10数轴(表示不等式的解)
不等式及其基本性质易错点剖析

)
D. ①②④⑤
错解:因为 c2 是正数,所以③正确,故选 B. 错解分析: 本题的条件是 a>b, 变形是在不等式的两边同乘 (或除以) c 或 c2,变形正确与否的关键是看 c 或 c2 的取值情况.而本题中 c 为不确定大小的
有理数,故很容易判断①②⑤变形错误.因为 c2 大于等于零,而其在分母中, 故只能大于 0,所以④正确.故选 A. 例 5.已知 am>bm(m≠0) ,下面结论中,正确的是( A. a>b B. a<b C.
2a-b=7, a=5, 字母系数的取值范围,所以在解题时错误得出 解得 从而错 5b-a=10, b=3.
5
3 误得到 ax>b 的解集是 x> . 5 2a-b<0, 10 正解:由不等式(2a-b)x+a-5b>0 的解集是 x< ,得5b-a 10 解 7 = , 2a-b 7
A. ①④
错解:5<3 不成立,故选 B. 错解分析:不等式是指用“<” , “>” , “≤” , “≥”或“≠”来表示不等 关系的式子,不受其是否成立的影响.5<3 虽然不成立,但它仍然是不等式, 故选 D.
6
二、性质类错误 例 3.命题“若 a<b,c<d,则 ac<bd”是否成立? 错解:成立.因为两个较小数的积一定小于两个较大数的积,例如 2<3, 4<5,则有 2×4<3×5. 错解分析:此题的错误在于对概念的理解模糊不清,若 a,c 为负数,例如 -3<2,-4<1,显然(-3)×(-4)不小于 2×1,故该命题不成立. 例 4.若 a>b, c 为有理数,则下列式子中正确的是( ①ac>bc;②ac<bc;③ac2>bc2;④ A. ④ B. ③ C. ①②⑤
专题15:不等式与不等式组(简答题专练)(解析版)

专题15:不等式与不等式组(简答题专练)一、解答题1.某电器超市销售每台进价分别为160元、120元的A 、B 两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本) (1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【答案】(1)A 、B 两种型号电风扇的销售单价分别为200元、150元;(2)超市最多采购A 种型号电风扇37台时,采购金额不多于7500元;(3)在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:当a =36时,采购A 种型号的电风扇36台,B 种型号的电风扇14台;当a =37时,采购A 种型号的电风扇37台,B 种型号的电风扇13台.【分析】(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,列二元一次方程组,解方程组即可得到答案;(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(50﹣a )台,利用超市准备用不多于7500元,列不等式160a +120(50﹣a )≤7500,解不等式可得答案;(3)由超市销售完这50台电风扇实现利润超过1850元,列不等式(200﹣160)a +(150﹣120)(50﹣a )>1850,结合(2)问,得到a 的范围,由a 为非负整数,从而可得答案. 【解答】解:(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元, 依题意得:341200561900x y x y +=⎧⎨+=⎩①②,①5⨯-②3⨯得:2300,y =150,y ∴=把150y =代入①得:200,x =解得:200150x y =⎧⎨=⎩,答:A 、B 两种型号电风扇的销售单价分别为200元、150元.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(50﹣a )台. 依题意得:160a +120(50﹣a )≤7500,401500,a ∴≤解得:a ≤1372. 因为:a 为非负整数,所以:a 的最大整数值是37.答:超市最多采购A 种型号电风扇37台时,采购金额不多于7500元. (3)根据题意得:(200﹣160)a +(150﹣120)(50﹣a )>1850, 10a ∴>350, 解得:a >35, ∵a ≤1372, 35∴<a 1372≤,a 为非负整数,36a =或37.a =∴在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种: 当a =36时,采购A 种型号的电风扇36台,B 种型号的电风扇14台; 当a =37时,采购A 种型号的电风扇37台,B 种型号的电风扇13台.【点评】本题考查的是二元一次方程组的应用,一元一次不等式,一元一次不等式组的应用的方案问题,掌握以上知识是解题的关键.2.解不等式组1(1)1212x x ⎧-≤⎪⎨⎪-⎩<并写出该不等式组的所有整数解.【答案】解集是-1<x≤3;整数解是0,1,2,3【分析】分别解出每个不等式的解集,确定不等式组的解集,然后在解集中确定所有整数解即可. 【解答】解不等式1(1)12x -≤得:x≤3 解不等式12x -<得:x >-1 所以不等式组的解集是-1<x≤3.大于-1而小于或等于3的所有整数有0,1,2,3, ∴该不等式组的所有整数解为0,1,2,3.【点评】本题考查了解不等式组,解决本题的关键是先计算出每个不等式的解集,然后确定不等式组的解集.3.(1)解不等式413x x -> (2)解不等式组()()315121531123x x x x ⎧-+-⎪⎨-+-⎪⎩【答案】(1)1x >; (2)13x ≥. 【分析】(1)移项、合并同类项即可;(2)分别求出两个不等式的解集,再根据同大取大即可确定不等式组的解集. 【解答】解:(1)移项得:431x x ->合并同类项得:1x >(2)()()315121531123x x x x ⎧-+-⎪⎨-+-⎪⎩①②解不等式①得3x ≥-, 解不等式②得13x ≥, 不等式组的解集为: 13x ≥【点评】本题考查了解一元一次不等式(组),熟练掌握解不等式的基本步骤是解决此题的关键.在利用不等式的性质同乘或除时,不等式的两边都乘以(或除以)同一个负数时,不等号的方向改变.在确定不等式组的解集时需注意:同大取大;同小取小;大小小大中间找;大大小小找不到. 4.若关于x 的方程2x 3m 2m 4x 4-=-+的解不小于7183m--,求m 的最小值. 【答案】14-【分析】首先求解关于x的方程2x−3m=2m−4x+4,即可求得x的值,根据方程的解的解不小于7183m--,即可得到关于m的不等式,即可求得m的范围,从而求解.【解答】由54 232446546mx m m x x m x+ -=-+=+=,得,即.