二次根式的双重非负性在解题中的运用

合集下载

走进中考-----巧用“非负性解题”

走进中考-----巧用“非负性解题”

走进中考--------巧用“非负性解题”非负性的含义是指大于或等于零。

在初中阶段,我们主要学习了绝对值的非负性;平方的非负性;二次根式的双重非负性,即它的被开方数和它的值都是非负的;一元二次方程有实根的条件,即根的判别式为非负;以及方差的非负性。

下面从六个方面举例说明它们的运用:一、利用绝对值的非负性解题【例1】的值。

求已知32,012y x y x -=+++解析 由绝对值的非负性知,.01,02≥+≥+y x 要这两个非负数之和为0,只有每一个非负数都为0,即,.01,02=+=+y x 从而01,02=+=+y x ,所以1,2-=-=y x ,所以()().514123232=+=---=-y x 练习1: ()的值。

求已知2017,0201712017ab b a =+++ 二、利用平方的非负性解题【例2】若()0542=-++-y x x ,计算:=++4322y xy y x ________________。

解析 根据绝对值和平方的非负性质,得⎩⎨⎧=-+=-0504y x x ,解得⎩⎨⎧==14y x , 所以294114144322322=+⨯+⨯=++y xy y x 。

练习2:已知(),012,2=++-y x y x 满足则=-y x三、利用二次方根的被开方数的非负性解题【例3】已知2133+-+-x x y ,化简144122+---y y y 。

解析 因为2133+-+-x x y ,由二次根式的被开方数为非负性知:0-303≥≥-x x 且,从而x=3,所以21 y 。

故有()()021211212144122=---=---=+---y y y y y y y 。

练习3:若a,b 为实数,且()2015,011ab b a 求=-++的值。

四、利用算术平方根的非负性解题【例4】设x 、y 为实数,且0742=++-y x ,求y x -的值。

解析 根据算术平方根的非负性知,07,042≥+≥-y x ,又因为它们的和为0。

√a的双重非负性在解题中的应用

√a的双重非负性在解题中的应用

√a的双重非负性在解题中的应用
双重非负性是一种数学概念,它可以帮助我们理解和解决许多数
学问题。

在本文中,我们将讨论如何使用双重非负性来解决方程。

我们首先来看看具有双重非负性的方程。

例如,我们可以考虑以
下方程:ax²+bx+c=0。

在这种情况下,a,b和c都是正数,且a≠0。

由于a,b和c都是正数,因此可以说该方程具有双重非负性。

此外,
该方程的两个解也必须同时满足双重非负性。

显然,要解决这种方程,我们必须找出满足双重非负性的两个解。

首先,我们可以使用平方差公式来求出该方程的两个解。

其次,我们
可以使用双重非负性来确定正确的解。

例如,如果符号b²-4ac小于0,则该方程没有实数根。

但是,如果符号b²-4ac大于等于0,则该方程
有两个实数根。

并且,使用双重非负性,我们可以确保这两个实数根
都大于等于0。

此外,我们可以用双重非负性来检验我们所获得的解是否正确。

例如,假设我们得到的解是x1 = -2,x2 = 5,那么我们可以将这两个解代入方程,并检查这两个解是否能使方程成立,如果成立,那么我
们就可以确定这两个解是正确的,因为它们同时满足双重非负性。

总之,双重非负性是一种数学概念,它可以帮助我们解决许多数
学问题,特别是涉及方程的问题。

通过使用双重非负性,我们可以确
定正确的解,并可以检验我们所获得的解是否是正确的。

部编人教版八年级数学下册重点强化专题一:二次根式的非负性

部编人教版八年级数学下册重点强化专题一:二次根式的非负性

部编人教版八年级数学下册重点强化专题一(含答案)二次根式的非负性【方法技巧】 a 表示非负数a 算术平方根,它具有双重非负性:(1)二次根式的结果是非负数,即a ≥ 0.(2)二次根式的被开方数是非负数,即a ≥0.一、利用二次根式的非负性求范围1. 二次根式4-x 有意义,则实数x 的取值范围是 .2. 若m m -=-1)1(2 , 则m 的取值范围是 .二、利用二次根式的非负性化简3. 若a>2,则=+---12)2(22a a a . 4.化简:yy 1-- = . 5.当 x<0时,化简 : xx x x 24422-+-= 6.实数在数轴上的位置如图所示,化简:222)()2()2(b a b a ++--+三、利用二次根式的非负性求值7. 若| x+y-1|+0102=+-y x , 则4y-3x 的平方根是8. 311+=-+-a a a 求a 值。

9. 若433+---=x x y , 求222244()2(y xy x y xy x +-++-的值.10. 已知实数x 、y 满足,0256102=+++-y x x ,求2020)(y x +的值.b-2-112参考答案1.∵ x-4≥0 ∴x ≥42.∵0)1(2≥-m 1.∴1-m ≥0 ∴m ≤1 3. ∵a >2 ∴=+---12)2(22a a a 22)1()2(---a a =1)1()2(-=---a a 4.∵01≥-y ∴y <0 ∴ y y y y y -=-=--215.∵x<0时x x x x x x x x x x x 1)2(2)2()2(244222-=--=--=-+-6. 如图可知:a+2>0 b-2<0 :a+b>0∴a b a b a b a b a 2)()2()2()()2()2(222=++--+=++--+ 7. ∵| x+y-1|≥0 ,0102≥+-y x∴ | x+y-1|=0且 0102=+-y x∴ x+y-1=0,2x-y+10=0解之得: x= -3 , y=4 , ∴4y-3x =25,则4y-3x 的平方根是58. 由,1≥a ,有321111+==-+-=-+-a a a a a a3=a 9. 由433+---=x x y 得4,3==y x O x ba -2-112321)2()(44()2(222222=+=-+-=+-++-y x y x y xy x y xy x 10. 1)y x (,6y ,5x ,0)6(y )5x (,025*********=+∴-===++-=+++-所以有:得:由y x x。

