混凝土结构计算软件比较

合集下载

混凝土结构建模软件比较与最佳选择指南

混凝土结构建模软件比较与最佳选择指南

混凝土结构建模软件比较与最佳选择指南混凝土结构建模软件是在建筑和土木工程领域中广泛应用的工具。

它可以帮助工程师和设计师模拟和分析混凝土结构的性能,优化设计和提高工程质量。

然而,市场上存在多种不同的混凝土结构建模软件,使得选择最适合自己需要的软件变得困难。

本文旨在比较不同软件之间的特点和功能,并提供一些指导原则,以帮助读者选择最佳的混凝土结构建模软件。

一、ANSYS CivilFEMANSYS CivilFEM是一款基于有限元分析的混凝土结构建模软件。

它提供了强大的混凝土材料模型和分析工具,可用于静力学和动力学分析。

CivilFEM具有直观的用户界面和丰富的建模功能,适用于不同规模和复杂度的项目。

此外,它还提供了高级功能,如建模相互作用和材料非线性行为。

二、ETABSETABS是一款综合的土木工程建模和分析软件,也可以用于混凝土结构建模。

它提供了直观的建模界面,可以快速创建和编辑混凝土结构模型。

ETABS还具有强大的分析和设计功能,包括静力学、动力学和构造分析等。

此外,它还支持各种国际建筑设计规范,可以根据项目特点进行自定义设置。

三、SAP2000SAP2000是一款广泛使用的结构分析和设计软件,也包括混凝土结构建模功能。

它具有强大的分析引擎和灵活的建模工具,可以应用于各类复杂结构的建模和分析。

SAP2000支持多种计算方法和分析模型,可以满足不同项目的需求。

此外,它还具有友好的用户界面和详尽的文档,方便用户学习和使用。

四、AbaqusAbaqus是一款强大的有限元分析软件,也可用于混凝土结构建模。

它提供了高精度的建模和分析工具,可准确模拟混凝土结构的行为。

Abaqus支持材料非线性、接触分析和动力学分析等高级功能。

尽管Abaqus的学习曲线较陡峭,但它在处理复杂问题和精确仿真方面表现出色。

五、最佳选择指南在选择混凝土结构建模软件时,应根据以下几个方面进行考虑:1. 功能需求:根据项目的特点和需求确定软件的功能要求。

abaqus钢筋混凝土参数

abaqus钢筋混凝土参数

abaqus钢筋混凝土参数
Abaqus 是一款常用的有限元分析软件,常用于工程领域的结构力学
分析、流体力学分析等方面。

在使用 Abaqus 进行钢筋混凝土结构的
分析时,需要设置一些参数才能获得准确的计算结果。

1. 材料参数
钢筋和混凝土是钢筋混凝土结构中重要的材料。

在使用 Abaqus 进行
分析时,需要设置钢筋和混凝土的材料参数,例如弹性模量、泊松比、拉伸强度、压缩强度等。

这些参数是计算混凝土结构的重要基础。

2. 单元类型
在进行分析时需要选择所需的单元类型,钢筋混凝土结构中常用的单
元类型有三种:梁单元、壳单元和实体单元。

不同的单元类型适用于
不同的钢筋混凝土结构,在选择单元类型时需要根据实际情况进行选择。

3. 网格密度
网格密度是指在分析过程中将钢筋混凝土模型离散化时所采用的网格
大小。

网格密度越高,分析结果越精确,但计算时间也会相应增长。

在确定网格密度时需要权衡精确性和计算时间。

4. 荷载与边界条件
在进行分析时需要设置结构的荷载、边界条件等参数。

这些参数直接
影响到计算结果的准确性。

在设置荷载和边界条件时要考虑实际情况,确保计算结果的合理性。

总之,设置合适的参数是获得准确的钢筋混凝土结构分析结果的关键。

在进行分析时要结合实际情况,根据需要进行适当调整,确保计算结
果的准确性和可靠性。

PKPM V3.1软件说明书-预应力混凝土结构分析软件 PREC

PKPM V3.1软件说明书-预应力混凝土结构分析软件 PREC

4 施工阶段验算 ................................................................................................... 20 5 局部受压承载力计算的技术条件 ................................................................... 21 6 关于梁预应力筋线型布置的说明 ................................................................... 24 第三章 1 概 PREC软件三维设计操作步骤说明 .......................................................... 26 述 ............................................................................................................. 26
2 预应力布置及计算 ........................................................................................... 29
2.1 打开模型.................................................................................................................... 29 2.2 预应力筋参数设置.................................................................................................... 30 2.3 线型定义.................................................................................................................... 30 I

