巨豪Z-6082激光平台串口参数的设定方法

巨豪Z-6082激光平台串口参数的设定方法
巨豪Z-6082激光平台串口参数的设定方法

巨豪Z-6082激光平台串口参数的设定方法

文章来源:扫描网

当巨豪Z-6082激光平台使用串口时,需要一个相匹配的串口仿真协议支持,串口协议的参数要和Z-6082激光平台串口下默认参数一致,以保证数据能够成功传送至PC。一般情况下无需此项设置,具体步骤如下:

(1)进入设定

(2)设定波特率/数据位/停止位/校验位

(2)退出设定

激光切割机技术参数...

FIBERBLADE Cutting System 光纤激光切割机 一、Messer激光切割系统介绍 1、机器原理 梅塞尔公司在工业用激光切割机的开发和制造领域已有近40年的经验. 其激光技术得到 了世界范围的认可, 并在许多不同领域得到应用. 划时代的技术发展, 如专利激光切割头, 表明了梅塞尔公司的技术能力. 在此领域为激光加工建立的新标准将为客户带来巨大的利益. 产品系列包括: 2维激光切割系统 3维激光切割系统

激光焊接系统 自动化设备 装料及卸料系统 通过与世界领先的激光器厂商的常年合作, 保证机器与激光的最佳组合. 其大激光功率及用户友好式的CNC数控系统适应高速切割及广泛的生产制造领域. Fiberblade具备良好的动态性能, 在宽广范围内可实现切割与零件重量无关的高精度无挂渣的成品零件. 机器配合编程软件及相应自动套料程序, 可实现快速高效的零件编程, 扩展机器应用. 应用激光束作为工具, 切割速度快, 成品部件割缝窄, 精度高. 可无困难地实现复杂轮廓的切割. 切口边缘光洁、无毛刺, 绝大多数场合下无需后续处理. Fiberblade主要应用领域为金属加工, 特别是碳钢、不锈钢和铝材. 该系统既可应用氧气切割, 也可采用保护气体实现高压切割. 经测试其可切割性后, 该系统可切割金属合金、塑料以及非金属材料机器设计理念除了实现最佳切割结果外, 同样关注环境保护问题. 采用抽烟除尘装置可满足最严格的排放标准. 机器可满足现有安全规程, 满足相关CE标准. 2、功能描述

Fiberblade激光切割机,是一个集最新动力工程,电脑数控和光纤激光器技术的全新技术 发展水平的设计它是市面上最先进的紧凑型中规格工业级光纤激光切割系统;无需激光器 维护的低维修费系统,高效率、低功耗。 机器工作台采用交换式工作台系统,减少上料时间. 该系统交替使用两块台面. 切割一块台面上的板材, 同时另一块台面位于工作区域外. 操作员可取下成品部件并换上新板, 机器同时进行切割. 另一台面上的工件完成后, 由工作区域换出, 新板就位. 板材置于工作台支架上并确定位置后, 切割头随垂直定位轴下降. 传感控制器保证切割头维持正确定位, 可避免板材变形引起的问题. 激光束通过光纤传输到切割头上, 然后由透镜聚焦. 切割头沿工件轮廓移动, 但不与工件接触, 激光束和切割气体通过割嘴聚集到工件上. 横向运动通过溜板滑动定位实现. 纵向运动由车架自行移动实现. 两套同步驱动伺服电机确保设备的高精度, 轴向运动的高加速度, 可变激光功率控制, 可切割如窄条, 尖角等的复杂图形部件. 通过CNC数控系统可自动设定切割参数如气体种类, 气体压力, 激光参数. CNC数控系统内的切割数据及图形数据的分离, 可实现快速变化的工作要求, 并增加机器功能的灵活性, 适用范围更广. 由随动式直接抽风系统, 把切割过程中产生的尘粒抽出, 并经过烟尘过滤后, 达到安全及环境规范的排放要求. 二、标准配置介绍 1、机器构造

半导体激光器常用参数的测定

半导体激光器常用参数的测定 一 实验目的:掌握半导体激光器常用的电学参数及其测试方法 一 实验基本原理 1、 普通光源的发光——受激吸收和自发辐射 普通常见光源的发光(如电灯、火焰、太阳等地发光)是由于物质在受到外来能量(如光能、电能、热能等)作用时,原子中的电子就会吸收外来能量而从低能级跃迁到高能级,即原子被激发。激发的过程是一个“受激吸收”过程。处在高能级(E2)的电子寿命很短(一般为10-8~10-9秒),在没有外界作用下会自发地向低能级(E1)跃迁,跃迁时将产生光(电磁波)辐射。辐射光子能量为 12E E h -=ν 这种辐射称为自发辐射。原子的自发辐射过程完全是一种随机过程,各发光原子的发光过程各自独立,互不关联,即所辐射的光在发射方向上是无规则的射向四面八方,另外未位相、偏振状态也各不相同。由于激发能级有一个宽度,所以发射光的频率也不是单一的,而有一个范围。在通常热平衡条件下,处于高能级E2上的原子数密度N2,远比处于低能级的原子数密度低,这是因为处于能级E 的原子数密度N 的大小时随能级E 的增加而指数减小,即N ∝exp(-E/kT),这是著名的波耳兹曼分布规律。于是在上、下两个能级上的原子数密度比为 ]/)(ex p[/1212kT E E N N --∝ 式中k 为波耳兹曼常量,T 为绝对温度。因为E2>E1,所以N2《N1。例如,已知氢原子基态能量为E1=-13.6eV ,第一激发态能量为E2=-3.4eV ,在20℃时,kT≈0.025eV,则 0)400ex p(/12≈-∝N N 可见,在20℃时,全部氢原子几乎都处于基态,要使原子发光,必须外界提供能量使原子到达激发态,所以普通广义的发光是包含了受激吸收和自发辐射两个过程。一般说来,这种光源所辐射光的能量是不强的,加上向四面八方发射,更使能量分散了。 2、 受激辐射和光的放大 由量子理论知识知道,一个能级对应电子的一个能量状态。电子能量由主量子数n(n=1,2,…)决定。但是实际描写原子中电子运动状态,除能量外,还有轨道角动量L 和自旋角动量s ,它们都是量子化的,由相应的量子数来描述。对轨道角动量,波尔曾给出了量子化公式Ln =nh ,但这不严格,因这个式子还是在把电子运动看作轨道运动基础上得到的。严格的能量量子化以及角动量量子化都应该有量子力学理论来推导。 量子理论告诉我们,电子从高能态向低能态跃迁时只能发生在l (角动量量子数)量子数相差±1的两个状态之间,这就是一种选择规则。如果选择规则不满足,则跃迁的几率很小,甚至接近零。在原子中可能存在这样一些能级,一旦电子被激发到这种能级上时,由于不满足跃迁的选择规则,可使它在这种能级上的寿命很长,不易发生自发跃迁到低能级上。这种能级称为亚稳态能级。但是,在外加光的诱发和刺激下可以使其迅速跃迁到低能级,并放出光子。这种过程是被“激”出来的,故称受激辐射。受激辐射的概念世爱因斯坦于1917年在推导普朗克的黑体辐射公式时,第一个提出来的。他从理论上预言了原子发生受激辐射的可能性,这是激光的基础。 受激辐射的过程大致如下:原子开始处于高能级E2,当一个外来光子所带的能量hυ正好为某一对能级之差E2-E1,则这原子可以在此外来光子的诱发下从高能级E2向低能级E1跃迁。这种受激辐射的光子有显著的特点,就是原子可发出与诱发光子全同的光子,不仅频

