(本大题共12题,每题4分,满分48分)7.328.3x < 9.2(2)(2)a a +- 10.a b -- 11.4x =- 12. 313. 18 14.4515. 720. 16. 1或5 17.4 18.358三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)解:原式=22122+22⨯-+……………………………………(8分) =1+32……………………………………(2分) 20.(本题满分10分)解方程:228224x x x x x ++=+--解:去分母得:()()2228x x x -++=……………………………………(4分)整理得:220x x +-=……………………………………(2分) 解得:11x =,22x =-……………………………………(2分)经检验11x =是原方程的根,22x =-是原方程的增根………………………(1分) 原方程的根为1x =……………………………………(1分) 21.(本题满分为10分) 解:过点O 作OD ⊥AB 于D在Rt △AOC 中,222OA OC AC +=,AC = 5……………………………………(2分) 在Rt △AOC 中,4COS 5OA OAC AC ∠== ;……………………………………(2分)在Rt △ADO 中,COS DAOAD AO ∠=, ……………………………………(2分)所以AD OAAO AC=,165AD =.……………………………………(1分) 因为在⊙O 中,OD ⊥AB , 所以AB =2AD =5162⨯,……………………………………(2分) 所以AB =325.……………………………………(1分) 22.(本题满分10分,每小题5分)解: ⑴ 设函数解析式为y =kx +b ,将(0,10)、(40,6)分别代入y =kx +b得⎩⎨⎧+==.406,10b k b …………………………(2分)解之得⎪⎩⎪⎨⎧=-=.10,101b k …………………………(1分)所以y =110x -+10(0≤x ≤40)…………………………(1+1分) ⑵ 由(110x -+11)x =210 …………………………(2分)解得x 1=30或x 2=70,…………………………(1分) 由于0≤x ≤40所以x =30…………………………(1分)答:该产品的生产数量是30吨…………………………(1分)23.(本题满分12分,第(1)、(2)小题各6分)(1)证明:因为,四边形ABCD 是平行四边形,所以,∠B = ∠D ,……………(2分) 因为∠ECA = ∠D ,所以∠ECA = ∠B ,………………(2分) 因为∠E = ∠E ,所以△ECA ∽△ECB ………………(2分)(2)解:因为,四边形ABCD 是平行四边形,所以,CD ∥AB ,即:CD ∥AE 所以CD DFAE AF=………………(1分) 因为DF=AF ,所以,CD=AE , ………………(1分)因为四边形ABCD 是平行四边形,所以,AB=CD ,所以AE=AB ,所以,BE =2AE , …(1分) 因为△ECA ∽△EBC所以AE CE ACCE BE BC==………………(1分) 所以2212CE AE BE BE =⋅=,即:22CE BE =………………(1分) 所以22AC BC =.………………(1分)24.(1) 将点(3,6)B 代入解析式242y ax ax =-+, 可得: 6912 2.a a =-+,解之得.34-=a ………………(2分) 所以二次函数解析式为2416233y x x =-++.………………(1分) 点A 的坐标为(0,2).………………(1分)(2)由题意, (1,6)C , 2BC =, 5AB =, 4tan 3CBA ∠=. ………………(1分) 过点C 作CH AB ⊥于点H .∴85CH =, 65BH =, 195AH =………………(2分)∴8tan 19CAB ∠=.………………(1分)(3) 由题意, 15AB AB ==, 从而点1B 的坐标为(0,3)-或(0,7).………………(2分)① 若点1(0,3)B -, 设(,0)P x , 由1PB PB =, 有2222(3)63x x -+=+, 解得: 6x =, 即(6,0)P ………………(1分)② 若点1(0,7)B , 设(,0)P x , 由1PB PB =, 有2222(3)67x x -+=+,解得: 23x =-, 即2(,0)3P -………………(1分) 综合知, 点P 的坐标为(6,0)或2(,0)3-.25.(1) 如图, ∵152AD AB == ∴315544DE FG ==⨯=.………………(2分) 33154544416BG FG ==⨯=∴453551616DG =-=. 即1535,416DE EF ==.………………(2分) (2)过点D 作DH AC ⊥于点H , 从而3DH =. 易得△DHE ∽△ECF , 由12DE EF =, 可得26EC DH ==, 162EH x =-. ………………(3分)所以22223(6)64524x x DE x =+-=-+. ………………(1分)∴22212902x y DE EF DE x =⋅==-+.………………(1分)(3) 由题意,点G 可以在边BC 或者AB 上.①如左图 若点G 在边BC 上, 从而由3DE =,可知92EF =, 于是29AC EF ==;……(2分) ②如右图, 若点G 在边AB 上. 记AD DB a ==, 矩形边长2,3DE b EF b ==, 由△ADE ∽△FGB , 可得AD FG DE GB =, 即223a bb a b=-, 化简可得22340a ab b --=, 因式分解后有:4a b =, 即2AD DE =. 而由△ADE ∽△ACB , 所以2AC BC =, 从而12AC =.………………(3分)综上知,AC 的值为9或12.36x H G F EDBA C。