pkpm砖混计算中预制板铺设方向

pkpm砖混计算中预制板铺设方向

一、概述PKPM(又称Plate Kansas Program Manager)是一种用于混凝土及钢结构设计的计算软件,其在建筑行业中得到广泛应用。

在混凝土结构设计中,预制板的铺设方向对于整体结构的稳定性和承重能力具有重要影响。

合理确定预制板的铺设方向对于确保建筑结构的安全和稳定性至关重要。

二、PKPM砖混计算中预制板铺设方向的影响因素1. 结构形式:建筑的结构形式决定了预制板铺设方向的选择,例如楼板在梁与梁之间的预制板通常应布置在梁与梁之间。

2. 荷载传递:预制板的铺设方向应能够保证结构荷载的有效传递,并避免荷载集中造成结构破坏。

3. 施工工艺:预制板的铺设方向应考虑到施工工艺,避免出现施工难度大、效率低的情况。

4. 建筑功能:根据建筑功能,考虑预制板铺设方向对建筑功能的影响,以满足建筑使用的需要。

三、PKPM砖混计算中预制板铺设方向的选择原则1. 结构稳定性:预制板的铺设方向应能够保证结构的稳定性和安全性。

2. 荷载传递:预制板的铺设方向应能够有效传递荷载,保证结构的承载能力。

3. 施工性:预制板的铺设方向应考虑到施工的要求和工艺,便于施工操作。

4. 经济性:预制板的铺设方向应综合考虑成本和效益,在保证结构安全稳定的前提下尽可能降低成本。

四、PKPM砖混计算中预制板铺设方向的具体选择方法1. 结构形式确定:根据建筑的结构形式确定预制板的布置方式,例如楼板在梁与梁之间的预制板通常应布置在梁与梁之间。

2. 荷载传递分析:结合结构荷载的传递规律,确定预制板的铺设方向,保证荷载的有效传递。

3. 施工工艺考虑:根据施工的需求,考虑预制板的铺设方向,避免施工困难。

4. 建筑功能综合:结合建筑功能的需求,综合考虑预制板的铺设方向,满足建筑使用的要求。

五、结论PKPM砖混计算中预制板铺设方向的选择对于建筑结构的安全稳定具有重要影响,因此在设计过程中应综合考虑结构形式、荷载传递、施工工艺和建筑功能等因素,合理选择预制板的铺设方向,保证建筑结构的安全性和稳定性。

用PK、PM进行框、排架结构计算参数分析

用PK、PM进行框、排架结构计算参数分析

1.软件及功用介绍PKPM系列软件由中国建筑科学研究院编制综合计算程序。

PK是PKPM系列软件较为基础的软件,在整个PKPM系统中,PMCAD建模是整个计算的基础,PK也可直接进行建模(单榀框架),PK承担钢筋混凝土梁柱施工图辅助设计的工作,也是进行混凝土框、排架结构计算常用的电算软件,还有TAT、SATWE及JCCAD等。

由于PK是常用混凝土框、排架结构计算及绘图软件,其计算过程中的参数的取值直接影响到结构计算的结果,也直接影响到结构设计是否安全可靠。

2.PMCAD及PK程序中主要参数的取值分析2.1PMCAD建模主要参数及分析在运用PK之前,经常需用PMCAD进行建模工作,建模的工作过程中,需要在设计参数的对话框中注意在总信息、抗震信息及风荷载信息中的几个比较重要的设计参数的输入(或取值):1)框架梁端弯矩调幅系数,根据《钢筋混凝土连续梁和框架考虑内力重分布设计规程》(CECS51:93),但此规程适用抗震设防烈度6度及6度以下的钢筋混凝土框架的设计,同时框架结构层数不宜超过8层,高度不宜超过35m,根据此规程可查阅表5.1.1。