根据题意,得5471683m m+-≥-,解得14m,≥-所以m的最小值为1 4 -.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.5.我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[-2.5]=-3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4.5>=5,<-1.5>=-1.解决下列问题.(1)[-4.5]=_____ ;<3.5>=________;(2)若[x]=2,则x的取值范围是________;若<y>=-1,则y的取值范围是_______ .(3)若[]21 3x x=-,则x为_________.(4)已知x、y满足方程组[][]32336x yx y⎧+=⎪⎨-=-⎪⎩<><>,求x、y的取值范围.【答案】(1)-5; 4,(2)2≤x<3;-2≤y<-1,;(3)x=-3(4)x,y的取值分别为-1≤x<0,2≤y<3. 【分析】(1)根据新定义与不等式的性质即可求解;(2)根据[a]表示不大于a的最大整数与<a>表示大于a的最小整数与不等式的性质求解;(3)根据[]21 3x x=-得到关于x的方程即可求解;(4)先求出[x]、<y>的值,再根据新定义即可求解. 【解答】(1)依题意得[-4.5]=-5;<3.5>=4,(2)∵[x]=2,则x的取值范围是2≤x<3;∵<y>=-1,则y的取值范围是-2≤y<-1,;(3)∵[x]≤x,[]21 3x x=-化为213x x=-,解得x=-3,符合题意,故x=-3(4)∵[][]323326x y x y ⎧+=⎪⎨-=-⎪⎩<><>,解得[]13x y ⎧=-⎨=⎩<> ∴x ,y 的取值分别为-1≤x <0,2≤y <3.【点评】此题主要考查不等式的应用,解题的关键是熟知不等式的性质. 6.求不等式()()2130x x -+>的解集。
不等式概念及性质知识点详解与练习[1]
![不等式概念及性质知识点详解与练习[1]](https://img.taocdn.com/s3/m/1b4d1226aef8941ea66e052e.png)
(完整word版)不等式概念及性质知识点详解与练习(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)不等式概念及性质知识点详解与练习(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)不等式概念及性质知识点详解与练习(word版可编辑修改)的全部内容。
不等式的概念及性质知识点详解及练习一、不等式的概念及列不等式不等式⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧→→≤≥≠→→表示出不等关系列出代数式设未知数步骤列不等式””、“”、“”、“”、““不等号概念 1、不等式的概念及其分类(1)定义:用“>”、“﹤”、“≠”、“≥"及“≤"等不等号把代数式连接起来,表示不等关系的式子。
a —b 〉0a>b, a —b=0a=b, a-b 〈0a<b 。
(2)分类:①矛盾不等式:不等式只是表示了某种不等关系,它表示的关系可能在任何条件下都不成立,这样的不等式叫矛盾不等式;如2>3,x 2﹤0②绝对不等式:它表示的关系可能在任何条件下都成立,这样的不等式叫绝对不等式; ③条件不等式:在一定条件下才能成立的不等式叫条件不等式。
(3)不等号的类型:①“≠”读作“不等于”,它说明两个量之间关系是不等的,但不能明确两个量谁大谁小; ②“>"读作“大于",它表示左边的数比右边的数大;③“﹤”读作“小于”, 它表示左边的数比右边的数小;④“≥”读作“大于或等于”, 它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”, 它表示左边的数不大于右边的数;注意:要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。
不等式的解集怎么求

求不等式的解集可以先把各个不等式的解集表示在数轴上,观察公共部分。
然后去括号,移项,合并同类项,系数化为一时要注意到底是除以了一个正数还是负数。
一.步骤
去分母(注意乘以一个正数的公分母,这样就不变号),去括号,移项,合并同类项,系数化为一(这里注意到底是除以了一个正数还是负数)
二.求不等式组的解集的方法:
1、把各个不等式的解集表示在数轴上,观察公共部分。
2、不等式组的解集不外乎以下4种情况:
若a<b,
当x>b时;(同大取大)
当x<a时;(同小取小)
当a<x<b时;(大小小大中间找)
当x<a且x>b时无解,(大大小小无处找)
三.重点:
一元一次不等式组的解法,求公共解集的方法;
四.难点:
1、含有字母系数的不等式组的解集的讨论;
2、一元一次不等式组与二元一次方程组的综合问题。
五.不等式确定解集:
1、比两个值都大,就比大的还大(同大取大);
2、比两个值都小,就比小的还小(同小取小);
3、比大的大,比小的小,无解(大大小小取不了);
4、比小的大,比大的小,有解在中间(小大大小取中间)。
三个或三个以上不等式组成的不等式组,可以类推。
专题10 一元一次不等式(组)(归纳与讲解)(解析版)

专题10 一元一次不等式(组) 【专题目录】技巧1:一元一次不等式组的解法技巧技巧2:一元一次不等式的解法的应用技巧3:含字母系数的一元一次不等式(组)的应用【题型】一、不等式的性质【题型】二、不等式(组)的解集的数轴表示【题型】三、求一元一次不等式的特解的方法【题型】四、确定不等式(组)中字母的取值范围【题型】五、求一元一次方程组中的待定字母的取值范围【题型】六、一元一次不等式的应用【考纲要求】1、了解不等式(组)有关的概念,理解不等式的基本性质;2、会解简单的一元一次不等式(组);并能在数轴上表示出其解集.3、能列出一元一次不等式(组)解决实际问题.【考点总结】一、一元一次不等式(组)【注意】1. 不等式的解与不等式的解集的区别与联系:1)不等式的解是指满足这个不等式的未知数的某个值。
2)不等式的解集是指满足这个不等式的未知数的所有的值。
3)不等式的所有解组成了这个不等式的解集,不等式的解集中包括这个不等式的每一个解。
2. 用数轴表示不等式的解集:大于向右,小于向左,有等号画实心圆点,无等号画空心圆图。