激光切割机工艺手册

第一章 激光切割方法 1.1 激光熔化切割 在激光熔化切割中,工件被局部熔化后借助气流把熔化的材料喷射出去。因为材料的转移只发生在其液态情况下,所以该过程被称作激光熔化切割。 激光光束配上高纯惰性切割气体促使熔化的材料离开割缝,而气体本身不参于切割。 ——激光熔化切割可以得到比气化切割更高的切割速度。气化所需的能量通常高于把材料熔化所需的能量。在激光熔化切割中,激光光束只被部分吸收。 ——最大切割速度随着激光功率的增加而增加,随着板材厚度的增加和材料熔化温度的增加而几乎反比例地减小。在激光功率一定的情况下,限制因数就是割缝处的气压和材料的热传导率。 ——激光熔化切割对于铁制材料和钛金属可以得到无氧化切口。 ——产生熔化但不到气化的激光功率密度,对于钢材料来说,在104W/cm2~105 W/cm2之间。 1.2 激光火焰切割 激光火焰切割与激光熔化切割的不同之处在于使用氧气作为切割气体。借助于氧气和加热后的金属之间的相互作用,产生化学反应使材料进一步加热。由于此效应,对于相同厚度的结构钢,采用该方法可得到的切割速率比熔化切割要高。 另一方面,该方法和熔化切割相比可能切口质量更差。实际上它会生成更宽的割缝、明显的粗糙度、增加的热影响区和更差的边缘质量。 ——激光火焰切割在加工精密模型和尖角时是不好的(有烧掉尖角的危险)。可以使用脉冲模式的激光来限制热影响。 ——所用的激光功率决定切割速度。在激光功率一定的情况下,限制因数就是氧气的供应和材料的热传导率。 1.3 激光气化切割 在激光气化切割过程中,材料在割缝处发生气化,此情况下需要非常高的激光功率。 为了防止材料蒸气冷凝到割缝壁上,材料的厚度一定不要大大超过激光光束的直径。该加工因而只适合于应用在必须避免有熔化材料排除的情况下。该加工实际上只用于铁基合金很小的使用领域。 该加工不能用于,象木材和某些陶瓷等,那些没有熔化状态因而不太可能让材料蒸气再凝结的材料。另外,这些材料通常要达到更厚的切口。 ——在激光气化切割中,最优光束聚焦取决于材料厚度和光束质量。 ——激光功率和气化热对最优焦点位置只有一定的影响。

激光切割技术的原理及应用

1. 激光切割技术简介 (2) 1.1激光切割技术概述 (2) 1.2激光切割技术的原理 (4) 1.3激光切割技术的发展历史 (5) 2.激光切割的特点 (6) 2.1激光切割的总体特点 (6) 2.2 CO2激光切割技术的特点 (7) 2.3半导体激光切割机 (8) 2.4光纤激光切割机 (8) 3. 激光切割技术的应用及发展前景 (10) 3.1激光切割技术的市场现状 (10) 3.2激光切割技术的应用 (12) 结论 (13)

材料12A文修曜 摘要 激光加工技术是一种先进制造技术,而激光切割是激光加工应用领域的一部分,激光切割是当前世界上先进的切割工艺。由于它具备精密制造、柔性切割、异型加工、一次成形、速度快、效率高等优点,所以在工业生产中解决了许多常规方法无法解决的难题。激光能切割大多数金属材料和非金属材料。 Abstract The laser processing technology is a kind of advanced manufacturing technology, and laser cutting is part of the laser processing applications, laser cutting is the current advanced cutting technology in the world.Because it has flexible cutting, stone processing, precision manufacturing, a forming, fast speed, higher efficiency, so in industrial production solved many conventional methods cannot solve the problem.Can laser cutting most of the metal materials and nonmetal materials. 关键词:激光切割的原理;激光切割的分类及特点;激光切割技术的应用 1.激光切割技术简介 1.1激光切割技术概述 激光切割是激光加工行业中最重要的一项应用技术。它占整个激光加工业的70%以上。激光切割与其他切割方法相比,最大区别是它具有高速、高精度及高适应性的特点。同时还具有割缝细、热影响区小、切割面质量好、切割时无噪声、切割过程容易实现自动化控制等优点。激光切割板材时,不需要模具,可以替代