同时参阅《建筑抗震设计》一书,对现浇钢筋混凝土框架,可取0.8~0.9;对装配式钢筋混凝土框架,可取0.7~0.8。

梁端弯矩降低后,跨中弯矩增加,以满足“强柱弱梁”的设计原则。

2)设计地震分组,根据《建筑抗震设计规范》附录A(我国主要城镇抗震设防烈度、设计基本地震加速度和设计地震分组)查,但部分工程的设计烈度和附录中不相符,要根据相关部门的文件确定。

3)场地类别,见《建筑抗震设计规范》的3.3.2、3.3.3条,具体可参照规范表4.1.6。

一般地质勘察报告要提出此参数。

4)框架抗震等级,根据《建筑抗震设计规范》6.1.2规定,参照表6.1.2确定。

5)计算振型个数,这个参数需要根据工程的实际情况来选择。

对于一般工程,不少于9个。

但如果是2层的结构,最多就是6个,因为每层只有三个自由度,两层就是6个。

钢混凝土组合结构的设计计算软件

钢混凝土组合结构的设计计算软件

钢混凝土组合结构的设计计算软件钢混凝土组合结构设计计算软件是一种结构工程软件,用于设计和计算钢混凝土组合结构的各项工程参数,以确保结构的安全性和稳定性。

这种软件通常包含了一系列功能和模块,用于进行静力学分析、受力计算、应力计算、变形计算等。

其次,该软件可以进行静力学分析。

通过输入结构的边界条件、加载条件和结构材料等参数,软件能够自动计算结构在静力平衡下的受力分布情况,包括各个构件的内力、弯矩、剪力和轴力等。

这一部分的计算通常基于一系列力学原理和方程,如静力平衡、弹性力学、力法等。

接下来,软件会进行受力计算。

通过输入构件的几何形状、材料性能和静力学分析得到的内力等参数,软件能够计算构件的受力特性,如抗弯承载力、抗剪承载力、抗压承载力等。

这些计算通常基于混凝土和钢材的力学性能、荷载组合、构件极限状态等。

软件还可以输出受力特性的参数,如弯矩图、剪力图、轴力图等。

此外,软件还可以进行应力计算。

通过输入构件的边界条件、加载条件和结构材料等参数,软件能够计算构件的应力分布情况。

这些计算通常基于弹性力学理论和材料本构关系等。

最后,软件还可以进行变形计算。

通过输入构件的初始几何形状和受力情况,以及结构材料的弹性性能参数,软件能够计算构件在受力下的变形情况,如挠度、位移、收缩等。

除了上述基本功能,钢混凝土组合结构设计计算软件通常还具有其他辅助功能,如承载力验算、构件优化设计、结构可视化、结果输出等。

软件的界面通常采用图形用户界面(GUI),以便用户可以通过鼠标和键盘操作来进行模型创建、参数设置、计算和结果分析。

总而言之,钢混凝土组合结构设计计算软件是一种非常实用的工程软件,可以帮助结构工程师快速、准确地进行钢混凝土组合结构的设计和计算。

它不仅提高了工作效率,还大大降低了设计和计算的错误风险,提高了结构的安全性和稳定性。

大体积混凝土热工计算小软件下载

大体积混凝土热工计算小软件下载

大体积混凝土热工计算小软件范本1:尊敬的,感谢您使用我们的大体积混凝土热工计算小软件。

为了方便您的使用,我们为您提供以下详细的使用说明。

一、软件简介大体积混凝土热工计算小软件是一款专门用于计算大体积混凝土结构热工性能的工具。

该软件基于国际上常用的混凝土热工计算方法,具有简便、准确、高效的特点。