2.列不等式或不等式组解决实际问题,要注意抓住问题中的一些关键词语,如“至少”“最多”“超过”“不低于”“不大于”“不高于”“大于”“多”等.这些都体现了不等关系,列不等式时,要根据关键词准确地选用不等号.另外,对一些实际问题的分析还要注意结合实际.3.列不等式(组)解应用题的一般步骤: (1)审题; (2)设未知数;(3)找出能够包含未知数的不等量关系; (4)列出不等式(组); (5)求出不等式(组)的解;(6)在不等式(组)的解中找出符合题意的值; (7)写出答案(包括单位名称).【技巧归纳】技巧1:一元一次不等式组的解法技巧 【类型】一、解普通型的一元一次不等式组1.不等式组⎩⎪⎨⎪⎧-2x <6,x -2≤0的解集,在数轴上表示正确的是( )2.解不等式组,并把解集表示在数轴上.⎩⎪⎨⎪⎧2x +5≤3(x +2),①1-2x 3+15>0.②【类型】二、解连写型的不等式组3.满足不等式组-1<2x -13≤2的整数的个数是( )A .5B .4C .3D .无数4.若式子4-k 的值大于-1且不大于3,则k 的取值范围是____________. 5.用两种不同的方法解不等式组-1<2x -13≤5.【类型】三、“绝对值”型不等式转化为不等式组求解. 6.解不等式⎪⎪⎪⎪3x -12≤4.【类型】四、“分式”型不等式转化为不等式组求解 7.解不等式3x -62x +1<0.参考答案 1.C2.解:由①得,x≥-1.由②得,x <45.∴不等式组的解集为-1≤x <45.表示在数轴上,如图所示.3.B 4.1≤k <55.解:方法1:原不等式组可化为下面的不等式组⎩⎨⎧-1<2x -13,①2x -13≤5.②解不等式①,得x>-1.解不等式②,得x≤8.所以不等式组的解集为-1<x≤8.方法2:-1<2x -13≤5,-3<2x -1≤15,-2<2x≤16,-1<x≤8.6.分析:由绝对值的知识|x|<a(a >0),可知-a <x <a.解:由⎪⎪⎪⎪3x -12≤4,得-4≤3x -12≤4.则原不等式可转化为⎩⎨⎧3x -12≥-4,①3x -12≤4.②解不等式①,得x≥-73.解不等式②,得x≤3.所以原不等式的解集为-73≤x≤3.点拨:解题时要先将不等式转化为不等式组再进行求解. 7.解:∵3x -62x +1<0,∴3x -6与2x +1异号.即:(Ⅰ)⎩⎪⎨⎪⎧3x -6>0,2x +1<0或(Ⅱ)⎩⎪⎨⎪⎧3x -6<0,2x +1>0.解(Ⅰ)的不等式组得⎩⎪⎨⎪⎧x >2,x <-12.∴此不等式组无解. 解(Ⅱ)的不等式组得⎩⎪⎨⎪⎧x <2,x >-12.∴此不等式组的解集为-12<x <2.∴原不等式的解集为-12<x <2.技巧2:一元一次不等式的解法的应用 【类型】一、直接解不等式1.解下列不等式,并把它们的解集在数轴上表示出来.(1)x >13x -2; (2)4x -13-x >1; (3)x +13≥2(x +1).2.下面解不等式的过程是否正确?如不正确,请找出开始错误之处,并改正.解不等式:4-3x 3-1<7+5x5.解:去分母,得5(4-3x)-1<3(7+5x). ① 去括号,得20-15x -1<21+15x. ② 移项,合并同类项,得-30x <2. ③ 系数化为1,得x >-115. ④【类型】二、解含字母系数的一元一次不等式 3.解关于x 的不等式ax -x -2>0.【类型】三、解与方程(组)的解综合的不等式4.当m 取何值时,关于x 的方程23x -1=6m +5(x -m)的解是非负数?5.二元一次方程组⎩⎪⎨⎪⎧2x +3y =10,4x -3y =2的解满足不等式ax +y >4,求a 的取值范围.【类型】四、解与新定义综合的不等式6.定义新运算:对于任意实数a ,b ,都有a ★b =a(a -b)+1,等式右边是通常的加法、减法及乘法运算,比如:2★5=2×(2-5)+1=-5.(1)求(-2)★3的值;(2)若3★x 的值小于13,求x 的取值范围,并在数轴上表示出来. 【类型】五、解与不等式的解综合的不等式7.已知关于x 的不等式3x -m ≤0的正整数解有四个,求m 的取值范围. 8.关于x 的两个不等式①3x +a2<1与②1-3x>0.(1)若两个不等式的解集相同,求a 的值; (2)若不等式①的解都是②的解,求a 的取值范围. 参考答案1.解:(1)x >13x -2,23x > -2, x > -3.这个不等式的解集在数轴上的表示如图所示.(2)4x -13-x >1,4x -1-3x > 3,x > 4.这个不等式的解集在数轴上的表示如图所示.(3)x +13≥2(x +1),x +1≥ 6x +6, -5x ≥ 5, x ≤ -1.这个不等式的解集在数轴上的表示如图所示.2.解:第①步开始错误,应该改成:去分母,得5(4-3x)-15<3(7+5x). 去括号,得20-15x -15<21+15x. 移项,合并同类项,得-30x <16. 系数化为1,得x >-815.3.解:移项,合并同类项得,(a -1)x >2,当a -1>0,即a >1时,x >2a -1; 当a -1=0,即a =1时,x 无解; 当a -1<0,即a <1时,x <2a -1. 4.解:解方程得x =-313(m +1),由题意得-313(m +1)≥0,解得m ≤-1.5.解:解方程组⎩⎪⎨⎪⎧ 2x +3y =10,4x -3y =2,得⎩⎪⎨⎪⎧x =2,y =2.代入不等式得2a +2>4.所以a >1.6.解:(1)(-2)★3=-2×(-2-3)+1=-2×(-5)+1=10+1=11.(2)∵3★x <13,∴3(3-x)+1<13, 去括号,得9-3x +1<13, 移项,合并同类项,得-3x <3, 系数化为1,得x >-1. 在数轴上表示如图所示.7.解:解不等式得x ≤m 3,由题意得4≤m3<5,解得12≤m <15.方法规律:已知一个不等式的解集满足特定要求,求字母参数的取值范围时,我们可先解出这个含字母参数的不等式的解集,然后根据题意列出一个(或几个)关于字母参数的不等式,从而可求出字母参数的取值范围.8.解:(1)由①得x <2-a 3,由②得x <13,由两个不等的解集相同,得2-a 3=13,解得a =1.(2)由不等式①的解都是②的解,得2-a 3≤13,解得a ≥1.技巧3:含字母系数的一元一次不等式(组)的应用 【类型】一、与方程组的综合问题1.已知实数x ,y 同时满足三个条件:①x -y =2-m ;②4x -3y =2+m ;③x >y.那么实数m 的取值范围是( )A .m >-2B .m <2C .m <-2D .m >22.已知方程组⎩⎪⎨⎪⎧x +y =-7-a ,x -y =1+3a的解中,x 为非正数,y 为负数.(1)求a 的取值范围; (2)化简|a -3|+|a +2|.3.在等式y =ax +b 中,当x =1时,y =-3;当x =-3时,y =13.(1)求a ,b 的值;(2)当-1<x <2时,求y 的取值范围. 【类型】二、与不等式(组)的解集的综合问题 题型1:已知解集求字母系数的值或范围4.已知不等式(a -2)x >4-2a 的解集为x <-2,则a 的取值范围是__________.5.若不等式组⎩⎪⎨⎪⎧2x -a <1,x -2b >3的解集为-1<x <1,求(b -1)a +1的值.