专题6二次根式易错题疑难题综合拓展题及2022中考真题集训(解析版)

专题6二次根式易错题疑难题综合拓展题及2022中考真题集训(解析版)

专题6 二次根式易错题疑难题综合拓展题及2022中考真题集训类型一 易错题:教材易错易混题集训易错点1 考虑问题不全面典例1(2021春•+x 的取值范围是( )A .x >﹣2B .x ≥3C .x ≥3且x ≠﹣2D .x ≥﹣2思路引领:根据二次根式有意义的条件即可求出答案.解:由题意可知:x ―3≥0x +2>0,解得:x ≥3,故选:B .总结提升:本题考查二次根式以有意义的条件,解题的关键是正确理解二次根式的条件,本题属于基础题型.变式训练1.(2019•x 应满足的条件是( )A .x ≠3B .x ≤―13C .x ≥―13且x ≠3D .x >―13且x ≠3思路引领:根据二次根式有意义的条件,分式有意义的条件列出不等式,解不等式即可.解:由题意得,1+3x ≥0,x ﹣3≠0,解得,x ≥―13且x ≠3,故选:C .总结提升:本题考查的是二次根式有意义的条件,分式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0是解题的关键.易错点2 (0)a a =³时,忽略a ≥0典例2(2022春•乐陵市期末)先阅读材料,然后回答问题.(1经过思考,小张解决这个问题的过程如下:===在上述化简过程中,第 ④ 步出现了错误,化简的正确结果为 (2思路引领:(1|a |即可进行判断;(2)把被开方数化成完全平方的形式,然后利用二次根式的性质即可化简求解.解:(1)在化简过程中④故答案是:④―(2)原式====总结提升:本题考查了二次根式的化简求值,正确把被开方数化成完全平方的形式是本题的关键.变式训练1= .思路引领:根据二次根式的性质和完全平方公式化简即可.===―1,―1.总结提升:本题考查了二次根式的性质和化简,熟练掌握二次根式的性质是解题的关键.2.对于题目:“化简并求值:1a+a =15”,甲、乙两人的解答不同.甲的解答是:1a 1a +1a ―a =2a―a =495,乙的解答是:1a 1a +a ―1a =a =15.阅读后你认为谁的解答是错误的?为什么?思路引领:已知二次根式具有双重非负性,即被开方数为非负数,二次根式的值为非负数,已知a =15,故可得1a ―a =5―15>01a―a ,再对待求式进行化简求值即可解答题目.解:乙错误,理由如下:1a +=1a +=1a +|1a―a |.∵a =15,∴1a―a =5―15=245>0,∴|1a ―a |=1a―a ,1a +1a +1a ―a =2a ―a =495.故乙的解答是错误的.总结提升:本题考查分式的化简求值,正确进行计算是解题关键.易错点3 忽视二次根式的隐含条件典例3阅读下列解答过程,判断是否正确.如果正确,请说明理由;如果不正确,请写出正确的解答过程.已知a ―a (a ﹣1思路引领:先根据二次根式有意义的条件求出a 的取值范围,再进行化简.解:不正确,∵﹣a 3>0,∴a <0,―=﹣=(﹣a+1总结提升:本题考查了二次根式有意义的条件,二次根式的化简是解题的关键.变式训练1.(2022秋•长安区期中)求代数式a+a=﹣2022.下面是小芳和小亮的解题过程,都是把含有字母式子先开方再进行运算的方法,请认真思考、理解解答过程,回答下列问题.小芳:解:原式=a=a+1﹣a=1小亮:解:原式=a=a+a﹣1=﹣4045(1) 的解法是错误的;(2)求代数式a a=4―思路引领:(1)根据题意得到a﹣1<0,根据二次根式的性质计算即可;(2)根据二次根式的性质把原式化简,代入计算即可.解:(1)∵a=﹣2022,∴a﹣1=﹣2022﹣1=﹣2023<0,1﹣a,∴小亮的解法是错误的,故答案为:小亮;(2)∵a=4∴a﹣3=4――3=1―0,3﹣a,则a=a=a+2(3﹣a)=6﹣a,当a=4―6﹣(4―2+总结提升:=|a|是解题的关键.易错点4 成立的条件是a≥0,b≥0典例4(2022春•⋅x的取值范围是( )A.x≥1B.x≥0C.0≤x≤1D.x为任意实数思路引领:根据二次根式有意义的条件列不等式组求解.解:由题意可得x≥0x―1≥0,解得:x≥1,故选:A.总结提升:a≥0)是解题关键.变式训练1.(2021春•―(x x的取值范围是( )A.x≥﹣1B.x≥﹣2C.x≤﹣1D.﹣2≤x≤﹣1思路引领:根据二次根式化简与有意义的条件,即可求得:x+1≤0x+2≥0,解此不等式组即可求得答案.=―(x+1∴x+1≤0 x+2≥0,解得:﹣2≤x≤﹣1.故选:D.总结提升:此题考查了二次根式化简与有意义的条件.此题比较简单,注意掌握二次根式有意义的条件.易错点5 运用想当然的运算法则典例5(2021秋•÷解:原式=―①=②=(2―③=④(1)老师认为小明的解法有错,请你指出小明从第 步开始出错的;(2)请你给出正确的解题过程.思路引领:根据二次根式的运算法则即可求出答案.解:(1)③,故答案为:③.(2)原式==―=总结提升:本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则.变式训练1.(2022春•―=4.他的解答过程是否有错误?如果有错误,请写出正确的解答过程.思路引领:根据二次根式的加减法的法则进行分析即可.解:有错误,==总结提升:本题主要考查二次根式的加减法,解答的关键是对二次根式的加减法的法则的掌握.