二、系统要求1. 操作系统:Windows XP及以上版本2. 处理器:Intel Core i5 以上3. 内存:4GB及以上4. 硬盘空间:100MB以上三、安装步骤1. 软件安装包2. 解压缩安装包到指定目录3. 运行安装程序,按照提示进行安装四、软件功能1. 输入混凝土结构的几何参数2. 输入混凝土材料的热物性参数3. 计算混凝土结构的热工性能指标4. 输出计算结果并保存五、使用方法1. 打开软件2. 输入几何参数和热物性参数3. 计算按钮开始计算4. 查看计算结果,并保存结果文件六、附录本文档涉及附件:软件安装包七、法律名词及注释1. 热工性能:指材料或结构在热平衡条件下的热传递能力和热稳定性。

2. 混凝土:由水泥、砂、石子和水等按一定比例配制而成的建筑材料。

3. 几何参数:混凝土结构的尺寸、形状和布置等参数。

4. 热物性参数:混凝土材料的导热系数、比热容和密度等参数。

感谢您对我们软件的支持和使用!范本2:尊敬的,感谢您使用我们的大体积混凝土热工计算小软件。

为了您更好地使用该软件,我们特提供以下详细的说明文档。

一、软件简介大体积混凝土热工计算小软件是一款实用的工程计算工具,可用于计算大体积混凝土结构的热工性能参数。

通过输入几何参数和热物性参数,软件可以自动进行计算,提供准确的结果。

二、系统要求1. 操作系统:Windows XP及以上版本2. 处理器:Intel Core i5 以上3. 内存:4GB及以上4. 硬盘空间:100MB以上三、安装步骤1. 在官方网站软件安装包2. 双击安装包运行安装程序3. 按照提示完成安装过程四、软件功能1. 输入混凝土结构的几何参数,如长宽高等2. 输入混凝土材料的热物性参数,如导热系数、比热容等3. 进行热工计算,得出混凝土结构的热工性能参数4. 输出计算结果,并保存为文件五、使用方法1. 打开软件2. 在相应输入框中输入几何参数和热物性参数3. 计算按钮,软件将自动进行计算4. 查看计算结果,可选择保存结果文件六、附录本文档涉及附件:软件安装包七、法律名词及注释1. 热工性能:指材料或结构在热平衡状态下的热传递能力和热稳定性。

PKPM装配式建筑设计软件介绍

PKPM装配式建筑设计软件介绍
PKPM-BIM建筑专业平台 + ArchiCAD
总平方案
统一
有序
变化
方案推敲
高品质渲染—Cinema 4D
高品质渲染—Cinema 4D
符合国标的施工图
独具特色的3D文档
PKPM-BIM 建筑协同设计系统
建筑
PKPM-ArchiCAD 建筑专业设计 建筑规范检查 建筑工程量统计
结构
PMCAD模型 现有 PKPM结构软件
预制构件详图:精细化设计、多专业信息的集成
适合应用BIM技术多专业协同、精细化设计
预制构件详图:精细化设计、多专业信息的集成
适合应用BIM技术多专业协同、精细化设计
住建部战略规划
2016年9月19日,住建部官网印发《2016-2020
年建筑业信息化发展纲要》,旨在增强建筑业信息化发
展能力,优化建筑业信息化发展环境,加快推动信息技 术与建筑业发展深度融合。 …… 加强信息技术在装配式建筑中的应用,推进基于 BIM的建筑工程设计、生产、运输、装配及全生命期管
• 生产过程的连续性
• 工程的高度组织化 • 与生产活动构成一体的有组织的研究和实验
装配式建筑改变传统建筑业落后的生产方式
大变革
1、手工 机械 2、工地 工厂 3、施工 总装 4、农民工 产业工人
5、技术工人 操作工人
引自ECUC
装配式建筑实现了建筑全流程完全可控
大可控
1、质量
转换
建筑专业模型 模型浏览 模型编辑
互相转换
结构专业模型 模型浏览 模型编辑
互相参考
互相参考
发布i-model 移动端应用
现有 PKPM绿建节能软件
绿建专业模型 模型浏览 建立节能数据
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