大族激光切割工艺p参数

大族激光切割工艺p参数, [table=98%] [tr][td=3,1,604] 切割层1(CUT1)工艺参数 [/td][/tr] [tr][td=63] P100 [/td][td=220] 切割速度 [/td][td=321] 单位: mm/min [/td][/tr] [tr][td=63] P101 [/td][td=220] 切割激光功率 [/td][td=321] 单位: 瓦(W) [/td][/tr] [tr][td=63] P102 [/td][td=220] 最小切割激光功率百分比 [/td][td=321] 单位: 0-100% [/td][/tr] [tr][td=63] P103 [/td][td=220] 切割激光模式(CS/PRC激光器) [/td][td=321] 1=连续, 2=门脉冲(CS/PRC激光器) [/td][/tr] [tr][td=63] P104 [/td][td=220] 切割脉冲频率 [/td][td=321] 1~8:对应激光器上设置的激光脉冲频率(CS/ROFIN激光器) 0-999Hz PRC激光器) [/td][/tr] [tr][td=63] P105

切割脉冲占空比(PRC激光器) [/td][td=321] 1-100% [/td][/tr] [tr][td=63] P106 [/td][td=220] 切割喷嘴高度 [/td][td=321] 单位: [tr][td=63] P107 [/td][td=220] 切割气体压力 [/td][td=321] 单位: [/td][/tr] [tr][td=63] P108 [/td][td=220] 切割气体类型 [/td][td=321] 1=空气, 2=氧气, 3=氮气 [/td][/tr] [tr][td=63] P109 [/td][td=220] 切割头是否提升 [/td][td=321] 单位: 0-50mm [/td][/tr] [tr][td=3,1,604] 穿孔(PIERCE)工艺参数 [/td][/tr] [tr][td=63] P110 [/td][td=220] 穿孔方式 [/td][td=321] 0-3(穿孔方式);0=不穿孔;1=正常穿孔;2=渐进式穿孔;3=强力穿孔 [/td][/tr] [tr][td=63] P111 [/td][td=220] 穿孔激光功率

激光切割机工艺手册

第一章激光切割方法 1.1 激光熔化切割 在激光熔化切割中,工件被局部熔化后借助气流把熔化的材料喷射出去。因为材料的转移只发生在其液态情况下,所以该过程被称作激光熔化切割。 激光光束配上高纯惰性切割气体促使熔化的材料离开割缝,而气体本身不参于切割。 ——激光熔化切割可以得到比气化切割更高的切割速度。气化所需的能量通常高于把材料熔化所需的能量。在激光熔化切割中,激光光束只被部分吸收。 ——最大切割速度随着激光功率的增加而增加,随着板材厚度的增加和材料熔化温度的增加而几乎反比例地减小。在激光功率一定的情况下,限制因数就是割缝处的气压和材料的热传导率。 ——激光熔化切割对于铁制材料和钛金属可以得到无氧化切口。 ——产生熔化但不到气化的激光功率密度,对于钢材料来说,在104W/cm2~105 W/cm2之间。 1.2 激光火焰切割 激光火焰切割与激光熔化切割的不同之处在于使用氧气作为切割气体。借助于氧气和加热后的金属之间的相互作用,产生化学反应使材料进一步加热。由于此效应,对于相同厚度的结构钢,采用该方法可得到的切割速率比熔化切割要高。 另一方面,该方法和熔化切割相比可能切口质量更差。实际上它会生成更宽的割缝、明显的粗糙度、增加的热影响区和更差的边缘质量。 ——激光火焰切割在加工精密模型和尖角时是不好的(有烧掉尖角的危险)。可以使用脉冲模式的激光来限制热影响。 ——所用的激光功率决定切割速度。在激光功率一定的情况下,限制因数就是氧气的供应和材料的热传导率。 1.3 激光气化切割 在激光气化切割过程中,材料在割缝处发生气化,此情况下需要非常高的激光功率。 为了防止材料蒸气冷凝到割缝壁上,材料的厚度一定不要大大超过激光光束的直径。该加工因而只适合于应用在必须避免有熔化材料排除的情况下。该加工实际上只用于铁基合金很小的使用领域。 该加工不能用于,象木材和某些陶瓷等,那些没有熔化状态因而不太可能让材料蒸气再凝结的材料。另外,这些材料通常要达到更厚的切口。 ——在激光气化切割中,最优光束聚焦取决于材料厚度和光束质量。 ——激光功率和气化热对最优焦点位置只有一定的影响。

三维激光扫描分类及工作操作规范

三维激光扫描分类及工作 操作规范 Revised by Hanlin on 10 January 2021

一、地面激光扫描系统 1、概述 地面激光扫描仪系统类似于传统测量中的全站仪,它由一个激光扫描仪和一个内置或外置的数码相机,以及软件控制系统组成。二者的不同之处在于激光扫描仪采集的不是离散的单点三维坐标,而是一系列的“点云”数据。这些点云数据可以直接用来进行三维建模,而数码相机的功能就是提供对应模型的纹理信息。 2、工作原理 三维激光扫描仪发射器发出一个激光脉冲信号,经物体表面漫反射后,沿几乎相同的路径反向传回到接收器,可以计算日标点P与扫描仪距离S,控制编码器同步测量每个激光脉冲横向扫描角度观测值α和纵向扫描角度观测值β。三维激光扫描测量一般为仪器自定义坐标系。X轴在横向扫描面内,Y轴在横向扫描面内与X轴垂直,Z轴与横向扫描面垂直。获得P的坐标。进而转 换成绝对坐标系中的三维空间位置坐标或三维模型。 3、作业流程 整个系统由地面三维激光扫描仪、数码相机、后处理软件、电源以及附属设备构成,它采用非接触式高速激光测量方式,获取地形或者复杂物体的几何图形数据和影像数据。最终由后处理软件对采集的点云数据和影像数据进行处理转换成绝对坐标系中的空间位置坐标或模型,以多种不同的格式输出,满足空间信息数据库的数据源和不同应用的需要。(1)、数据获取 利用软件平台控制三维激光扫描仪对特定的实体和反射参照点进行扫描,尽可能多的获取实体相关信息。三维激光扫描仪最终获取的是空间实体的几何位置信息,点云的发射密度值,以及内置或外置相机获取的影像信息。这些原始数据一并存储在特定的工程文件