题型2:已知整数解的情况求字母系数的值或取值范围6.已知不等式组⎩⎪⎨⎪⎧x >2,x <a 的解集中共有5个整数,则a 的取值范围为( )A .7<a ≤8B .6<a ≤7C .7≤a <8D .7≤a ≤87.如果不等式组⎩⎪⎨⎪⎧2x -a ≥0,3x -b <0的整数解是1,2,3,求适合这个不等式组的整数a ,b 的值.题型3:已知不等式组有无解求字母系数的取值范围8.如果不等式组⎩⎪⎨⎪⎧x -1>0,x -a <0无解,则a 的取值范围是__________.9.若不等式组⎩⎪⎨⎪⎧x +1<a ①,3x +5>x -7 ②有解,求实数a 的取值范围.参考答案 1.B2.解:(1)解方程组得⎩⎪⎨⎪⎧x =-3+a ,y =-4-2a.∵x 为非正数,y 为负数,∴⎩⎪⎨⎪⎧-3+a ≤0,-4-2a <0,解得-2<a ≤3. (2)∵-2<a ≤3,即a -3≤0,a +2>0,∴原式=3-a +a +2=5.3.解:(1)将x =1时,y =-3;x =-3时,y =13代入y =ax +b ,得⎩⎪⎨⎪⎧a +b =-3,-3a +b =13,解得⎩⎪⎨⎪⎧a =-4,b =1.(2)由y =-4x +1,得x =1-y 4.∵-1<x <2,∴-1<1-y4<2,解得-7<y <5.4.a <25.解:⎩⎪⎨⎪⎧2x -a <1.①,x -2b >3.②,解①得x <a +12;解②得x >2b +3.根据题意得a +12=1,且2b +3=-1,解得a =1,b =-2,则(b -1)a +1=(-3)2=9. 6.A7.解:解不等式组得a 2≤x <b3.∵不等式组仅有整数解1,2,3, ∴0<a 2≤1,3<b3≤4.解得0<a ≤2,9<b ≤12. ∵a ,b 为整数,∴a =1,2,b =10,11,12. 8.a ≤19.解:⎩⎪⎨⎪⎧x +1<a ①,3x +5>x -7②,解不等式①得x <a -1.解不等式②得x >-6.∵不等式组有解,∴-6<x <a -1,则a -1>-6,a >-5. 【题型讲解】【题型】一、不等式的性质例1、若a>b,则下列等式一定成立的是()A.a>b+2B.a+1>b+1C.﹣a>﹣b D.|a|>|b|【答案】B【分析】利用不等式的基本性质判断即可.【详解】A、由a>b不一定能得出a>b+2,故本选项不合题意;B、若a>b,则a+1>b+1,故本选项符合题意;C、若a>b,则﹣a<﹣b,故本选项不合题意;D、由a>b不一定能得出|a|>|b|,故本选项不合题意.故选:B.【题型】二、不等式(组)的解集的数轴表示例2、不等式组20240xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】C【解析】解不等式x+2>0,得:x>-2,解不等式2x-4≤0,得:x≤2,则不等式组的解集为-2<x≤2,将解集表示在数轴上如下:故选C.【题型】三、求一元一次不等式的特解的方法例3、不等式12x-≤的非负整数解有()A.1个B.2个C.3个D.4个【答案】D【详解】解:12x-≤,解得:3x≤,则不等式12x-≤的非负整数解有:0,1,2,3共4个.故选:D.【题型】四、确定不等式(组)中字母的取值范围例4、若不等式组130x abx->⎧⎨+≥⎩的解集是﹣1<x≤1,则a=_____,b=_____.【答案】-2 -3 【详解】解:由题意得:1?30? x abx->⎧⎨+≥⎩①②解不等式① 得: x>1+a ,解不等式①得:x≤3 b -不等式组的解集为: 1+a<x≤3 b -不等式组的解集是﹣1<x≤1,∴..1+a=-1,3b-=1,解得:a=-2,b=-3故答案为: -2, -3.【题型】五、求一元一次方程组中的待定字母的取值范围例5、若不等式组841x xx m+<-⎧⎨>⎩的解集是x>3,则m的取值范围是().A.m>3B.m≥3C.m≤3D.m<3【答案】C【解析】详解:841x xx m+<-⎧⎨>⎩①②,解①得,x>3;解①得,x>m,①不等式组841x xx m+<-⎧⎨>⎩的解集是x>3,则m①3.故选:C.【题型】六、一元一次不等式的应用例6、某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为( ) A .13 B .14C .15D .16【答案】C【分析】根据竞赛得分10=⨯答对的题数(5)+-⨯未答对的题数,根据本次竞赛得分要超过120分,列出不等式即可.【详解】解:设要答对x 道.10(5)(20)120x x +-⨯->,10 100 5 120x x -+>, 15 220x >,解得:443x >, 根据x 必须为整数,故x 取最小整数15,即小华参加本次竞赛得分要超过120分,他至少要答对15道题. 故选C .一元一次不等式(组)(达标训练)一、单选题1.若m n >,则下列不等式一定成立的是( ). A .2121m n -+>-+ B .1144m n ++> C .m a n b +>+ D .am an -<-【答案】B【分析】根据不等式的性质解答.不等式的性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A 、①m >n ,①-2m <-2n ,则-2m +1<-2n +1,故该选项不成立,不符合题意; B 、①m >n ,①m +1>n +1,则1144m n ++>,故该选项成立,符合题意; C 、①m >n ,①m +a >n +a ,不能判断m +a >n +b ,故该选项不成立,不符合题意;D 、①m >n ,当a >0时,-am <-an ;当a <0时,-am >-an ;故该选项不成立,不符合题意; 故选:B .【点睛】本题考查了不等式的性质,掌握不等式的基本性质是解答本题的关键.2.北京2022冬奥会吉祥物“冰墩墩”和“雪容融”受到大家的喜爱,某网店出售这两种吉祥物礼品,售价如图所示.小明妈妈一共买10件礼品,总共花费不超过900元,如果设购买冰墩墩礼品x 件,则能够得到的不等式是( )A .100x +80(10﹣x )>900B .100+80(10﹣x )<900C .100x +80(10﹣x )≥900D .100x +80(10﹣x )≤900【答案】D【分析】设购买冰墩墩礼品x 件,则购买雪容融礼品(10﹣x )件,根据“冰墩墩单价×冰墩墩个数+雪容融单价×雪容融个数≤900”可得不等式.【详解】解:设购买冰墩墩礼品x 件,则购买雪容融礼品(10﹣x )件, 根据题意,得:100x +80(10﹣x )≤900, 故选:D .【点睛】本题主要考查由实际问题抽象出一元一次不等式,解题的关键是理解题意,找到其中蕴含的不等关系.3.不等式组3050x x +>⎧⎨-≤⎩的解是( )A .3x >-B .5x ≤C .35x -<≤D .