混凝土结构计算软件比较【内容提要】随着科技的进步、电脑业的飞速发展和中国加入了WTO,工程的承揽与施工越来越信息化、国际化。

本文通过对国际通用的混凝土结构计算软件进行比较,找出各种计算软件的优缺点,为读者在购买和使用计算软件时提供帮助。

【关键词】混凝土结构计算软件比较1、前言:随着科技的进步、电脑业的飞速发展,工程的招投标和施工管理越来越多地采用工程应用软件。

同时,随着中国加入了WTO,工程的承揽与施工日趋国际化、信息化,原有的设计、施工软件逐渐被国际流行的软件所替代。

在国际标中,Project、梦龙等软件已经不再适用,取而代之的是国际通用的Primavera Project Planner(简称P3软件)。

其它软件亦是如此。

本人在同济大学学习期间,有机会接触多种混凝土结构计算软件,加上自己也喜欢研究软件,故对各种软件的优缺点有一定的了解;通过对各种软件的优缺点进行比较,对混凝土结构计算程序做了一个总结。

目前的结构计算程序主要有:PKPM系列(TAT、SATWE)、TBSA系列(TBSA、TBWE、TBSAP)、BSCW、GSCAD、 SAP系列。

其他一些结构计算程序如ETABS等,虽然功能强大,且在国外也相当流行,但国内实际上使用的不多,故不做详细讨论。

2、结构计算程序的分析与比较2.1、结构主体计算程序的模型与优缺点2.1.1从主体计算程序所采用的模型单元来说TAT和TBSA属于结构空间分析的第一代程序,其构件均采用空间杆系单元,其中梁、柱均采用简化的空间杆单元,剪力墙则采用空间薄壁杆单元。

在形成单刚后再加入刚性楼板的位移协调矩阵,引入了楼板无限刚性假设,大大减少了结构自由度。

SATWE、TBWE和TBSAP在此基础上加入了墙元,SATWE和TBSAP还加入了楼板分块刚性假设与弹性楼板假设,更能适应复杂的结构。

SATWE提供了梁元、等截面圆弧形曲梁单元、柱元、杆元、墙元、弹性楼板单元(包括三角形和矩形薄壳单元、四节点等参薄壳单元)和厚板单元(包括三角形厚板单元和四节点等参厚板单元)。

另外,通过与JCCAD的联合,还能实现基础-上部结构的整体协同计算。

TBSAP提供的单元除了常用的杆单元、梁柱单元外,还提供了用以计算板的四边形或三角形壳元、墙元、用以计算厚板转换层的八节点四十八自由度三维元、广义单元(包括罚单元与集中单元),以及进行基础计算用的弹性地基梁单元、弹性地基柱单元(桩元)、三角形或四边形弹性地基板单元和地基土元。

TBSAP可以对结构进行基础-上部结构-楼板的整体联算。

2.1.2从计算准确性的角度来说SAP84是最为精确的,其单元类型非常丰富,而且能够对结构进行静力、动力等多种计算。

最为关键的是,使用SAP84时能根据结构的实际情况进行单元划分,其计算模型是最为接近实际结构。

BSCW和GSCAD的情况比较特殊,严格说来这两个程序均是前后处理工具,其开发者并没有进行结构计算程序的开发。

但BSCW与其计算程序一起出售,因此有必要提一下。

BSCW一直是使用广东省建筑设计研究院的一个框剪结构计算软件,这个程序应属于空间协同分析程序,即结构计算的第二代程序(第一代为平面分析,第二代为空间协同,第三代为空间分析)。

GSCAD则可以选择生成SS、TBSA、TAT或是SSW的计算数据。

SS和SSW均是广东省建筑设计研究院开发的,其中SS采用空间杆系模型,与TBSA、TAT属于同一类软件;而SSW根据其软件说明来看也具有墙元,但不清楚其墙元的类型,而且此程序目前尚未通过鉴定。