易错点6 误用乘法公式典例6(2022秋•金水区校级期中)计算:下面是李明同学在解答某个题目时的计算过程,请认真阅读并完成相应任务.222+22+2……第一步=10……第三步任务一:填空:以上步骤中,从第 步开始出现错误,这一步错误的原因是 ;任务二:请写出正确的计算过程;任务三:除纠正上述错误外,请你根据平时的学习经验,就二次根式运算时还需注意的事项给其他同学提一条建议.思路引领:任务一:利用完全平方公式进行计算即可解答;任务二:先计算二次根式的乘法,再算加减,即可解答;任务三:根据在进行二次根式运算时,结果必须化成最简二次根式,即可解答.解:任务一:填空:以上步骤中,从第一步开始出现错误,这一步错误的原因是完全平方公式运用错误,故答案为:一,完全平方公式运用错误;任务二:222+2﹣[2﹣+2]=5﹣(6﹣+5)=5﹣5=任务三:在进行二次根式运算时,结果必须化成最简二次根式.总结提升:本题考查了二次根式的混合运算,熟练掌握完全平方公式是解题的关键.易错点7 运用运算律出现符号错误典例7(2022秋•迎泽区校级月考)下面是小明同学进行实数运算的过程,认真阅读并完成相应的任务:×+1)︸①×︸②第一步―10+2……第二步―8……第三步任务一:以上化简步骤中第一步中:标①的运算依据是 ;标②的运算依据是 (运算律).任务二:第 步开始出现错误,错误原因是 ,该式运算后的正确结果是 .思路引领:利用二次根式的性质、二次根式的加减法法则、除法法则计算可得结论.解:任务一、①由②的运算依据是乘法的分配律;故答案为:二次根式的性质.乘法的分配律;任务二、从第二步开始出现错误.×+1)×1―10﹣2―12,故答案为:任务一:二次根式的性质;乘法的分配律.任务二:①12.总结提升:本题考查了二次根式的混合运算,掌握二次根式的性质及运算法则是解决本题的关键.变式训练1.(2022春•12(的过程,请认真阅读并完成相应的任务.―12(―12(2第一步―12×―12×第二步第三步第四步=―第五步任务一:小明同学的解答过程从第 步开始出现错误,这一步错误的原因是  .任务二:请你写出正确的计算过程.思路引领:先计算二次根式的乘法,再算加减,即可解答.解:(1)任务一:小明同学的解答过程从第二步开始出现错误,这一步错误的原因是去括号后,括号内第二项没有变号,故答案为:二;去括号后,括号内第二项没有变号;(2―12(―12(2总结提升:本题考查了二次根式的混合运算,准确熟练地进行计算是解题的关键.易错点8 滥用运算律典例8(2021秋•迎泽区校级月考)下面是小倩同学进行实数运算的过程,认真阅读并完成相应的任务:÷1 )第一步1⋯第二步+2第三步+2﹣10…第四步―8…第五步任务一:以上化简步骤中第一步化简的依据是 .任务二:第 二 步开始出现错误,该式运算后的正确结果是 .思路引领:利用二次根式的性质、二次根式的加减法法则、除法法则计算可得结论.故答案为:二次根式的性质.任务二、从第二步开始出现错误.÷1)÷1)=2+4++52总结提升:本题考查了二次根式的混合运算,掌握二次根式的性质及运算法则是解决本题的关键.类型二疑难题:常考疑难问题突破疑难点1 二次根式非负性的应用1.已知实数a 满足|2019﹣a |+a ,求a ﹣20192的值.思路引领:首先由二次根式有意义的条件来去绝对值,得到a ﹣2019a ,由此得到a ﹣20192=2019.解:∵a ﹣2019≥0,∴a >2019.∴由|2019﹣a |+=a 得到a ﹣2019+a ,整理,得a ﹣2019=20192.∴a ﹣20192=2019.总结提升:a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.疑难点2 整体思想在二次根式中的应用2.(2018春•禹州市期中)已知a =+1,b ―1(a b +b a―1)的值思路引领:先由a 、b 的值计算出ab 、a +b 的值,再代入到原式=•a 2b 2abab a 2得.解:∵a =1,b =―1,∴a +b =ab 1)1)=2,则原式=•a 2b 2ab ab=总结提升:本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及完全平方公式.3.(1)已知x =x 2﹣2x +5的值;(2)若a =2b =2,求a思路引领:(1)先把x 2﹣2x +5化简,再代入求值;(2)先把a―解:(1)由x 2+1,∴x 2﹣2x +5+1)2﹣2+1)+5=―2+5=7;(2=a =ab a b,当a =2+b =2―原式=总结提升:先化简再代入,应该是求值题的一般步骤;不化简,直接代入,虽然能求出结果,但往往导致繁琐的运算.疑难点3 判断求知问题4.(2019春•西湖区校级期中)王老师为了解学生掌握二次根式知识的情况,出了这样一道题:“根据所给”粗心的黎明同学把式子看错了,他根据条件得到2”思路引领:2,继而求出答案.解:45﹣x 2﹣(35﹣x 2)=10,2,5.总结提升:本题考查二次根式的乘除法运算,难度不大,关键是平方差公式的运用.类型三 综合拓展题:思维能力专项特训专题1 二次根式性质的应用1.(2022秋•+|2a ﹣b +1|=0,则(b ﹣a )2022=( )A .﹣1B .1C .52022D .﹣52022思路引领:因为算术平方根具有非负性,在实数范围内,任意一个数的绝对值都是非负数,若+|2a ﹣b +1|=0,则a +b +5=0,2a ﹣b +1=0,联立组成方程组,解出a 和b 的值即可解答.|2a ﹣b +1|=0,∴a+b+5=02a―b+1=0,解得a=―2 b=―3,∴(b﹣a)2022=(﹣3+2)2022=(﹣1)2022=1.故选:B.总结提升:本题考查了非负数的性质以及解二元一次方程组,根据几个非负数的和等于0,则每一个算式都等于0列出关于a、b的方程是解题的关键.2.