无解【答案】C【分析】先求出每个不等式的解集,再结合起来即可得到不等式组的解集. 【详解】由30x +>得:3x >- 由50x -≤得:5x ≤ ①35x -<≤ 故选C【点睛】本题考查一元一次方程组的求解,掌握方法是关键. 4.不等式3﹣x <2x +6的解集是( )A .x <1B .x >1C .x <﹣1D .x >﹣1【答案】D【分析】根据一元一次不等式的解法,移项、合并同类项、系数化1求解即可. 【详解】解:326x x -<+, 移项得362x x -<+, 合并同类项得33x -<, 系数化1得1x >-,∴不等式326x x -<+的解集是1x >-,故选:D .【点睛】本题考查一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解决问题的关键. 5.在数轴上表示不等式1x >-的解集正确的是( ) A . B .C .D .【答案】A【分析】根据不等式解集的表示方法依次判断. 【详解】解:在数轴上表示不等式x >−1的解集的是A . 故选:A .【点睛】此题考查了在数轴上表示不等式的解集,正确掌握不等式解集的表示方法,区分实心点与空心点,是解题的关键.二、填空题6.超市用1200元钱批发了A ,B 两种西瓜进行销售,两种西瓜的批发价和零售价如下表所示,若计划将这批西瓜全部售完后,所获利润率不低于40%,则该超市至少批发A 种西瓜__________kg .【答案】120【分析】设批发A 种西瓜x kg ,根据“利润率不低于40%”列出不等式,求解即可.【详解】解:设批发A 种西瓜x kg ,则 (6-4)x +120043x-×(4-3)≥1200×40%, 解得x ≥120.答:该超市至少批发A 种西瓜120kg . 故答案为:120.【点睛】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的不等关系,列不等式求解. 7.不等式2103x --<的解集为____. 【答案】5x <【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1;本题可以采用去括号、移项、合并同类项即可求解. 【详解】解:去分母,得:230x --<, 移项,得:23x <+, 合并同类项,得:5x <. ①不等式的解集为:5x <. 故答案为:5x <.【点睛】本题考查了解一元一次不等式.严格遵循解不等式的基本步骤是关键,尤其需要注意①不等式两边都乘以或除以同一个负数时,不等号方向改变;在数轴上表示不等式的解集要注意实心点和空心点的区别.三、解答题8.解不等式组:()36,3121,x x x x ≤-⎧⎨+>-⎩并将解集在数轴上表示.【答案】3x ≥,数轴表示见解析【分析】先求出每个一元一次不等式的解集,再求两个解集的公共部分,即是不等式组的解集. 【详解】解:解不等式36x x -≤,得:3x ≥, 解不等式312(1)x x +>-,得:3x >-, ①3x ≥与3x >-的公共部分为3x ≥, ①不等式组的解集是:3x ≥. 在数轴上表示解集如下:【点睛】本题考查了一元一次不等式组,熟练掌握一元一次不等式组解集的求解方法是解题关键.一元一次不等式(组)(提升测评)一、单选题1.2022年北京冬季奥运会开幕式于2022年2月4日20:00在国家体育馆举行,嘉淇利用相关数字做游戏:①画一条数轴,在数轴上用点A ,B ,C 分别表示﹣20,2022,﹣24,如图1所示; ①将这条数轴在点A 处剪断,点A 右侧的部分称为数轴I ,点A 左侧的部分称为数轴①; ①平移数轴①使点A 位于点B 的正下方,如图2所示;①扩大数轴①的单位长度至原来的k 倍,使点C 正上方位于数轴I 的点A 左侧. 则整数k 的最小值为( )A .511B .510C .509D .500【答案】A【分析】根据题意可得k ⋅AC AB >,列出不等式,求得最小整数解即可求解. 【详解】解:依题意,4AC =,2042AB =①扩大数轴①的单位长度至原来的k 倍,使点C 正上方位于数轴I 的点A 左侧, ∴k ⋅AC AB >,即42042k >, 解得15102k >,k 为正整数,①k 的最小值为511, 故选A .【点睛】本题考查了数轴上两点距离,一元一次不等式的应用,根据题意得出k ⋅AC AB >是解题的关键.2.不等式12<32x x -⎛⎫ ⎪⎝⎭的解在数轴上表示正确的是( )A .B .C .D .【答案】A【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得不等式的解集,继而可得答案.【详解】解:去括号,得:21<3x x -, 移项,得:3+2<1x x -, 合并同类项,得:<1x -, 系数化为1,得>1x -, 在数轴上表示为:故选:A .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.3.已知实数a ,b ,c 满足2a c b +=,112a c b+=.则下列结论正确的是( )A .若0a b >>,则0c b >>B .若1ac =,则1b =±C .a ,b ,c 不可能同时相等D .若2a =,则28b c =【答案】B【分析】A.根据0a b >>,则11a b <,根据112a c b+=,得出c b <;B.根据112a cb +=,得出()2ac b a c =+,把2a c b +=代入得:21b ac ==,即可得出答案;C.当a b c ==时,可以使2a c b +=,112a c b+=,即可判断出答案;D.根据解析B 可知,22b ac c ==,即可判断. 【详解】A.①0a b >>, ①11a b <, ①112a c b+=,①11c b>, ①c b <,故A 错误;B.①112a cb +=,即2a c ac b+=, ①()2ac b a c =+,把2a c b +=代入得:222ac b =,21b ac ∴==,解得:1b =±,故B 正确;C.当a b c ==时,可以使2a c b +=,112a c b+=,①a ,b ,c 可能同时相等,故C 错误;D.根据解析B 可知,2b ac =,把2a =代入得:22b c =,故D 错误. 故选:B .【点睛】本题主要考查了分式的化简,等式基本性质和不等式的基本性质,熟练掌握不等式的基本性质和等式的性质,是解题的关键.4.若数a 使关于x 的分式方程1133x a x x ++=--有非负整数解,且使关于y 的不等式组3212623y y y y a++⎧⎪⎨⎪≥-⎩>至少有3个整数解,则符合条件的所有整数a 的和是( ) A .﹣5 B .﹣3C .0D .2【答案】D【分析】解不等式组,根据题意确定a 的范围;解出分式方程,根据题意确定a 的范围,根据题意计算即可.