第七章线性变换总结篇(高等代数)

合集下载

线性变换考研知识点总结

线性变换考研知识点总结

线性变换考研知识点总结一、线性变换的基本概念1.1 线性空间线性空间是指一个集合V,其上有两种运算:向量的加法和数乘,满足一定的性质,即:(1)对于任意u,v∈V,有u+v∈V;(2)对于任意k∈F(其中F是一个字段),有ku∈V;(3)满足加法交换律、结合律、分配律和单位元存在。

1.2 线性变换的定义设V和W是两个线性空间,若存在一个映射T: V→W,满足以下条件:(1)对于任意u,v∈V,有T(u+v) = T(u) + T(v);(2)对于任意k∈F和任意u∈V,有T(ku) = kT(u)。

则称T为从V到W的线性变换。

1.3 线性变换的矩阵表示设V是n维线性空间,B = {v1, v2, ..., vn}是V的一组基,W是m维线性空间,C = {w1, w2, ..., wm}是W的一组基。

若T: V→W是一个线性变换,则存在一个m×n的矩阵A,使得对于任意u∈V,都有T(u)在基C下的坐标向量等于A乘以u在基B下的坐标向量。

1.4 线性变换的性质(1)零变换:对于任意线性空间V,零变换T:V→V定义为T(u) = 0,对于任意u∈V都有T(u) = 0。

(2)恒等变换:对于任意线性空间V和其基B,存在一个单位矩阵I使得对于任意u∈V 都有I(u) = u。

二、线性变换的基本定理2.1 线性变换的核与值域(1)核:对于线性变换T: V→W,其核Ker(T)定义为Ker(T) = {u∈V | T(u) = 0},即T的所有零空间。

(2)值域:对于线性变换T: V→W,其值域Im(T)定义为Im(T) = {T(u) | u∈V},即T所有可能的输出向量。

2.2 线性变换的满射与单射(1)满射:若线性变换T: V→W的值域等于W,即Im(T) = W,则称T是满射的。

(2)单射:若对于任意非零向量u,若T(u)≠0,则称T是单射的。

2.3 线性变换的秩和零度若线性变换T: V→W,则其秩rank(T)等于T的值域Im(T)的维数;零度nullity(T)等于T 的核Ker(T)的维数。

第七章线性变换总结篇(高等代数)

第七章线性变换总结篇(高等代数)

第 7章 线性变换7.1知识点归纳与要点解析一.线性变换的概念与判别 1.线性变换的定义数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ和数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。

注:V 的线性变换就是其保持向量的加法与数量乘法的变换。

2.线性变换的判别设σ为数域P 上线性空间V 的一个变换,那么:σ为V 的线性变换⇔()()()k l k l ,,V ,k,l P σαβσασβαβ+=+∀∈∀∈ 3.线性变换的性质设V 是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα∀∈。

性质1. ()()00,σσαα==-; 性质2. 若12s ,,,ααα线性相关,那么()()()12s ,,,σασασα也线性相关。

性质3. 设线性变换σ为单射,如果12s ,,,ααα线性无关,那么()()()12s ,,,σασασα也线性无关。

注:设V 是数域P 上的线性空间,12,,,m βββ,12,,,s γγγ是V 中的两个向量组,如果:11111221221122221122s ss s m m m ms sc c c c c c c c c βγγγβγγγβγγγ=+++=+++=+++记:()()1121112222121212,,,,,,m m m s s s ms c c c c c c c c c βββγγγ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭于是,若()dim V n =,12,,,n ααα是V 的一组基,σ是V 的线性变换, 12,,,m βββ是V 中任意一组向量,如果:()()()11111221221122221122n n n n m m m mn nb b b b b b b b b σβααασβααασβααα=+++=+++=+++记:()()()()()1212,,,,m m σβββσβσβσβ=那么:()()1121112222121212,,,,,,m m m n n n mn b b c b b c b b c σβββααα⎛⎫⎪ ⎪= ⎪⎪⎝⎭设112111222212m m n n mn b b c b b c B b b c ⎛⎫⎪⎪= ⎪⎪⎝⎭,12,,,m ηηη是矩阵B 的列向量组,如果12,,,r i i i ηηη是12,,,m ηηη的一个极大线性无关组,那么()()()12,ri i iσβσβσβ就是()()()12,m σβσβσβ的一个极大线性无关组,因此向量组()()()12,m σβσβσβ的秩等于秩()B 。