已知x、y为实数,且y=+12,求5x﹣3y的值.思路引领:根据二次根式有意义的条件列出不等式,求出x、y的值,计算即可.解:由题意得,3x﹣4≥0,4﹣3x≥0,解得,x=4 3,∴y=1 2,则5x﹣3y=5×43―3×12=316.总结提升:本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.3.(2022春•大连月考)已知实数a在数轴上的对应点位置如图,则化简|a―1|―( )A.2a﹣3B.﹣1C.1D.3﹣2a思路引领:根据数轴上a点的位置,判断出(a﹣1)和(a﹣2)的符号,再根据非负数的性质进行化简.解:由图知:1<a<2,∴a﹣1>0,a﹣2<0,原式=a﹣1﹣[﹣(a﹣2)]=a﹣1+(a﹣2)=2a﹣3.故选:A.总结提升:此题主要考查了二次根式的性质与化简,正确得出a﹣1>0,a﹣2<0是解题关键.4.当x+6有最小值,最小值为多少?思路引领:≥0,可以得出最小值.0,∴当x =―12时,6有最小值,最小值为6.总结提升:本题考查了算术平方根.解题的关键是掌握算术平方根的非负性.5.(2019秋•渠县校级期中)已知x 、y 、a 满足:+=x 、y 、a 的三条线段组成的三角形的面积.思路引领:直接利用二次根式的性质得出x +y =8,进而得出:3x ―y ―a =0x ―2y +a +3=0x +y =8,进而得出答案.解:根据二次根式的意义,得x +y ―8≥08―x ―y ≥0,解得:x +y =8,0,根据非负数得:3x ―y ―a =0x ―2y +a +3=0x +y =8,解得:x =3y =5a =4,∴可以组成直角三角形,面积为:12×3×4=6.总结提升:此题主要考查了二次根式的应用,正确应用二次根式的性质是解题关键.专题2 二次根式大小比较方法1 平方法1.(2022•思路引领:++解:2=202=∴20+故答案为:<.总结提升:(1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.(2)解答此题的关键是比较出两个数的平方的大小关系.方法2 分子有理化法2.认真阅读下列解答过程:比较2―解:∵2―(2―1,=1,又20即22的大小关系.思路引领:认真阅读题目,然后依据题目所给的方法进行比较即可.―2=21,2>0,<1.2.总结提升:1,―2=1是解题的关键.方法3 作商法3.利用作商法比较大小思路引领:根据作商比较法,看最后的比值与1的大小关系,从而可以解答本题.=×=1,总结提升:本题考查分母有理化、实数大小的比较,解题的关键是明确作商法比较大小的方法.方法四定义法4思路引领:根据非负数的性质和有理数大小的比较方法即可得到结论.解:∵5﹣a≥0,∴a≤5,∴a﹣6<0,00,总结提升:本题考查的是实数的大小比较,要善于借助一个中间数作桥梁是解决问题的关键.专题3 二次根式的运算5.(2019秋•皇姑区校级月考)计算:(1)(2)―÷(3)(1―――1)2.(4―11)―20180――2|.思路引领:(1)直接化简二次根式进而合并即可;(2)直接利用二次根式的混合运算法则进而得出答案;(3)直接利用二次根式的混合运算法则计算进而得出答案;(4)直接利用负整数指数幂的性质以及零指数幂的性质分别化简进而得出答案.解:(1)原式=+=(2)原式=(=﹣1;(3)原式=+―(12+1﹣=――=﹣―(4)原式=3――1﹣2=总结提升:此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.专题4 二次根式的求值6.(2022秋•宁德期中)已知:x =y =(1)填空:|x ﹣y |= ;(2)求代数式x 2+y 2﹣2xy 的值.思路引领:(1)根据二次根式的减法运算法则计算即可.(2)将代数式转化为(x ﹣y )2,再分别求出x ﹣y 和xy 的值,进而可得答案.解:(1)|x ﹣y |=||=+=故答案为:(2)x 2+y 2﹣5xy =(x ﹣y )2,∵x ﹣y =∴(x ﹣y )2﹣3xy =2=8.即代数式x 2+y 2﹣2xy 的值为8.总结提升:本题考查二次根式的化简求值,熟练掌握运算法则是解答本题的关键.7.(2020春•川汇区期末)计算题:已知x +1x x ―1x 的值.思路引领:根据平方差公式计算;∵x +1x∴(x +1x)22,∴x 2+2+1x 2=5,∴x 2﹣2+1x 2=5﹣4,∴(x ―1x)2=1,∴x―1x=±1.总结提升:本题考查的是分式的化简求值、二次根式的乘法,熟记平方差公式、完全平方公式是解题的关键.8.(2017秋•昌江区校级期末)已知正数m、n满足m4n=3,求值:思路引领:由m4n=3得出2﹣2﹣3=0,―13,代入计算即可.解:∵m4n=3,2+(2﹣23=0,2﹣2+3=0,1)+―3)=0,―1+=3,∴原式=3232012=12015.总结提升:本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.类型四中考真题:精选2022中考真题过关1.(2022•内蒙古)实数a1+|a﹣1|的化简结果是( )A.1B.2C.2a D.1﹣2a思路引领:根据数轴得:0<a<1,得到a>0,a﹣1<0=|a|和绝对值的性质化简即可.解:根据数轴得:0<a<1,∴a>0,a﹣1<0,∴原式=|a|+1+1﹣a=a+1+1﹣a=2.故选:B.总结提升:=|a|是解题的关键.2.(2022•安顺)估计(A.4和5之间B.5和6之间C.6和7之间D.7和8之间思路引领:直接利用二次根式的性质结合估算无理数的大小方法得出答案.解:原式=2∵34,∴5<2+6,故选:B.