半导体激光器工作原理及主要参数

半导体激光器工作原理及主要参数 OFweek激光网讯:半导体激光器又称为激光二极管(LD,Laser Diode),是采用半导体材料作为工作物质而产生受激发射的一类激光器。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)。激励方式有电注入、电子束激励和光泵浦激励三种形式。半导体激光器件,一般可分为同质结、单异质结、双异质结。同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。半导体激光器的优点在于体积小、重量轻、运转可靠、能耗低、效率高、寿命长、高速调制,因此半导体激光器在激光通信、光存储、光陀螺、激光打印、激光医疗、激光测距、激光雷达、自动控制、检测仪器等领域得到了广泛的应用。 半导体激光器工作原理是:通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时便产生受激发射作用。半导体激光器的激励方式主要有三种:电注入式、电子束激励式和光泵浦激励式。电注入式半导体激光器一般是由GaAS(砷化镓)、InAS(砷化铟)、Insb(锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。电子束激励式半导体激光器一般用N型或者P型半导体单晶(PbS、CdS、ZhO等)作为工作物质,通过由外 部注入高能电子束进行激励。光泵浦激励式半导体激光器一般用N型或P型半导体单晶(GaAS、InAs、InSb等)作为工作物质,以其它激光器发出的激光作光泵激励。 目前在半导体激光器件中,性能较好、应用较广的是:具有双异质结构的电注入式GaAs 二极管半导体激光器。 半导体光电器件的工作波长与半导体材料的种类有关。半导体材料中存在着导带和价带,导带上面可以让电子自由运动,而价带下面可以让空穴自由运动,导带和价带之间隔着一条禁带,当电子吸收了光的能量从价带跳跃到导带中去时就把光的能量变成了电,而带有电能的电子从导带跳回价带,又可以把电的能量变成光,这时材料禁带的宽度就决定了光电器件的工作波长。 小功率半导体激光器(信息型激光器),主要用于信息技术领域,例如用于光纤通信及光交换系统的分布反馈和动态单模激光器(DFB-LD)、窄线宽可调谐激光器、用于光盘等信息处理领域的可见光波长激光器(405nm、532nm、635nm、650nm、670nm)。这些 器件的特征是:单频窄线宽、高速率、可调谐、短波长、光电单片集成化等。 大功率半导体激光器(功率型激光器),主要用于泵浦源、激光加工系统、印刷行业、生物医疗等领域。 半导体激光器主要参数: 波长nm:激光器工作波长,例如405nm、532nm、635nm、650nm、670nm、690nm、780nm、810nm、860nm、980nm。 阈值电流Ith:激光二极管开始产生激光振荡的电流,对小功率激光器而言其值约在数 十毫安。

自制低成本3D激光扫描测距仪(3D激光雷达)

来自CSK的低成本3D scanner。Very Impressive! 在开始介绍原理前,先给出一些扫描得到的3D模型以及演示视频,给大家一个直观的认识。视频链接 相关的图片: 扫描得到的房间一角(点击查看原始尺寸) 扫描的我(点击查看原始尺寸)

扫描仪实物 本文结构 1. 简单介绍了激光雷达产品的现状 2. 激光三角测距原理 3. 线状激光进行截面测距原理 4. 3D激光扫描仪的制作考虑 5. 参考文献 简介-激光扫描仪/雷达 这里所说的激光扫描测距仪的实质就是3D激光雷达。如上面视频中展现的那样,扫描仪可以获取各转角情况下目标物体扫描截面到扫描仪的距离,由于这类数据在可视化后看起来像是由很多小点组成的云团,因此常被称之为:点云(Point Clould)。 在获得扫描的点云后,可以在计算机中重现扫描物体/场景的三维信息。 这类设备往往用于如下几个方面: 1) 机器人定位导航 目前机器人的SLAM算法中最理想的设备仍旧是激光雷达(虽然目前可以使用kinect,但他无法再室外使用且精度相对较低)。机器人通过激光扫描得到的所处环境的2D/3D点云,从而可以进行诸如SLAM 等定位算法。确定自身在环境当中的位置以及同时创建出所处环境的地图。这也是我制作他的主要目的之一。 2) 零部件和物体的3D模型重建

3) 地图测绘 现状 目前市面上单点的激光测距仪已经比较常见,并且价格也相对低廉。但是它只能测量目标上特定点的距离。当然,如果将这类测距仪安装在一个旋转平台上,旋转扫描一周,就变成了2D激光雷达(LIDAR)。相比激光测距仪,市面上激光雷达产品的价格就要高许多: 图片: Hokuyo 2D激光雷达 上图为Hokuyo这家公司生产的2D激光雷达产品,这类产品的售价都是上万元的水平。其昂贵的原因之一在于他们往往采用了高速的光学振镜进行大角度范围(180-270)的激光扫描,并且测距使用了计算发射/反射激光束相位差的手段进行。当然他们的性能也是很强的,一 般扫描的频率都在10Hz以上,精度也在几个毫米的级别。 2D激光雷达使用单束点状激光进行扫描,因此只能采集一个截面的距离信息。如果要测量3D的数据,就需要使用如下2种方式进行扩充: 1. 采用线状激光器 2. 使用一个2D激光雷达扫描,同时在另一个轴进行旋转。从而扫描出3D信息。 第一种方式是改变激光器的输出模式,由原先的一个点变成一条线型光。扫描仪通过测量这束线型光在待测目标物体上的反射从而一次性获得一个扫描截面的数据。这样做的好处是扫描速度可以很快,精度也比较高。但缺点是由于激光变成了一条线段,其亮度(强度)将随着距离大幅衰减,因此测距范围很有限。对于近距离(<10m)的测距扫描而言,这种方式还是 很有效并且极具性价比的,本文介绍的激光雷达也使用这种方式,