2016学年度上海市黄浦区高三二模考试文科数学试卷
1 / 6黄浦区2010年高考模拟考数学试卷(文科)(2010年4月22日)考生注意:1.每位考生应同时收到试卷和答题卷两份材料,解答必须在答题卷上进行,写在试卷上的解答一律无效;2.答卷前,考生务必将姓名、准考证号等相关信息在答题卷上填写清楚; 3.本试卷共23道试题,满分150分;考试时间120分钟.一.填空题(本大题满分56分) 本大题共有14题,考生应在答题卷的相应编号的空格内直接填写结果,每题填对得4分,否则一律得零分.1.方程2sin 10x -=的解集是 . 2.已知直线1220350l y l x -+=-=,:,则直线12l l 与的夹角是 . 3.已知全集U R =,若集合{}2|20=-->∈,A x x x x R ,{}||1|2B x x x R =+≤∈,,则()R A B ⋃ð= .4.幂函数()y f x =的图像过点(42)A ,,则函数()y f x =的反函数1()f x -= (要求写明定义域).5.已知1(z i i =-是虚数单位),计算13|iz i z++= (其中z z 是的共轭复数). 6.161()2x x-的二项展开式中第4项是 . 7.函数sin(2)cos(2)36y x x ππ=+++的最小正周期T = .2 / 68.若125120131xx =,则实数x = . 9.已知123(1,3),(1,1),()e e e x ===,-1,且3122()e e e R =+λλ∈,则实数x 的值是 .10.如下图所示,角a 的终边与单位圆(圆心在原点,半径为1的圆)交于第二象限的点A 3(cos )5a ,,则cos sin a a -= .11.已知长方体中1111D C B A ABCD -,1AB BC AA ===,则异面直线11AB BC 与所成的角是 .12.从某高级中学高一年级的10名优秀学生(其中女生6人,男生4人)中,任选3名学生作为上海世博志愿者,问恰好选到2女1男的概率是 .(用数值作答) 13.某圆锥体的侧面展开图是半圆,当侧面积是32π时,则该圆锥体的体积是 .3 / 614、已知函数()y f x =的定义域和值域都是[1]-,1(其图像如下图所示),函数()sin g x x =,[]x ππ∈-,.定义:当11212()0([1,1])()([,])f x x g x x x =∈-=∈-ππ且时,称2(())0x f g x =是方程的一个实数根.则方程(())0f g x =的所有不同实数根的个数是 .二.选择题(本大题满分16分) 本大题共有4题,每题有且只有一个正确答案,考生应在答题卷的相应编号上,将代表答案的小方格涂黑,选对得4分,否则一律得零分.15.已知a b c 、、是直线,α是平面,b c ≠⊂α、,则“a ⊥α平面”是“a b a c ⊥⊥且”的 [答]( )A .充要条件.B .充分非必要条件.C .必要非充分条件.D .非充分非必要条件.16.坐标平面上的点51()00x y y x x y x y ì+?ïïïï?ïíï³ïïï³ïî,位于线性约束条件所表示的区域内(含边界),则目标函数34z x y =+的最大值是 [答]( ) A .15. B .20. C .18. D .25.17.已知无穷等比数列{}n a 的前n 项和*1()3n n S a n N =+∈,且a 是常数,则此无穷等比数列各项的和是 [答]( )A .13.B .13-. C .1. D .1-.4 / 618.某初级中学领导采用系统抽样方法,从该校预备年级全体800名学生中抽50名学生做牙齿健康检查。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄浦区2016年九年级学业考试模拟考数学试卷(时间100分钟,满分150分) 2016.4 考生注意:1 •本试卷含三个大题,共25题;2 •答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3•除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤•一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上•】1. 2的整数部分是(▲).(C) 2 ;(D) 3.(A) 0;(B) 1;2•下列计算中,正确的是( ▲ )•(A) a2a5;(B) a3 a2 1 ;2 2 4(C) a a a ;(D) 4a 3a a3.下列根式中,与.20互为同类二次根式的是( ▲).(A ) 2; ( B) 3; (C) 4; ( D) 5.5•如果两圆的半径长分别为1和3,圆心距为3,那么这两个圆的位置关系是( ▲).(A )内含;(B)内切;(C)外切;(D)相交.k6.如图1,点A是反比例函数y (x>0)图像上一点,AB垂直于x轴,垂足为点B, AC垂x直于y轴,垂足为点C,若矩形ABOC的面积为5,则k的值为(▲).(A)5;(B) 2.5;(C),5;(D)10.yCo l B x该投篮进球数据的中位数是( ▲).二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7•计算:2 ▲.4 x&已知f X ,那么f 1 ▲.2x 19.计算:2a b 2a b ▲.10.方程2x 5 x 1的根是▲.11•从1至9这9个自然数中任取一个数,是素数的概率是▲.12 .如果关于x的方程x2 4x k 0有一个解是x 1,那么k ▲.13. 在某公益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图2所示的不完整的统计图.