薄壁杆件模型的缺点是:没有考虑剪力墙的剪切变形。

变形不协调。

当结构模型中出现拐角刚域时,截面的翘曲自由度(对应的杆端力为双力矩)不连续,造成误差。

另外由于此模型假定薄壁杆件的断面保持平截面,实际上忽略了各墙肢的次要变形,增大了结构刚度。

同一薄壁杆墙肢数越多,刚度增加越大;薄壁杆越多,刚度增加越大。

但另一方面,对于剪力墙上的洞口,空间杆系程序只能作为梁进行分析,将实际结构中连梁对墙肢的一段连续约束简化为点约束,削弱了结构刚度。

连梁越高,则削弱越大;连梁越多,则削弱越大。

所以计算时对实际结构的刚度是增大还是削弱要看墙肢与连梁的比例。

杆单元点接触传力与变形的特点使TBSA、TAT等计算结构转换层时误差较大。

因为从实际结构来看,剪力墙与转换结构的连接是线连接(不考虑墙厚的话),实际作用于转换结构的力是不均匀分布力,而杆系模型只能简化为一集中力与一弯矩。

另一方面,由于一个薄壁柱只有通过剪心传递力与位移,所以在处理多墙肢薄壁柱转换时十分麻烦,如将剪心与下层柱相连,则令转换梁过于危险,如设置实际并不存在的计算洞令力传至转换梁又会改变上层墙体的变形协调条件(不要相信TBSA手册中所言设连梁高为层高可以解决问题,一段连续约束简化成一个点约束,误差决不会小)。

为了解决薄壁柱单元造成剪力墙分析过于粗糙的问题,ETABS、SAP84、SATWE、TBWE、TUS、TBSAP 等软件先后引入了墙单元。

对于有墙元模型的软件,要分清楚其单元类型。

墙元有两种:一是板-梁墙元(又称Wilson嵌板单元模型),这种模型在国外应用较多。

其实质是平面单元,把剪力墙简化为一个膜单元+边梁+边柱,基本上是一个由平面单元经改造成的空间单元。

剪力墙洞口间部分模型化为一个梁单元,削弱了剪力墙实际的变形协调关系,由前一段的讨论可知这种单元导致整体计算结果偏柔;一是由有限元中的四节点空间壳元缩聚而来的(以下称为板壳墙元),板壳元既有平面内刚度也有平面外刚度,且剪力墙洞口间部分也作为墙元进行整体分析,因此板壳墙元更能精确地分析复杂剪力墙结构。

以上几种带有墙元的软件中,ETABS和TUS采用板-梁墙元,SAP84、SATWE和TBSAP均采用壳墙元。

TBWE所采用的墙组元实际上是一种改进的薄壁杆件模型,它与普通的薄壁杆件模型的不同之处在于:a不强求剪力墙为开口截面,可以分析闭口及半开半闭截面;b其杆件未知位移取为杆端截面的横向位移和各节点的纵向位移,数目随墙肢节点数增加而增加,不象普通薄壁杆件那样固定为14个,保证了杆件的位移协调;c采用最小势能原理,建立考虑剪力墙剪切变形的总势能表达式,然后对其求导并令其值为0即建立考虑剪切变形的单元刚度矩阵。

墙组元实际上是一种介于薄壁杆件单元和连续体有限元之间的分析单元。

从结构分析的准确性来说,从好到差排列依次为:板壳墙元、墙组元、板-梁墙元。

另外一个有争议的问题是对异形柱的处理。

异形柱在广东又叫短肢剪力墙,虽然名称和剪力墙拉上了关系,但其计算却不能用剪力墙的方法来算。

TBSA用户手册建议将异形柱折算成惯性矩相同的矩形截面柱进行整体分析,取得内力后再进行详细的计算。

这种方法用起来很不方便,另外这种折算只能保证两个参数的正确,其他如截面面积、转动惯量等参数都很难与原构件保持一致。

目前能直接对异形柱进行计算与绘图的软件有BSCW、 GSCAD和PKPM。

由于广东省建筑设计研究院在异形柱的研究方面有比较成熟的理论,因此BSCW和GSCAD对异形柱的计算与绘图极为方便可靠,目前广东省住宅建筑设计常采用短肢剪力墙结构,导致大量的异形柱,因此这两个程序比较流行。