激光的原理及激光器分类

激光器的原理及分类 一、基础原理 量子理论认为,所有物质都是由各种微观”粒子”组成,如分子,原子,质子,中子,电子等。在微观世界里,各种粒子都有其固有的能级结构。当一个粒子从高能级掉到低能级时,根据能量守恒定律,它要把两个能级相差部分的能量释放出来,通常这个能量以光和热两种形式释放出来。 二、自发辐射、受激辐射 1、自发辐射 普通常见光源的发光(如电灯、火焰、太阳等地发光)是由于物质在受到外来能量(如光能、电能、热能等)作用时,原子中的电子就会吸收外来能量而从低能级跃迁到高能级,即原子被激发。激发的过程是一个“受激吸收”过程。但是处在高能级(E2)的电子寿命很短(一般为10-8~10-9秒),在没有外界作用下会自发地向低能级(E1)跃迁,跃迁时将产生光(电磁波)辐射。辐射光子能量=E2-E1。过程各自独立、互补关联,所有辐射的光在发射方向上是无规律的射向四面八方,并且频率不同、偏振状态和相位不同。 2、受激辐射 在原子中也存在这样一些特定高能级,一旦电子被激发到这个高能级之上,却由于不满足跃迁的条件,发生跃迁的几率很低,电子能够在高能级上的时间很

长,就所谓的亚稳定状态。但在能在外界光场的照射下发生往下跃迁,并且向下跃迁时释放出一个与射入光场相同的光子,在同一个方向、有同一个波长。这就是受激辐射,激光正是利用这一原理激发出来。 二、粒子数反转 通过受激辐射出来的光子,不仅可以引起其他粒子受激辐射,也可以引起受激吸收。只有在处于高能级的原子数量大于处于低能级原子数时,所产生的受激辐射才能大于受激吸收。但是在自然条件下,原子都是都处于稳定的基态,只能通过技术手段将大量的原子都调整到高能级的状态,才能有多余的辐射向外产生。这个技术叫粒子数反转。 三、光放大过程 通过粒子数反转后,其中一个粒子首先在外界光场的照射刺激下,对外发出了一个光子,这个光子又刺激其他粒子再次对外发射光子,并且方向相同,波长

钣金激光切割技术

钣金激光切割技术 1、焦点位置控制技术: 激光切割的优点之一是光束的能量密度高,一般>10W/cm2。由于能量密度与4/πd2成正比,所以焦点光斑直径尽可能的小,以便产生一窄的切缝;同时焦点光斑直径还和透镜的焦深成正比。聚焦透镜焦深越小,焦点光斑直径就越小。但切割有飞溅,透镜离工件太近容易将透镜损坏,因此一般大功率CO2激光切割工业应用中广泛采用5〃~7.5〃??(127~190mm)的焦距。实际焦点光斑直径在 0.1~0.4mm之间。对于高质量的切割,有效焦深还和透镜直径及被切材料有关。例如用5〃的透镜切碳钢,焦深为焦距的+2%范围内,即5mm左右。因此控制焦点相对于被切材料表面的位置十分重要。顾虑到切割质量、切割速度等因素原则上<6mm的金属材料,焦点在表面上;>6mm的碳钢,焦点在表面之上;>6mm的不锈钢,焦点在表面之下。具体尺寸由实验确定。 在工业生产中确定焦点位置的简便方法有三种: (1)打印法:使切割头从上往下运动,在塑料板上进行激光束打印,打印直径最小处为焦点。 (2)斜板法:用和垂直轴成一角度斜放的塑料板使其水平拉动,寻找激光束的最小处为焦点。 (3)蓝色火花法:去掉喷嘴,吹空气,将脉冲激光打在不锈钢板上,使切割头从上往下运动,直至蓝色火花最大处为焦点。 对于飞行光路的切割机,由于光束发散角,切割近端和远端时光程长短不同,聚焦前的光束尺寸有一定差别。入射光束的直径越大,焦点光斑的直径越小。为了减少因聚焦前光束尺寸变化带来的焦点光斑尺寸的变化,国内外激光切割系统的制造商提供了一些专用的装置供用户选用: (1)平行光管。这是一种常用的方法,即在CO2激光器的输出端加一平行光管进行扩束处理,扩束后的光束直径变大,发散角变小,使在切割工作范围内近端和远端聚焦前光束尺寸接近一致。