总结提升:此题主要考查了二次根式的混合运算,估算无理数的大小,正确估算无理数是解题关键.3.(2022•x的取值范围是( )A.x>2B.x<2C.x≤2D.x≥2思路引领:根据二次根式有意义的条件:被开方数是非负数即可得出答案.解:∵3x﹣6≥0,∴x≥2,故选:D.总结提升:本题考查了二次根式有意义的条件,掌握二次根式有意义的条件:被开方数是非负数是解题的关键.4.(2022•广州)代数式1有意义时,x应满足的条件为( )A.x≠﹣1B.x>﹣1C.x<﹣1D.x≤﹣1思路引领:直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.解:代数式1有意义时,x+1>0,解得:x>﹣1.故选:B.总结提升:此题主要考查了二次根式有意义的条件以及分式有意义的条件,正确掌握相关定义是解题关键.5.(2022•聊城)射击时,子弹射出枪口时的速度可用公式v=a为子弹的加速度,s 为枪筒的长.如果a=5×105m/s2,s=0.64m,那么子弹射出枪口时的速度(用科学记数法表示)为( )A.0.4×103m/s B.0.8×103m/s C.4×102m/s D.8×102m/s思路引领:把a=5×105m/s2,s=0.64m代入公式v=解:v=8×102(m/s),故选:D.总结提升:此题主要考查了二次根式的性质与化简以及科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(2022•x﹣2在实数范围内有意义,则x的取值范围是( )A.x>﹣1B.x≥﹣1C.x≥﹣1且x≠0D.x≤﹣1且x≠0思路引领:根据二次根式的被开方数是非负数,a﹣p=1a p(a≠0)即可得出答案.解:∵x+1≥0,x≠0,∴x≥﹣1且x≠0,故选:C.总结提升:本题考查了二次根式有意义的条件,负整数指数幂,掌握二次根式的被开方数是非负数,a﹣p=1a p(a≠0)是解题的关键.7.(2022•荆州)若3―a,小数部分为b,则代数式(2+)•b的值是 .思路引领:3―a、b的值,代入所求式子计算即可.解:∵12,∴1<3―2,∵若3―a,小数部分为b,∴a=1,b=31=2∴(2+)•b=(2+(2―2,故答案为:2.总结提升:本题考查了估算无理数的大小的应用,解题的关键是求出a、b的值.8.(2022•随州)已知m为正整数,=m有最小值3×7=21.设n1的整数,则n的最小值为 ,最大值为 .思路引领:n最小为31越小,300 n越小,则n=2时,即可求解.∴n最小为3,1的整数,越小,300n越小,则n 越大,2时,300n=4,∴n =75,故答案为:3;75.总结提升:本题考查二次根式的乘除法,二次根式的性质与化简,解题的关键是读懂题意,根据关键词“大于”,“整数”进行求解.9.(2022•遂宁)实数a 、b 在数轴上的位置如图所示,化简|a +1|― .思路引领:根据数轴可得:﹣1<a <0,1<b <2,然后即可得到a +1>0,b ﹣1>0,a ﹣b <0,从而可以将所求式子化简.解:由数轴可得,﹣1<a <0,1<b <2,∴a +1>0,b ﹣1>0,a ﹣b <0,∴|a +1|=a +1﹣(b ﹣1)+(b ﹣a )=a +1﹣b +1+b ﹣a=2,故答案为:2.总结提升:本题考查二次根式的性质与化简、实数与数轴,解答本题的关键是明确题意,利用数形结合的思想解答.10.(2022•内蒙古)已知x ,y 是实数,且满足y+18,则的值是 .思路引领:根据负数没有平方根求出x 的值,进而求出y 的值,代入计算即可求出值.解:∵y =18,∴x ﹣2≥0,2﹣x ≥0,∴x =2,y =18,则原式==12,故答案为:12总结提升:此题考查了二次根式的化简求值,熟练掌握运算法则是解本题的关键.11.(2022•济宁)已知a =2+b =2―a 2b +ab 2的值.思路引领:利用因式分解,进行计算即可解答.解:∵a =2b =2∴a 2b +ab 2=ab (a +b )=(2+(2(2+2―=(4﹣5)×4=﹣1×4=﹣4.总结提升:本题考查了二次根式的混合运算,代数式求值,熟练掌握因式分解是解题的关键.12.(2022•河池)计算:|﹣3﹣1―(π﹣5)0.思路引领:先去绝对值,计算负整数指数幂,零指数幂和二次根式乘法,再合并即可.解:原式=―13―1=23.总结提升:本题考查实数的混合运算,解题的关键是掌握实数相关运算的法则.13.(2022•泰州)(1×(2)按要求填空:小王计算2x x 24―1x 2的过程如下:解:2x x 24―1x 2=2x (x 2)(x 2)―1x 2⋯⋯第一步=2x (x 2)(x 2)―x 2(x 2)(x 2)⋯⋯第二步=2x x2(x2)(x2)⋯⋯第三步=x2(x2)(x2)⋯⋯第四步=1x2.……第五步小王计算的第一步是 (填“整式乘法”或“因式分解”),计算过程的第 步出现错误.直接写出正确的计算结果是 .思路引领:(1)原式利用二次根式乘法法则计算,合并即可得到结果;(2)观察解题的过程,分析第一步变形的依据,找出出错的步骤,计算出正确的结果即可.解:(1)原式===(2)2xx24―1x2=2x(x2)(x2)―1x2=2x(x2)(x2)―x2(x2)(x2)=2x(x2) (x2)(x2)=2x x2 (x2)(x2)=x2(x2)(x2)=1x2,小王计算的第一步是因式分解,计算过程的第三步出现错误.直接写出正确的计算结果是1x2.故答案为:因式分解,三,1x2.总结提升:此题考查了二次根式的混合运算,因式分解﹣运用公式法,以及分式的加减法,熟练掌握运算法则是解本题的关键.。