其中捐10元的人数占年级总人数的25% , 则本次捐款20元的人数为▲人.14. 如果抛物线y x2 m 1的顶点是坐标轴的原点,那E么m ▲.15. 中心角为60°的正多边形有▲条对称轴.AD 1 uuu16 .已知ABC中,点D、E分别在边AB、AC上,DE // BC,且,若ABDB 3 unr r uuff r rAC b则DE ▲.(结果用a、b表示)17 .在平行四边形ABCD中,BC 24 , AB 18 , ABC和BCD 的平分线交AD于点E、F,贝U EF = ▲.18.如图3, Rt ABC中,BAC 90,将ABC绕点C逆时针旋转,旋转后的图形是A'B'C ,点A的对应点A'落在中线AD上, 且点A'是ABC的重心,A'B'与BC相交于点E .那么BE:CE _▲_.三、解答题:(本大题共7题,满分78分)19.(本题满分10分)化简求值:1 x2 4 1 x2,其中x = •. 21x 2 x x x图220. (本题满分10 分)21. (本题满分10分,第(1)小题满分6分,第(2)小题满分4分) 已知一次函数的图像经过点P 3,5,且平行于直线 y 2x .(1) 求该一次函数的解析式;(2) 若点Q x,y 在该直线上,且在 x 轴的下方,求x 的取值范围22. (本题满分10分)如图4,已知 AB 是O O 的直径, AB 16,点P 是AB 所在直线上一点, OP=10,点C 是O O 上一点,PC 交O O 于点D , sin BPC解方程组:2 2x y26, ①x 2 4xy5y 20.②求CD 的长. 23. (本题满分12分,第(1)、(2)小题满分各6分)如图5,在ABC 中,D 、E 分别是AC 、BC 边上的点,1 2 •(1) 求证:四边形 ABED 是等腰梯形; (2) 若 EC=2, BE=1 , AOD 2 1,求 AB 的长.AE 与 BD 交于点 O , 且 CD = CE ,图524. (本题满分12分,第(1 )小题满分3分,第(2)小题满分3分,第(3)小题满分6分)如图6,在平面直角坐标系xOy中,抛物线y ax2x轴交于A 1,0、B 4,0两点,与y轴交于点C 0,2(1)求抛物线的表达式;(2)求证:CAO BCO ;(3)若点P是抛物线上的一点,且PCB ACB求直线CP的表达式.25. (本题满分14分,第(1)小题满分4分,第(2)满分6分,第(3)小题满分4分)如图7,在Rt△ ABC中,ACB 90,AC 1,BC=7,点D是边CA延长线上的一点,AE丄BD,垂足为点E, AE的延长线交CA的平行线BF于点F ,联结CE交AB于点G.(1)当点E是BD的中点时,求tan AFB的值;(2)CE • AF的值是否随线段AD长度的改变而变化,如果变化,请说明理由;(3)当BGE与BAF相似时,求线段AF的长.图7黄浦区2016年九年级学业考试模拟考评分标准参考、选择题(本大题6小题,每小题4分,满分24分)1.B;2.D ; 3.C; 4.B; 5.D; 6.A.、填空题:(本大题共12题,每题4分,满分48分)7. 2;8. 1; 9. 4a2b21 ;10.x 2 ; 11.1 b 1 r -1335; 14. 1 ; 15. 6; 16 a ; 17. 12;44三.解答题:(本大题共7题,满分78分)1 x2x2 1 x19.解:原式x 2 x x x 132.4&••/X4-9x 2 1x xx 1x把x = 2 1代入上式,20.解:由②得,x 5y x y 0,• x 5y0或x y0 ,2 2x y26, 2 x2yx 5y0;x y解,得x15,X25,y11;y21;所以原方程组的角牟是x5,y11;21.解:(1)设一次函数解析式为所以,原方程组可化为26, .......................0.X3.13,X4 13,y313;y4 、13.X25, X3■. 13,X413,y21; y313; y4、、T3.y2x b ,•••该一次函数的图像经过点P 3,5 ,••• 2 3 b 5 ,••• y 2x 1 ...... ................................................................................. ( 1 分)(2)v点Q x,y在该直线上,且在x轴的下方,• 2x 1 0 , .................................................................................... ( 2 分)1 八x ........ ....................................................................................... ( 1 分)21所以,x的取值范围是X丄. ................................................ (1分)222.解:过点0作0E丄CD,垂足为点E. ..................................................................... (1分)• CE=DE. ................................................................................................. ( 2 分)OE 3在Rt PEO 中,T OP=10, sin BPC , • 0E=6, .................................... ( 2 分)OP 51••• AB 16, • OC AB 8 , ....................................................................................... ( 1 分)2在Rt COE 中,OE2 CE2 CO2, ................................................................................ ( 1 分)•CE 64 36 2.7 , ...................................................................................... ( 2 分)•CD 2CE 4 7 .......... ................................................................................................ ( 1 分)23.解: • AC (1)T CD=CE,/ 仁 / 2, C C , • CDB 也CEA ,BC , AE BD , ..........................................CE ,• ABBC1分)2分)•CDAC又••• AD与BE不平行,(2)v AC •AOD 2 BC ,•OBA ,// DE , 2分)•/ AB // DE ,又EC=2, BE=1 24.解: (1)16a 4bc 2.•四边形CAB又AOD OBA BDE DE CEAB•丄AB由题意知ABEDCBA ,2 1 ,是等腰梯形.••• 1 2• OBAOBA OAB ,1 ,............................BDE , • DE BE ,1分)1分)1分)BC23,• AB2分)1分)0,c 0,解,得12,52,2.2分)90 , AC 1 , BC=7 ,• AB 5.2 , • AD 5.2 ,•/ AED BCD 90 , • cos D 巨 CD , ............................................................AD BD又 D D , • CDE s BDA , • ECD ABD, .....................................................•/ ECD BCE 90 , ABD BAE 90 , • BCE BAE ,1 25抛物线的表达式为 y —x 2-X 2 .... ............................................................... ( 1 分)22(2)v OB 4 , OA 1 , OC 2 ,二 °C °B 2 , ............................................................. (1 分) OA CO•/ COA BOC 90 , ....................................................... (1 分) ••• COA s BOC ,••• CAO BCO .................. ............................................................... (1分)(3) I/ PCB + Z ACB = Z BCO ,又/ OCA+ / ACB= / BCO ,• / PCB= / OCA ,①若点P 在x 轴上方,•// PCB = / CBO ,• CP // x 轴, 1分) •直线CP 的表达式是y 2 ; 1分)②若点P 在x 轴下方, 设CP 交x 轴于点D ( m , 0) •// PCB = / CBO ,• CD = BD ,1分) • m 2 22 4 m 2 , m1分)•直线CP 的表达式为y 1分)综上所述, 直线CP 的表达式为 25. 解( 1) •/ AE 丄BD , BE=DE ,4y 2或 y—x 2. 3• AB=AD, .................1分)ACB •/ ACB • CBD•/ BF // CD ,• 90 , • D CBD 90 ,••• AE 丄 BD , • EAD D 90 ,EAD ,................................................................................................ (F EAD , • F CBD, ....................................................................... (CD 1 5 恵1分) 1分) …tan AFB tan CBD -BC 7(2) CE • AF 的值不变 ..................................... 1分) 1分) 1分) 1分) 1•/ F CBD ,•CBE s AFB ,•-• CEgAF ABgBC 5 2 735 .2.••…(3)v BGE与BAF相似,又CBE cGBE CBE ,•GBE BCE,又•/ BCD90 , •BCE ECD 45• BAE45,: BEA 90 , AB过点B作BH 丄CE于点H.CE CBAB A F,1分)BAF , • BGE s CBE BEGGBE ECD ,• BCE ECD ,................................ (1分)BEC ,1分)1分)• BH CH 7 , HE2 ••• CEgAF 35 2 ,••• AF ~2354,二CE 4.2 ,1分)1分)。