【详解】解:3212623y y y y a ++⎧⎪⎨⎪≥-⎩>①②,解不等式①得:y >﹣8, 解不等式①得:y ≤a ,①原不等式组的解集为:﹣8<y ≤a , ①不等式组至少有3个整数解, ①a ≥﹣5, 1133x ax x++=--, 去分母得①1﹣x ﹣a =x ﹣3,解得:x 42a-=, ①分式方程有非负整数解, ①x ≥0(x 为整数)且x ≠3, ①42a-为非负整数,且42a -≠3, ①a ≤4且a ≠﹣2,①符合条件的所有整数a 的值为:﹣4,0,2,4, ①符合条件的所有整数a 的和是:2, 故选:D .【点睛】本题考查的是分式方程的解法、一元一次不等式组的解法,掌握解分式方程、一元一次不等式组的一般步骤是解题的关键.5.已知三个实数a 、b 、c ,满足325a b c ++=,231a b c +-=,且0a ≥、0b ≥、0c ≥,则37+-a b c 的最小值是( ) A .111-B .57-C .37D .711【答案】B【分析】由两个已知等式3a +2b +c =5和2a +b ﹣3c =1.可用其中一个未知数表示另两个未知数,然后由条件:a ,b ,c 均是非负数,列出c 的不等式组,可求出未知数c 的取值范围,再把m =3a +b ﹣7c 中a ,b 转化为c ,即可得解.【详解】解:联立方程组325231a b c a b c ++=⎧⎨+-=⎩,解得,73711a c b c =-⎧⎨=-⎩,由题意知:a ,b ,c 均是非负数, 则07307110c c c ≥⎧⎪-≥⎨⎪-≥⎩, 解得37711c ≤≤, ①3a +b ﹣7c=3(﹣3+7c )+(7﹣11c )﹣7c =﹣2+3c,当c =37时,3a+b ﹣7c 有最小值,即3a+b ﹣7c =﹣2+3×37=﹣57.故选:B .【点睛】此题主要考查代数式求值,考查的知识点相对较多,包括不等式的求解、求最大值最小值等,另外还要求有充分利用已知条件的能力.二、填空题6.一元二次方程x 2+5x ﹣m =0有两个不相等的实数根,则m 的取值范围是 _____. 【答案】254m >-## 6.25m >-##164m >- 【分析】由方程有两个不相等的实数根结合根的判别式,可得254()0m =-->Δ,进行计算即可得. 【详解】解:根据题意得254()0m =-->Δ, 解得,254m >-, 故答案为:254m >-. 【点睛】本题考查了根的判别式,解题的关键是掌握根的判别式并认真计算. 7.若关于x 的分式方程232x mx -=-的解是非负数,则m 的取值范围是________. 【答案】m ≤6且m ≠4【分析】先求得分式方程的解,利用已知条件列出不等式,解不等式即可求解. 【详解】解:关于x 的分式方程232x mx -=-的解为:x =6−m , ①分式方程有可能产生增根2, ①6−m ≠2, ①m ≠4,①关于x 的分式方程232x mx -=-的解是非负数, ①6−m ≥0, 解得:m ≤6,综上,m 的取值范围是:m ≤6且m ≠4. 故答案为:m ≤6且m ≠4.【点睛】本题主要考查了分式方程的解,解一元一次不等式,解分式方程一定要注意有可能产生增根的情况,这是解题的关键.三、解答题8.2022年4月16日,神舟十三号载人飞船返回舱成功着陆,三名航天员平安归来,神舟十三号任务取得圆满成功.飞箭航模店看准商机,推出了“神舟”和“天宫”模型.已知每个“神舟”模型的成本比“天宫”模型多10元,同样花费100元,购进“天宫”模型的数量比“神舟”模型多5个.(1)“神舟”和“天宫”模型的成本各多少元?(2)飞箭航模店计划购买两种模型共200个,且每个“神舟”模型的售价为30元,“天宫”模型的售价为15元.设购买“神舟”模型a 个,销售这批模型的利润为w 元. ①求w 与a 的函数关系式(不要求写出a 的取值范围);①若购进“神舟”模型的数量不超过“天宫”模型数量的13,则购进“神舟”模型多少个时,销售这批模型可以获得最大利润?最大利润是多少?【答案】(1)“天宫”模型成本为每个10元,“神舟”模型每个20元(2)①51000w a =+①购进“神舟”模型50个时,销售这批模型可以获得最大利润,最大利润为1250元【分析】(1)根据总数,设立未知数,建立分式方程,即可求解.(2)①设“神舟”模型a 个,则“天宫”模型为200a -()个,根据利润关系即可表示w 与a 的关系式. ①根据购进“神舟”模型的数量不超过“天宫”模型数量的13,即可找到a 的取值范围,利用一次函数性质即可求解. (1)解:设“天宫”模型成本为每个x 元,则“神舟”模型成本为每个10x +()元. 依题意得100100510x x =++. 解得10x =.经检验,10x =是原方程的解.答:“天宫”模型成本为每个10元,“神舟”模型每个20元; (2)解:①“神舟”模型a 个,则“天宫”模型为200a -()个.()()()3020151020051000w a a a ∴=-+--=+.①购进“神舟”模型的数量不超过“天宫”模型数量的13. ()12003a a ∴≤-. 解得:50a ≤.51000w a =+.50k =>.()max 5055010001250a w ∴==⨯+=当时,元.即:购进“神舟”模型50个时,销售这批模型可以获得利润.最大利润为1250元.【点睛】本题考查了分式方程、一次函数的性质,关键在于找到等量关系,建立方程,不等式,函数模型.9.解不等式组:3(2)821+1<52x x x x --≥--⎧⎪⎨⎪⎩ 【答案】1x ≥-【分析】先分别求出两个一元一次不等式的解集,然后根据“同大取大、同小取小,小大大小取中间、大大小小找不到”即可求解. 【详解】解:3(2)821+1<52x x x x --≥--⎧⎪⎨⎪⎩①②, 解不等式①,得 1x ≥-,解不等式①,得 >7x -,①该不等式组的解集为 1x ≥-.【点睛】本题主要考查了解一元一次不等式组,理解并掌握求不等式组的原则“同大取大、同小取小,小大大小取中间、大大小小找不到”是解题的关键.。
在数轴上表示不等式的解

索罗学院
在数轴上表示不等式的解
疑惑:不等式的解在数轴上的表示方法
解析:不等式的解集指的是一个范围,题目经常要求我们在数轴上表示不等式的解集,在数轴上表示时需要注意:如果带有等号,也就是取到了端点,此时在端点处需标上实心圆,反之不带等号则在端点处标记空心圆。
几种常见情况如下:1、不等式解集表示单方向时,在数轴上的表示方法(1)x>3 (2)x≤-1 2、不等式解集表示一个公共区域或多个区域时,在数轴上表示方法 (1)-1≤x<3 (2)x>2 且x≤-2
结论:当不等式的解集取到端点时,需要在端点处标记实心圆,反之没有取到端点,则标记空心圆。
本文由索罗学院整理索罗学院是一个免费的中小学生学习网,上面有大量免费学习视频,欢迎大家前往观看!。