在用PMCAD进行输入时,可以看到有不同类型的截面,采用这些截面输入的异形柱可以传递到TAT或SATWE中进行计算,并在PK中进行配筋(仅适用于99年5月以后的Windows版程序),不过PKPM中对异形柱内力的求算并不是通过查表进行(广州城市建设开发总公司设计院编制的广东省异形柱规程采用此方法,这些表格是根据有限元分析的结果编制的),而是参考了多肢剪力墙的配筋方法,在求出作用于形心的弯矩、轴力、剪力后按照材料力学公式分解到异形截面每一关键点的应力,通过积分得到每一段柱肢平面内的弯矩、轴力和剪力,然后以每一直线段柱肢作为一个矩形截面,按对称配筋计算出其钢筋面积。

3、结构主体计算程序的适用性与易用性比较3.1从适用性(功能)的角度,按强到弱排列依次为: ETABS>SAP84>SATWE、TBSAP>TBWE、GSCAD、TUS>TAT、TBSA >BSCW。

ETABS除一般高层计算功能外,还可计算钩、顶、弹簧、结构阻尼运动、斜板、变截面梁或腋梁等特殊构件和一定的结构非线性变形;SAP84原本是一个通用有限元程序,后来为结构分析的需要加入了墙元等专用单元,其单元库最为完备,功能强大;SATWE和TBSAP 应属于同一档次的软件,都能进行楼板和剪力墙的有限元分析,适应工程的能力强,而TBWE、GSCAD 和TUS则差一些,不能进行弹性楼板计算;BSCW只能进行平面为正交布置的结构计算,是没有前途的软件。

3.2从易用性的角度来看按好到差的顺序排列应为: TUS>GSCAD、SATWE、TAT>TBSA、TBWE>BSCW>SAP84、ETABS。

TUS的图形界面在WINDOWS下开发,较之其它国内开发的高层计算程序的图形界面更加良好;GSCAD和新版的PKPM 均为WINDOWS界面软件,但带有DOS下的影子;SAP84和ETABS则最为麻烦。

这个排列不仅考虑了图形界面的优劣,还尽量反映各种软件前后处理过程中的方便程度。

比如GSCAD、SATWE、TAT在进行图形输入时均能做到修改结构平面后不影响原有荷载,而TBSA则没有实现这一点。

3.3从综合性能来说PKPM系列的SATWE是最好的,主要优点在于:能适应目前复杂的结构计算要求,数据准备工作量小,计算中可考虑多种因素,施工图出图方便。

SATWE经过多年发展,已经可以在计算中考虑多种影响因素,如:3.3.1、恒、活载分算;3.3.2、梁活载不利布置计算;3.3.3、柱、墙及基础活载折减;3.3.4、钢结构计算;3.3.5、上部结构与地下室联合工作分析及地下室设计;3.3.6、斜梁分析与设计;3.3.7、复杂砌块结构有限元分析与抗震验算。

这些功能的加入,使结构工程师无需在整体计算后再手算进行补充计算,减轻了工作量。

4、结构前后处理软件的比较讲到这个问题,可以肯定的是SAP84的输入是最麻烦的,不知其新的图形输入工具(GIS)有无改进。

其余软件按数据输入的麻烦程度从难到易排列:BSCW、GSCAD、PKPM、TBSA。

当然这只是考虑一次性输入的情况,如果结构平面经常修改的话TBSA应被列为较麻烦的一类,主要是结构平面一改就要重新输入该层的荷载。

如果想避免这种麻烦的话可以用如SASCAD等软件,既进行前处理,也能进行TBSA后处理。

PKPM本身的PMCAD已经考虑到了这个问题,GSCAD、SASCAD也解决了这个问题。

以上列举的结构软件中只有PKPM、BSCW和GSCAD具有结构后处理功能。

相关文档
最新文档