二次根式双重非负性的运用

二次根式双重非负性的运用

二次根式双重非负性的运用二次根式双重非负性的运用湖北省黄石市下陆中学陈勇#TRS_AUTOADD_1310437793543 {MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px}#TRS_AUTOADD_1310437793543 P {MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px}#TRS_AUTOADD_1310437793543 TD {MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px}#TRS_AUTOADD_1310437793543 DIV {MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px}#TRS_AUTOADD_1310437793543 LI {MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px}/**---JSON--{"":{"margin-top":"0","margin-bottom":"0"},"p":{ "margin-top":"0","margin-bottom":"0"},"td":{"margin-top":"0", "margin-bottom":"0"},"div":{"margin-top":"0","margin-bottom" :"0"},"li":{"margin-top":"0","margin-bottom":"0"}}--**/DIV.MyFav_1310437794934 P.MsoNormal{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify}DIV.MyFav_1310437794934LI.MsoNormal{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify}DIV.MyFav_1310437794934 DIV.MsoNormal{TEXT-JUSTIFY: inter-ideograph;FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN:justify}DIV.MyFav_1310437794934P.MsoHeader{BORDER-RIGHT: medium none;PADDING-RIGHT: 0cm; BORDER-TOP: medium none; PADDING-LEFT: 0cm; FONT-SIZE: 9pt;PADDING-BOTTOM: 0cm; MARGIN: 0cm 0cm 0pt; BORDER-LEFT: medium none; LAYOUT-GRID-MODE: char; PADDING-TOP: 0cm; BORDER-BOTTOM: medium none; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: center}DIV.MyFav_1310437794934LI.MsoHeader{BORDER-RIGHT: medium none;PADDING-RIGHT: 0cm; BORDER-TOP: medium none;PADDING-LEFT: 0cm; FONT-SIZE: 9pt;PADDING-BOTTOM: 0cm; MARGIN: 0cm 0cm 0pt; BORDER-LEFT: medium none; LAYOUT-GRID-MODE: char; PADDING-TOP: 0cm; BORDER-BOTTOM: medium none; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: center}DIV.MyFav_1310437794934DIV.MsoHeader{BORDER-RIGHT: medium none; PADDING-RIGHT: 0cm; BORDER-TOP: medium none; PADDING-LEFT: 0cm; FONT-SIZE: 9pt;PADDING-BOTTOM: 0cm; MARGIN: 0cm 0cm 0pt; BORDER-LEFT: medium none; LAYOUT-GRID-MODE: char; PADDING-TOP: 0cm; BORDER-BOTTOM: medium none; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: center}DIV.MyFav_1310437794934 P.MsoFooter{FONT-SIZE: 9pt; MARGIN: 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; FONT-FAMILY: "Times NewRoman"}DIV.MyFav_1310437794934LI.MsoFooter{FONT-SIZE: 9pt; MARGIN: 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; FONT-FAMILY: "Times New Roman"}DIV.MyFav_1310437794934DIV.MsoFooter{FONT-SIZE: 9pt; MARGIN: 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; FONT-FAMILY: "Times NewRoman"}DIV.MyFav_1310437794934 A:link{COLOR: blue; TEXT-DECORATION: underline}DIV.MyFav_1310437794934 SPAN.MsoHyperlink{COLOR: blue; TEXT-DECORATION: underline}DIV.MyFav_1310437794934 A:visited{COLOR: purple; TEXT-DECORATION:underline}DIV.MyFav_1310437794934SPAN.MsoHyperlinkFollowed{COLOR: purple;TEXT-DECORATION: underline}DIV.MyFav_1310437794934 DIV.Section1{page: Section1}在实数范围内,我们知道式子表示非负数a的算术平方根,它具有双重非负性:(1);(2)a≥0.运用这两个简单的非负性,再结合非负数的性质“若几个非负数的和等于0,则这几个非负数都等于0”可以解决一些似乎无从下手的算术平方根问题.例1已知+=0,求x,y的值.分析:因为≥0,≥0,根据几个非负数之和等于0,则每个非负数都等于0,可知,从而,解之,得x=-1,y=4.例2若实数a、b满足+=0,则2b-a+1=___.分析:因为≥0,≥0,故由非负数的性质,得,两式相加,即得2b-a+1=0.例3已知实a满足,求a-2010的值.解:由a-20110,得a2011。