初中数学知识点必备:不等式

初中数学知识点必备:不等式学校数学学问点:不等式1用小于号或大于号表示大小关系的式子,叫做不等式(inequality)。
使不等式成立的未知数的值叫做不等式的解。
能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集(solution set)。
含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。
不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变。
不等式两边乘(或除以)同一个正数,不等号的`方向不变。
不等式两边乘(或除以)同一个负数,不等号的方向转变。
三角形中任意两边之差小于第三边。
三角形中任意两边之和大于第三边。
不等式(组)1、不等式:用不等号(“”、“≤”、“”、“≥”、“≠”)表示不等关系的式子。
2、不等式的基本性质:(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向转变。
3、不等式的解:能使不等式成立的未知数的值,叫做不等式的解。
4、不等式的解集:一个含有未知数的不等式的全部解,组成这个不等式的解集。
提示大家:解不等式指的是求不等式解集的过程叫做解不等式。
学校数学学问点:不等式21.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.留意:一般说二元一次方程有很多个解.2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.留意:一般说二元一次方程组只有解(即公共解).4.二元一次方程组的解法:(1)代入消元法;(2)加减消元法;(3)留意:推断如何解简洁是关键。
5.一次方程组的应用:(1)对于一个应用题设出的未知数越多,列方程组可能简单一些,但解方程组可能比较麻烦,反之则难列易解(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系。
不等式解集的数轴表示PPT课件

2020年10月2日
2
2.尝试反馈,巩固知识
(1)不等式X>-2与X≥-2的解集与有什么不同?在数轴上表 示它们时怎样区别?分别在数轴上把这两个解集表示出来.
2020年10月2日
3
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
汇报人:XXX 汇报日期:20XX年10月10日
4
不等式解集的数轴表示
不等式的解集:一般地,一个含有未知数的不等式的所有的 解,组成这个不等式的解的集合,简称这个不等式的解集. 1.在数轴上表示不等式的解集
①表示不等式 x36的解集:( x 3)
2020年10月2日
1Leabharlann ②表示不等式 x53的解集:( x2 )
注意:在数轴上表示-2的点的位置上,应画实心圆 心,表示包括这一点.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10数轴(表示不等式的解)一、选择题:1.一个不等式的解集为﹣1<x≤2,那么在数轴上表示正确的是()A. B. C.D.2.不等式2x﹣4≥0的解集在数轴上表示正确的是()A. B. C.D.3.把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是()A. B. C. D.4.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A.x<4B.x<2C.2<x<4D.x>25.不等式2(x+1)<3x的解集在数轴上表示出来应为()A. B. C.D.6.不等式2x﹣6>0的解集在数轴上表示正确的是()A. B. C.D.7.解集在数轴上表示为如图所示的不等式组是()A. B. C. D.8.若关于x的不等式x﹣m≥﹣1的解集如图所示,则m等于()A.0B.1C.2D.39.不等式:2x+1≥3的解集在数轴上表示正确的是()A. B. C.D.10.如图,图中阴影部分表示x的取值范围,则下列表示中正确的是()A.x>﹣3<2B.﹣3<x≤2C.﹣3≤x≤2D.﹣3<x<211.不等式组:的解集在数轴上可表示为()A. B. C.D.12.在数轴上表示不等式2x﹣6≥0的解集,正确的是()A. B. C. D.13.将不等式组的解集在数轴上表示出来,应是()A. B. C.D.14.已知关于x的不等式2x+m>﹣5的解集如图所示,则m 的值为()A.1B.0C.﹣1D.﹣215.不等式组的解集在数轴上表示,正确的是()A. B. C.D.16.已知关于x的不等式2x﹣m>﹣3的解集如图,则m的值为()A.2B.1C.0D.﹣117.若不等式组的解集为﹣1≤x≤3,则图中表示正确的是()A. B. C.D.18.满足﹣1<x≤2的数在数轴上表示为()A. B. C. D.19.在数轴上表示不等式x>﹣2的解集,正确的是()A. B. C. D.20.如图,用不等式表示数轴上所示不等式组的解集,正确的是()A.x<﹣1或x≥﹣3B.x≤﹣1或x>3C.﹣1≤x<3D.﹣1<x≤321.不等式组的解集在数轴上可表示为()A. B. C. D.22.下图所表示的不等式组的解集为()A.x>3B.﹣2<x<3C.x>﹣2D.﹣2>x>323.关于x的不等式﹣2x+a≤2的解集如图所示,那么a的值是()A.﹣4B.﹣2C.0D.224.已知⊙O1和⊙O2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O1O2的取值范围在数轴上表示正确的是()A. B. C. D.二、填空题:25.表示不等式组的解集如图所示,则不等式组的解集是_________ .26.图中是表示以x为未知数的一元一次不等式组的解集,那么这个一元一次不等式组可以是_________ .一、选择题(共24小题)1、(2009•河池)一个不等式的解集为﹣1<x≤2,那么在数轴上表示正确的是()A、B、C、D、考点:在数轴上表示不等式的解集。
分析:根据数轴上的点表示的数,右边的总是大于左边的数.这个解集就是不等式x>﹣1和x≤2的解集的公共部分.解答:解:数轴上﹣1<x≤2表示﹣1与2之间的部分,并且包含2,不包含﹣1,在数轴上可表示为:故选A.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2、(2008•重庆)不等式2x﹣4≥0的解集在数轴上表示正确的是()A、B、C、D、考点:在数轴上表示不等式的解集。
专题:图表型。