激光扫描测量系统的应用及发展

激光扫描测量系统的应用及发展 发表时间:2019-08-13T17:07:08.937Z 来源:《防护工程》2019年9期作者:张帆 [导读] 随着激光扫描测量系统在理论算法和硬件需求方面的不断完善与发展,势必在相关应用领域内引起新一轮的技术革新,不难看出其应用前景将十分广阔。 身份证号码:13040419910120**** 摘要:激光扫描仪作为一种新的空间数据获取手段,可高速、高精度获取物体表面点云的三维坐标值和实体纹理信息。从激光扫描测量系统的工作原理、激光扫描仪的分类、激光扫描测量系统的应用领域出发,阐述了激光扫描测量系统的应用现状,并指出该技术的未来发展趋势。 关键词:激光扫描测量:测量系统;应用发展 激光扫描测量系统通过后处理软件对采集的点云数据或者影像数据进行处理,进而转换成空间坐标系中的位置坐标或模型,并可以以多种不同的格式输出,以提供满足空间信息数据库建库的数据源和不同行业应用的需要。是集成了多种新技术的新型空间信息数据获取的手段与工具。激光扫描测量系统是继全站仪和GNSS之后,测绘领域又一次技术新突破。作为一种新的数据获取手段,以其非接触性、高效率、精确、高时效性和可获得大量测量目标物的三维坐标数据的优势广泛应用于各个研究领域,克服了传统测量技术的局限性,在国内外都有很好的发展和应用。 一、激光扫描测量系统概述 1.激光扫描测量技术原理 激光扫描仪的工作原理是通过发射红外线光束到旋转式镜头的中心,旋转检测环境周围的激光,一旦接触到物体,光束立刻被反射回扫描仪,由记录器记录并计算出激光发射点与物体的距离,最后再配合扫描的水平和垂直方向角,以获得每个点的X、Y、Z坐标。设测点到目标点的观测距离为S,精密时钟编码器同步测量获得每个激光脉冲的水平方向扫描角度观测值α和垂直方向扫描角度观测值θ。一般采用内部坐标系统,X轴在水平扫描面内,Y轴在垂直扫描面内与X轴垂直,Z轴与横向扫描面垂直。扫描过程中,在每个站点上都可以获取大量的点云测量数据,且每个点云的位置信息在扫描坐标中均以极坐标(α,ζ,d)的形式来存储。如果是用传统测量手段获取了控制点的大地坐标,则可以将将点云数据的扫描数据转换为大地坐标,然后应用到测绘领域的各项工程建设中。 2.激光扫描仪分类 现阶段扫描仪在扫描距离、扫描精度、点间距和数量、光斑点的大小等指标有所不同。按照系统运行平台,机载型激光扫描系统可以在短时间内采集大范围内详细的三维点云数据和影像信息。具有测量范围广、速度快的特点,但其测量精度相对较低,且造价昂贵。车载激光扫描系统主要用于城市的建设和维护。地面激光扫描系统是一种固定式扫描系统,精度可以达到变形监测精度的要求。现阶段,地面激光扫描系统在如矿区开采沉降、隧道变形等变形监测中已得到越来越广泛的应用[1]。便携式激光扫描系统是一种手持式激光测距系统,主要应用于测量物体的长度、面积、体积等。 二、激光扫描测量系统应用现状 近年来,随着电子信息技术的不断进步,激光扫描测量系统产业化应用方面的研究也在不断深入,其应用领域日益扩大,逐步从科学研究进入到人们的日常生活。 1.工程应用领域 大型土木工程测量:主要是在道路、桥梁、地下坑道等施工工程现场,对施工之前的地形图进行扫描,提高准确的数据支持,建立施工后目标三维图形,对施工进行质量上的把控,并进行相关数据的记录。复杂工业设备测量:工业设备一般管线林立,纵横交错,因此对工业设备进行规划、改造过程中,可以对激光扫描测量系统进行利用,生成高精度3d模型,为数据测量提供依据。地质应用:可以在地质方面的地质调查、编录、环境监测、安全监测以及裂缝研究中提供技术支持。变形监测:相较于常规变形监测技术,激光扫描测量系统可以得到精度均匀、密度高的数据,可以发现许多细节变化,数据中包含任意截取断面,能够对目标的整体稳定性分析。 2.文物保护领域 通过激光扫描测量仪的高精度、无缝隙测量实现对古建筑的高精度模拟存储、古建筑结构探测和古建筑修复性测量等。同时,还能够通过高精度测量对文物进行真伪鉴别,因此激光扫描测量仪是考古技术发展的重要突破。 3.空间信息技术领域 激光扫描技术与全球定位系统(GPS)、惯性导航系统(INS)、电荷耦合(CCD)等技术相结合,在大范围内高精度数字高程模型(DTM)的实时获取、城市三维模型重建、局部区域地理信息数据的获取等方面均表现出强劲的优势,成为测绘科学与技术的一个重要补充。 4.其他领域 激光扫描测量系统还有一些应用,在制造业中,基于激光扫描仪数据的快速原型法为产品模型设计开发提供了另一种思路,与虚拟制造技术(VirtualManufacturing)一起,被称为未来制造业的两大支柱技术。基于激光扫描测量系统重建的三维模型,可直接应用到国防、执行机关及政府机构等社会安全辨认上。在电脑游戏业方面,利用激光扫描仪获取数据构建三维场景。在电影特技制作方面,也有着广泛的应用[2]。激光扫描测量系统的介入促进了相关应用领域的发展,同时应用领域的大量需求也成为促进研究的动力。 三、激光扫描测量系统发展趋势 随着激光扫描测量系统、三维建模算法及技术的研究和计算机硬件环境的不断发展,结合其自身所具备的特点,激光扫描测量系统也将在以下方面取得较大的发展和应用。1)点云数据处理软件的多功能化和公用化,实现海量数据处理及实时数据共享。2)在硬件设备不变的情况下,测量方法和算法上提高精度,多种方法相结合。3)进一步扩大扫描范围,实现全圆球扫描,获得被测景物空间三维虚拟实体显示[3]。4)能够与其他测量设备(如IMU、GPS、全站仪等)进行联合测量,实现实时导航,定位、并扩大测程和提高精度。5)激光扫