二次根式的双重非负性在解题中的运用

二次根式的双重非负性在解题中的运用

二次根式的双重非负性在解题中的运用式子a表示非负数a的算术平方根,它是一个非负数,而a是被开方数,它也是一个非负数,这就是二次根式的双重非负性。

它在初、高中数学中占有重要的位置,所以在解题中一定要注意这两个隐含条件。

现列举出这一性质在中考解题中的运用归类如下,以供大家参考,不对之处敬请指正。

类型一:确定自变量的取值范围例:若下列式子有意义,试确定x的取值范围。

评析:纵览《数学课程标准》(2011年版)(以下简称《标准》)及现行初中教材,可以归纳出在初中阶段对字母的取值有要求的只有三种情况:①分式中的分母不能为零。

②二次根式中被开方数要大于等于零。

③零指数幂的底数不能为零。

抓住这三点就能准确地求出自变量的取值范围,通过这样训练,就能使其条件从隐含形态转变为显形形态而成为一种数学思想,从而促成学生模型思想的生成。

类型二:求代数式的值评析:解决此类题用到了“几个非负数的和为零,那么每一个加数一定为零”和“如果被开方数互为相反数,要使得两个被开方数同时有意义,那么这两个被开方数一定同时为零”这种模型思想。

而依据《标准》,初中阶段涉及的非负数有绝对值、偶次方和二次根式。

这也正符合《标准》增加的提高学生的运算能力的要求。

有了这些理念,学生就能明白算理,做到运算正确、有据、合理、简洁,学生的数学思想就能自然生成。

类型三:化简对于利用二次根式的双重非负性在化简中又包含以下几种情形:1.默认条件。

例: 18a3b2c=3ab2ac。

这类题目如果没有注明条件,在解题中就认为所有的字母都是非负数。

2.给定条件。

评析:由于思维定势的影响,学生见惯了被开方数是没有带负号正数的情况,而对于被开方数是-a这种形式的正数不习惯,这就需要教师注重发挥学生想象力,不断积累经验。

解决这类问题关键一定要抓住二次根式的双重非负性质,就能找到突破口,从而化难为易。

这体现了《标准》中“读懂学生的基础,读懂学生的思路,读懂学生的错误,读懂学生的情感”的要求。

二次根式经典例题

二次根式经典例题

【二次根式典型例题】 一. 利用二次根式的双重非负性来解题(0a (a ≥0),即一个非负数的算术平方根是一个非负数。

) 1.下列各式中一定是二次根式的是( )。

 A 、3 B 、x ; C 、12x ; D 、1x 2.x 取何值时,下列各式在实数范围内有意义。

(1);2x (2)121x (3)xx 21 (4)45xx (5)1 21 3xx (6)若1)1(xxxx ,则x 的取值范围是 (7)若1 3 13 xxxx ,则x 的取值范围是 。

3.若13m 有意义,则m 能取的最小整数值是 4.若20m 是一个正整数,则正整数m 的最小值是________. 5..当x 为何整数时,1110x 有最小整数值,这个最小整数值为 。

 6. 若20042005aaa 2 2004a =_____________. 7.若433xxy yx 8. 设m 、n 满足3 2 9922mmmn ,则mn= 。

9. 若m 适合关系式35223199199xymxymxyxym 的值. 10.若三角形的三边a 、b 、c 满足3442 baa=0,则第三边c 的取值范围是 11.方程0|84|myxx ,当0y 时,m 的取值范围是( ) A 、10m B 、2m C 、2m D 、2m 12. 下列各式不是最简二次根式的是( ) A. 21a B. 21x B. 21x C. C. 24 b  D. 0.1y 13. 已知0xy 2y x x __________。

初三全科目课件教案习题汇总初三全科目课件教案习题汇总 语文语文 数学数学 英语英语 物理物理 化学化学二.利用二次根式的性质2a=|a|=)0()0(0)(aaabaa(即一个数的平方的算术平方根等于这个数的绝对值)来解题 1.已知233xx x3x ,则( )A.x ≤0 B.x ≤-3 C.x ≥-3 D.-3≤x ≤0 2.已知a<b ,化简二次根式ba3( )A .aba B .aba C .aba D .aba 3.若化简若化简|1-x|-1682xx 的结果为2x-5则x 的取值范围是()A 、x 为任意实数 B 、1≤x ≤4 C 、x ≥1 D 、x ≤4 4.已知a ,b ,c 为三角形的三边,则2 22)()()(acbacbcba = 5. 当-3<x<5时,化简25109622xxxx= 。

专题01 二次根式重难点题型分类(解析版)八年级数学下册重难点题型分类高分必刷题(人教版)

专题01 二次根式重难点题型分类(解析版)八年级数学下册重难点题型分类高分必刷题(人教版)

专题01二次根式重难点题型分类-高分必刷题(解析版)专题简介:本份资料包含《二次根式》这一章的四类重要题型,所选题目源自各名校期中、期末试题中的典型考题,具体包含四类题型:二次根式的双重非负性、二次根式的乘除、最简二次根式、二次根式的混合运算。