分析:本题比较容易,考查利用数轴表示不等式的解集,首先解不等式2x﹣4≥0,得x≥2,根据在数轴上表示不等式解集的方法,大于向右,小于向左,有等号是实心点,没有等号是空心圈.解答:解:不等式2x﹣4≥04的解集是x≥2,又知:大于应向右画,包括2时,应用实心的原点表示2这一点,故应选C.点评:本题考查解不等式的以及在数轴上表示不等式.3、(2008•河北)把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是()A、B、C、D、考点:在数轴上表示不等式的解集。
分析:本题根据数轴可知x的取值为:﹣1≤x<4,将不等式变形,即可得出关于x的不等式组.把各个选项的解的集合写出,进行比较就可以得到.解答:解:依题意得这个不等式组的解集是:﹣1≤x<4.A、无解;B、解集是:﹣1≤x<4;C、解集是:x>4;D、解集是:﹣1<x≤4;故选B.点评:考查不等式组解集的表示方法.实心圆点包括该点,空心圆圈不包括该点,>向右<向左.4、(2007•武汉)如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A、x<4B、x<2C、2<x<4D、x>2考点:在数轴上表示不等式的解集。
分析:根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分,公共部分是2左边的部分.解答:解:不等式组的解集是指它们的公共部分,公共部分是2左边的部分.因而解集是x<2.故选B.点评:不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5、(2007•内江)不等式2(x+1)<3x的解集在数轴上表示出来应为()A、B、C、D、考点:在数轴上表示不等式的解集。
分析:首先解不等式,把不等式的解集表示出来,再对照答案的表示法判定则可.解答:解:去括号得:2x+2<3x移项,合并同类项得:﹣x<﹣2即x>2.故选D.点评:解不等式依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化.6、(2007•金华)不等式2x﹣6>0的解集在数轴上表示正确的是()A、B、C、D、考点:在数轴上表示不等式的解集。
专题:图表型。
分析:不等式2x﹣6>0的解集是x>3,>应向右画,且不包括3时,应用圈表示,不能用实心的原点表示3这一点,据此可求得不等式的解以及解集再数轴上的表示.解答:解:不等式移项,得2x>6,系数化1,得x>3;∵不包括3时,应用圈表示,不能用实心的原点表示3这一点答案.故选A.点评:在数轴上表示不等式的解集时,>向右,<向左,有等于号的画实心原点,没有等于号的画空心圆圈.7、(2007•福州)解集在数轴上表示为如图所示的不等式组是()A、B、C、D、考点:在数轴上表示不等式的解集。
分析:由数轴可以看出不等式的解集在﹣3到2之间,且不能取到﹣3,能取到2,即﹣3<x≤2.解答:解:根据数轴得到不等式的解集是:﹣3<x≤2.A、不等式组的解集是x≥2.B、不等式组的解集是x<﹣3.C、不等式组无解.D、不等式组的解集是﹣3<x≤2.故选D.点评:在数轴上表示不等式组解集时,实心圆点表示“≥”或“≤”,空心圆圈表示“>”或“<”.8、(2006•宿迁)若关于x的不等式x﹣m≥﹣1的解集如图所示,则m等于()A、0B、1C、2D、3考点:在数轴上表示不等式的解集。
专题:图表型。
分析:首先解得关于x的不等式x﹣m≥﹣1的解集即x≥m﹣1,然后观察数轴上表示的解集,求得m的值.解答:解:关于x的不等式x﹣m≥﹣1,得x≥m﹣1,由题目中的数轴表示可知:不等式的解集是:x≥2,因而可得到,m﹣1=2,解得,m=3.故选D.点评:本题解决的关键是正确解出关于x的不等式,把不等式问题转化为方程问题.9、(2006•泸州)不等式:2x+1≥3的解集在数轴上表示正确的是()A、B、C、D、考点:在数轴上表示不等式的解集。
分析:利用不等式的基本性质把不等式的解集解出来,然后根据解出的解集把正确的答案选出来.解答:解:移项2x≥2x≥1故选D点评:本题考查了一元一次不等式的解法和在数轴上表示不等式的解集,注意:大于或等于时要用实心表示.10、(2006•柳州)如图,图中阴影部分表示x的取值范围,则下列表示中正确的是()A、x>﹣3<2B、﹣3<x≤2C、﹣3≤x≤2D、﹣3<x<2考点:在数轴上表示不等式的解集。
分析:x表示﹣3右边的数,即大于﹣3,并且是2以及2左边的数,即小于或等于2的数.解答:解:根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分.A、不等式的表示方法是错的,应该是﹣3<x<2,C、因为﹣3≤x≤2,在数轴上﹣3和2的点应该是实心的圆点;D、因为﹣3<x<2,在数轴上﹣3和2的点应该是空心的圆点;故选B.点评:不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.11、(2006•衡阳)不等式组:的解集在数轴上可表示为()A、B、C、D、考点:在数轴上表示不等式的解集。
分析:在表示数轴时,实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.而它们相交的地方加上阴影即为不等式的解集在数轴上的表示.解答:解:两个不等式的公共部分是在数轴上,5以及5右边的部分,因而解集可表示为:故选D.点评:注意不等式组解的解集在数轴上的表示方法,当包括原数时,在数轴上表示应用实心圆点表示方法,当不包括原数时应用空心圆圈来表示.12、(2006•长春)在数轴上表示不等式2x﹣6≥0的解集,正确的是()A、B、C、D、考点:在数轴上表示不等式的解集。
分析:首先解出不等式的解集,然后根据解集在数轴上的表示法就可以得到.解答:解:等式2x﹣6≥0的解集为x≥3,A、表示x>3;B、表示x≥3;C、表示x≥﹣3;D、表示x<﹣3;故选B.点评:此题较简单,解答此题的关键是求出不等式的解集,根据不等式画出数轴,实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.13、(2005•盐城)将不等式组的解集在数轴上表示出来,应是()A、B、C、D、考点:在数轴上表示不等式的解集。
分析:本题可根据数轴的性质“实心圆点包括该点用“≥”,“≤”表示,空心圆圈不包括该点用“<”,“>”表示,大于向右小于向左.”画出数轴.先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.解答:解:不等式组的解集是1≤x≤3,因而在数轴上可表示为:故选A.点评:本题考查不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示14、(2005•黄石)已知关于x的不等式2x+m>﹣5的解集如图所示,则m的值为()A、1B、0C、﹣1D、﹣2考点:在数轴上表示不等式的解集。