光纤激光器参数测量

光纤激光器参数测量 概要:全光纤可调谐激光器是高速大容量光通信系统中的关键部件,特别是它的较宽的增益带宽和简便稳定的调谐结构,以及其激光波长恰好处在光通信1500nm波段等诸多独特优点,越来越引起广大光通信工作者的极大重视,已成为激光器研制领域的一个热点。 关键词:光纤激光器 引言 光通信技术是当代通信技术发展的最新成就,在信息传输的速率和距离、通信系统的有效性、可靠性和经济性方面取得了卓越的成就,使通信领域发生了巨大的变化,已成为现代通信的基石,是信息时代来临的主要物质基础之一。 光纤通信以令人眩目的速度发展起来,70年代中期即进入了实用化阶段,其应用遍及长途干线、海底通信、局域网、有线电视等各领域。其发展速度之快,应用范围之广,规模之大,涉及学科之多(光、电、化学、物理、材料等),是此前任何一项新技术所不能与之相比的。现在,光纤通信的新技术仍在不断涌现,生产规模不断扩大,成本不断下降,显示了这一技术的强大生命力和广阔应用前景。它将成为信息高速公路的主要传输手段,是将来信息社会的支柱。经过30年的发展,光纤通信历经五次重大技术变革,前四代光纤通信均已得到广泛应用。 实验过程及原理分析 一、实验目的: 1.了解光纤光栅的工作原理及相关特性; 2.了解光纤激光器的工作原理及相关特性; 3.掌握光纤激光器性能参数的测量方法; 二、实验原理: 光纤调谐激光器常用的调谐方法有旋转光栅、调节腔内标准具角度、利用声光滤波器、电调液晶标准具、可调谐光纤光栅等等,调谐范围为几nm到几十nm。非光纤调谐器件与光纤之间的耦合将不可避免地增大腔内的插入损耗,从而导致激光器的低斜率效率和高阈值。可调谐光纤光栅是光纤器件,用光纤光栅作为调谐装置能与光纤兼容,可有效克服用非光纤调谐方法所造成的插入损耗问题。本实验使用光纤光栅调谐装置调谐环形腔掺铒光纤激光器的输出波长,实现窄线宽可调谐激光输出。实验装置如图1所示。 图1可调谐光纤光栅激光器原理图

三维激光扫描仪的原理与其应用

三维激光扫描仪 2.1三维激光扫描仪研究背景 自上个世纪60年代激光技术已经开始出现,激光技术以其单一性和高聚积度在20世纪获得巨大发展。实现了从一维到二维直至今天广泛应用的三维测量的发展,实现了无合作目标的快速高精度测量。而且数字地球,数字城市等一系列概念的提出,我们可以看到:信息表达从二维到三维方向的转化,从静态到动态的过渡将是推动我国信息化建设和社会经资源环境可持续发展的重要武器。目前,各种各样的三维数据获取工具和手段不断地涌现,推动着三维空间数据获取向着实时化、集成化、数字化、动态化和智能化的方向不断地发展,三维建模和曲面重构的应用也越来越广泛[1]。传统的测绘技术主要是单点精确测量,难以满足建模中所需要的精度、数量以及速度的要求。而三维激光扫描技术采用的是现代高精度传感技术,它可以采用无接触方式,能够深入到复杂的现场环境及空间中进行扫描操作。可以直接获取各种实体或实景的三维数据,得到被测物体表面的采样点集合“点云”,具有快速、简便、准确的特点。基于点云模型的数据和距离影像数据可以快速重构出目标的三维模型,并能获得三维空间的线、面、体等各种实验数据,如测绘、计量、分析、仿真、模拟、展示、监测、虚拟现实等。 其中,地面三维激光扫描技术的研究,已经成为测绘领域中的一个新的研究热点。它采用非接触式高速激光测量的方式,能够获取复杂物体的几何图形数据和影像数据,最终由后处理数据的软件对采集的点云数据和影像数据进行处理,并转换成绝对坐标系中的空间位置坐标或模型,能以多种不同的格式输出,满足空间信息数据库的数据源和不同项目的需要。目前这项技术已经广泛应用到文物的保护、建筑物的变形监测、三维数字地球和城市的场景重建、堆积物的测定等多个方面。 2.2 三维激光扫描技术研究现状 2.2.1 主要的三维激光扫描仪介绍 随着三维激光扫描技术研究领域的不断扩大,生产扫描仪的商家也越来越多。主要的有瑞士Leica公司,美国的FARO公司和3D DIGITAL公司、奥地利的RIGEL公司、加拿大的OpTech公司、法国MENSI公司、中国的北京荣创兴业科技发展公司等。这些扫描仪在扫描距离、扫描精度、点间距和数量、光斑点的大小等指标有所不同[2]。主要的分类见图1-1和表1-1。

高中物理激光器的电学参数的测定

半导体激光器常用参数的测定(一) 一 实验目的:掌握半导体激光器常用的电学参数及其测试方法 一 实验基本原理 1、 普通光源的发光——受激吸收和自发辐射 普通常见光源的发光(如电灯、火焰、太阳等地发光)是由于物质在受到外来能量(如光能、电能、热能等)作用时,原子中的电子就会吸收外来能量而从低能级跃迁到高能级,即原子被激发。激发的过程是一个“受激吸收”过程。处在高能级(E2)的电子寿命很短(一般为10-8~10-9秒),在没有外界作用下会自发地向低能级(E1)跃迁,跃迁时将产生光(电磁波)辐射。辐射光子能量为 12E E h -=ν 这种辐射称为自发辐射。原子的自发辐射过程完全是一种随机过程,各发光原子的发光过程各自独立,互不关联,即所辐射的光在发射方向上是无规则的射向四面八方,另外未位相、偏振状态也各不相同。由于激发能级有一个宽度,所以发射光的频率也不是单一的,而有一个范围。在通常热平衡条件下,处于高能级E2上的原子数密度N2,远比处于低能级的原子数密度低,这是因为处于能级E 的原子数密度N 的大小时随能级E 的增加而指数减小,即N ∝exp(-E/kT),这是著名的波耳兹曼分布规律。于是在上、下两个能级上的原子数密度比为 ]/)(ex p[/1212kT E E N N --∝ 式中k 为波耳兹曼常量,T 为绝对温度。因为E2>E1,所以N2《N1。例如,已知氢原子基态能量为E1=-13.6eV ,第一激发态能量为E2=-3.4eV ,在20℃时,kT≈0.025eV,则 0)400ex p(/12≈-∝N N 可见,在20℃时,全部氢原子几乎都处于基态,要使原子发光,必须外界提供能量使原子到达激发态,所以普通广义的发光是包含了受激吸收和自发辐射两个过程。一般说来,这种光源所辐射光的能量是不强的,加上向四面八方发射,更使能量分散了。 2、 受激辐射和光的放大 由量子理论知识知道,一个能级对应电子的一个能量状态。电子能量由主量子数n(n=1,2,…)决定。但是实际描写原子中电子运动状态,除能量外,还有轨道角动量L 和自旋角动量s ,它们都是量子化的,由相应的量子数来描述。对轨道角动量,波尔曾给出了量子化公式Ln =nh ,但这不严格,因这个式子还是在把电子运动看作轨道运动基础上得到的。严格的能量量子化以及角动量量子化都应该有量子力学理论来推导。 量子理论告诉我们,电子从高能态向低能态跃迁时只能发生在l (角动量量子数)量子数相差±1的两个状态之间,这就是一种选择规则。如果选择规则不满足,则跃迁的几率很小,甚至接近零。在原子中可能存在这样一些能级,一旦电子被激发到这种能级上时,由于不满足跃迁的选择规则,可使它在这种能级上的寿命很长,不易发生自发跃迁到低能级上。这种能级称为亚稳态能级。但是,在外加光的诱发和刺激下可以使其迅速跃迁到低能级,并放出光子。这种过程是被“激”出来的,故称受激辐射。受激辐射的概念世爱因斯坦于1917年在推导普朗克的黑体辐射公式时,第一个提出来的。他从理论上预言了原子发生受激辐射的可能性,这是激光的基础。 受激辐射的过程大致如下:原子开始处于高能级E2,当一个外来光子所带的能量h υ正好为某一对能级之差E2-E1,则这原子可以在此外来光子的诱发下从高能级E2向低能级E1跃迁。这种受激辐射的光子有显著的特点,就是原子可发出与诱发光子全同的光子,不仅频