适合于培训机构的老师给学生作复习培训时使用或者学生考前刷题时使用。

题型一二次根式的双重非负性第一层非负性:被开方数0≥1.(2022春·a 的取值范围是()A .a ≥-1B .a ≠2C .a ≥-1且a ≠2D .a >2【详解】解:由题意得,a 10,a 2+≥≠,解得,a ≥-1且a ≠2,故答案为:C.2.(2019·1有意义时,x 应满足的条件是______.3.(青竹湖)函数x x y 2-=中,自变量x 的取值范围是.【解答】解:根据题意得,x ﹣2≥0且x ≠0,解得x ≥2且x ≠0,所以,自变量x 的取值范围是x ≥2.4.(2022秋·山东济南)若a ,b 都是实数,b ﹣2,则a b的值为_____.5.(雅礼)已知实数x 、y 满足0115=-+-y x ,则以x 、y 的值为两边长的等腰三角形的周长是.【解答】解:根据题意得,x ﹣5=0,y ﹣11=0,解得x =5,y =11,①5是腰长时,三角形的三边分别为5、5、11,不能组成三角形.②5是底边时,三角形的三边分别为5、11、11,能组成三角形,5+11+11=27;所以,三角形的周长为:27;故答案为27.第二层非负性:二次根式的计算结果为非负数,0,0a a a a a ≥⎧⇒==⎨-<⎩6.(2022春·21a -,那么()A .12a <B .12a ≤C .12a >D .12a ≥7.(2018·广东广州)如图,数轴上点A 表示的数为a ,化简:a=_____.8.(2021·湖南娄底)2,5,m )A .210m -B .102m -C .10D .49.(2020·四川攀枝花)实数a 、b +-().A .2-B .0C .2a -D .2b10.(2021春·山东淄博)已知实数a ,b ,c 在数轴上的位置如图所示,化简:||a【详解】由数轴,得a<0,0a c +<,0c a -<,0b >.则原式()a a c c a b a b =-++---=-.11.(2021春·全国)探究题:=_,=,=,=,=,=,根据计算结果,回答:(1a吗?你发现其中的规律了吗?请你用自己的语言描述出来.(2)利用你总结的规律,计算:①若x<2=;=;(3)若a,b,c题型二二次根式的乘除12.(2021春·=____.14.(2022春·=____._____.15.(2022春·16.(2023春·()B C D.A19.(2021秋·八年级课时练习)计算:-⋅;(1(-,(2(15)(20.(2022秋·八年级课时练习)计算:21.(2021秋·上海虹口)计算:(1(;(2)0,0)a b ÷>>题型三最简二次根式22.(2022春·天津)下列二次根式中,最简二次根式是()A .2个B .3个C .4个D .5个不是最简二次根式,不符合题意,综上,是最简二次根式的有24.(2022秋·a的值是()A.2B.3C.4D.5m=__________.25.(2020秋·题型四二次根式的混合运算26.(2021春·全国)计算:(1)1|3|-+---(2)27.(2021春·新疆乌鲁木齐)计算:28.(2021春·全国)(1)﹣529.(2022秋·陕西西安)已知a =2b =2(1)a 2﹣3ab +b 2;(2)(a +1)(b +1).30.(2021秋·上海)已知3x =+求:2267x x x x ++++的值.31.(雅实)已知a =b =,求值:(1)a b +;(2)22a b ab +.【解答】解:(1)原式=222(a b)212;a b ab ab ab++-==(2)原式=(a b)2ab +=⨯=32.(广益)先化简,再求值:322222222a b a b a ab a ab b a b +-÷++-,其中2a =-2b =+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式的双重非负性在解题中的运用
发表时间:2016-11-28T15:12:14.793Z 来源:《素质教育》2016年9月总第217期作者:李全莲[导读] 式子a表示非负数a的算术平方根,它是一个非负数,而a是被开方数,它也是一个非负数,这就是二次根式的双重非负性。

湖北省秭归县归州镇初级中学443601
式子a表示非负数a的算术平方根,它是一个非负数,而a是被开方数,它也是一个非负数,这就是二次根式的双重非负性。

它在初、高中数学中占有重要的位置,所以在解题中一定要注意这两个隐含条件。

现列举出这一性质在中考解题中的运用归类如下,以供大家参考,不对之处敬请指正。

类型一:确定自变量的取值范围
例:若下列式子有意义,试确定x的取值范围。

评析:纵览《数学课程标准》(2011年版)(以下简称《标准》)及现行初中教材,可以归纳出在初中阶段对字母的取值有要求的只有三种情况:
①分式中的分母不能为零。

②二次根式中被开方数要大于等于零。

③零指数幂的底数不能为零。

抓住这三点就能准确地求出自变量的取值范围,通过这样训练,就能使其条件从隐含形态转变为显形形态而成为一种数学思想,从而促成学生模型思想的生成。

类型二:求代数式的值
评析:解决此类题用到了“几个非负数的和为零,那么每一个加数一定为零”和“如果被开方数互为相反数,要使得两个被开方数同时有意义,那么这两个被开方数一定同时为零”这种模型思想。

而依据《标准》,初中阶段涉及的非负数有绝对值、偶次方和二次根式。

这也正符合《标准》增加的提高学生的运算能力的要求。

有了这些理念,学生就能明白算理,做到运算正确、有据、合理、简洁,学生的数学思想就能自然生成。

类型三:化简
对于利用二次根式的双重非负性在化简中又包含以下几种情形:
1.默认条件。

例: 18a3b2c=3ab 2ac。

这类题目如果没有注明条件,在解题中就认为所有的字母都是非负数。

2.给定条件。

评析:由于思维定势的影响,学生见惯了被开方数是没有带负号正数的情况,而对于被开方数是-a这种形式的正数不习惯,这就需要教师注重发挥学生想象力,不断积累经验。

解决这类问题关键一定要抓住二次根式的双重非负性质,就能找到突破口,从而化难为易。

这体现了《标准》中“读懂学生的基础,读懂学生的思路,读懂学生的错误,读懂学生的情感”的要求。

类型四:分类讨论
例1:化简|2x-4|- x2-6x+9。

解:原式=|2x-4|-|x-3|。

当x≤2时,原式=4-2x-(3-x)=4-2x-3+x=1-x;
当2<x≤3时,原式=2x-4-(3-x)=2x-4-3+x=3x-7;
当x>3时,原式=2x-4-(x-3)=2x-4-x+3=x-1。

例2.化简-ab3。

解:原式=|b| -ab。

当b≤0,a>0时,原式=-b -ab;
当b>0,a≤0时,原式=b -ab。

评析:分类的思想方法是初中数学中一种重要的数学思维方法。

而对于这类题,我们要遵循《标准》倡导的“培养学生数形结合的思想和习惯”,巧妙地借助数轴、分区间进行讨论,就能水到渠成、化难为易。

相关文档
最新文档