激光切割工艺详解-共30页

激光切割工艺 发表于 2009-10-26 20:50 | 只看该作者发表的帖子 1# 本文章共4286字,分3页,当前第1页,快速翻页:123 激光切割工艺 激光切割的工艺参数 (1)光束横模 ① 基模又称为高斯模,是切割最理想的模式,主要出现在功率小于1kW的激光器。 ② 低阶模与基模比较接近,主要出现在1~2kW的中功率激光器。 ③ 多模是高阶模的混合,出现在功率大于3kW的激光器。

切割速度与横模及板厚的关系见图1。由图可以看出,300W的单模激光和500W的多模有同等的切割能力。但是,多模的聚焦性差,切割能力低,单模激光的切割能力优于多模。常用材料的单模激光切割工艺参数见表1,多模激光切割工艺参数见表2。 表1 常用材料的单模激光切割工艺参数 材料 厚度/mm 辅助气体 切割速度/cmmin-1 切缝宽度/mm 功率/W 低碳钢 3.0 O2 60 0.2 250 不锈钢 1.0 O2 150 0.1

40.0 O2 50 3.5 钛合金 10.0 O2 280 1.5 有机透明玻璃10.0 N2 80 0.7 氧化铝 1.0 O2 300 0.1 聚酯地毯

N2 260 0.5 棉织品(多层)15.0 N2 90 0.5 纸板 0.5 N2 300 0.4 波纹纸板 8.0 N2 300 0.4 石英玻璃 1.9

60 0.2 聚丙烯 5.5 N2 70 0.5 聚苯乙烯 3.2 N2 420 0.4 硬质聚氯乙烯7.0 N2 120 0.5 纤维增强塑料3.0 N2

0.3 木材(胶合板)18.0 N2 20 0.7 低碳钢 1.0 N2 450 - 500 3.0 N2 150 6.0 N2 50 1.2 O2

三维激光扫描仪使用说明

三维激光扫描仪使用说明 1、三维激光扫描原理 Trimble GX200三维激光扫描系统由三维激光扫描仪、数码相机、扫描仪旋转平台、软件控制平台,数据处理平台及电源和其它附件设备共同构成,是一种集成了多种高新技术的新型空间信息数据获取手段。地面三维激光扫描系统的工作原理:首先由激光脉冲二极管发射出激光脉冲信号,经过旋转棱镜,射向目标,然后通过探测器,接收反射回来的激光脉冲信号,并由记录器记录,最后转换成能够直接识别处理的数据信息,经过软件处理实现实体建模输出。 2、三维激光扫描工作流程 应用三维激光测量技术采集数据的工作过程大致可以分为计划制定、外业数据采集和内业数据处理三部分。在具体工作展开之前首先需要制定详细的工作计划,做一些准备工作,主要包括:根据扫描对象的不同和精度的具体要求设计一条合适的扫描路线、确定恰当的采样密度、大致确定扫描仪至扫描物体的距离、设站数、大致的设站位置等等;外业工作主要是采集数据:主要包括数据采集、现场分析采集到的数据是否大致符合要求、进行初步的质量分析和控制等等;内业数据处理是最重要也是工作量最大的一环,主要包括:外业采集到的激光扫描原始数据的显示,数据的规则格网化,数据滤波、分类、分割,数据的压缩,图像处理,模式识别等等。 3、三维激光扫描仪用途 目前Trimble GX200三维激光扫描仪的主要用途为工程测量、地形测景、虚拟现实和模拟可视化、矿区土方开挖断面和体积测量、工业制造、变形测量、加工检测、施工控测、事故调查、历史古迹的调查与恢复,以及特殊动画效果的测量等。 4、本校对三维激光扫描仪主要用途说明 本校对Trimble GX200三维激光扫描的主要用途有如下三个方面: (1)本科生可以运用三维激光扫描仪进行相关的教学实验,用于建立简单的建筑物模型,了解外业操作和内业数据处理的基本方法,使自己掌握先进的测量仪器,拓宽自己知识面,为以后进一步的研究打下基础。 (2)硕士研究生可以结合本专业情况运用三维激光扫描仪进行各种实验项目,例如可以在变形监测方面运用仪器进行相关实验,获得测量数据进行相关的后续研究。 (3)博士研究生可以更深入对三维激光扫描系统进行理论研究。例如三维激光扫描仪工作原理的研究,相关数据处理软件的研究和开发,三维激光测量系统理论方法的研究等。

相关文档
最新文档