高等代数课件(北大版)第七章-线性变换§7.7

高等代数课件(北大版)第七章-线性变换§7.7

若 V W1 W2 Ws,则
11, ,1n1 , 21, , 2一组基,且在这组基下 的矩阵为准对角阵
A1
A2
.
As
2023/8/17§7.7 不变子空间 数学与计算科学学院
(1)
反之,若 在基 11, ,1n1 , 21, , 2n2 , , s1, , sns 下的矩阵为准对角矩阵(1), 则由 i1, i2 , , ini 生成 的子空间 Wi 为 的不变子空间,且V具有直和分解:
其次,任取 Vi , 设
( i E )ri Wi 0.
1 2 s , i Wi . 即 1 2 (i ) s 0 令 j j , ( j i); i i .
2023/8/17§7.7 不变子空间 数学与计算科学学院
由(2), 有 ( i E)ri (i ) 0, i 1,2, , s. 又 ( i E)ri (i ) ( i E)ri (i )
Wi fi ( )V , 则Wi 是 fi ( ) 的值域, Wi是 的不变子空间.
又 ( i E)ri Wi ( i E)ri fi ( )V
( i E)ri fi ( ) V f V
( i E)ri Wi 0.
(2)
2023/8/17§7.7 不变子空间 数学与计算科学学院
下证 V V1 V2 Vs . 分三步:
1 . 证明 V W1 W2 Ws .
2 . 证明f1(V1),fV2(2), fVs (s是)直和1 .
3∴. 证存明在多Vi 项 W式i
, i
u1 (
1, 2,
), u2(
, s. ),
, us ( ),
使
u1( ) f ( )1 u2( ) f2( ) us ( ) fs ( ) 1

第七章线性变换总结篇

第七章线性变换总结篇

第 7章 线性变换7、1知识点归纳与要点解析一.线性变换的概念与判别 1、线性变换的定义数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ与数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。

注:V 的线性变换就就是其保持向量的加法与数量乘法的变换。

2、线性变换的判别设σ为数域P 上线性空间V 的一个变换,那么:σ为V 的线性变换⇔()()()k l k l ,,V ,k,l P σαβσασβαβ+=+∀∈∀∈ 3、线性变换的性质设V 就是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα∀∈L 。

性质1、 ()()00,σσαα==-;性质2、 若12s ,,,αααL 线性相关,那么()()()12s ,,,σασασαL 也线性相关。

性质3、 设线性变换σ为单射,如果12s ,,,αααL 线性无关,那么()()()12s ,,,σασασαL也线性无关。

注:设V 就是数域P 上的线性空间,12,,,m βββL ,12,,,s γγγL 就是V 中的两个向量组, 如果:11111221221122221122s s s sm m m ms sc c c c c c c c c βγγγβγγγβγγγ=+++=+++=+++L L LL LL记:()()1121112222121212,,,,,,m m m s s s ms c c c c c c c c c βββγγγ⎛⎫⎪⎪= ⎪⎪⎝⎭L LL L M M M L于就是,若()dim V n =,12,,,n αααL 就是V 的一组基,σ就是V 的线性变换,12,,,m βββL 就是V 中任意一组向量,如果:()()()11111221221122221122n n n n m m m mn nb b b b b b b b b σβααασβααασβααα=+++=+++=+++L L LLLL记:()()()()()1212,,,,m m σβββσβσβσβ=L L那么:()()1121112222121212,,,,,,m m m n n n mn b b c b b c b b c σβββααα⎛⎫⎪ ⎪= ⎪⎪⎝⎭L L L L M M M L设112111222212m m n n mn b b c b b c B b b c ⎛⎫⎪⎪= ⎪⎪⎝⎭L LM M M L,12,,,m ηηηL 就是矩阵B 的列向量组,如果12,,,r i i i ηηηL 就是12,,,m ηηηL 的一个极大线性无关组,那么()()()12,r i i i σβσβσβL 就就是()()()12,m σβσβσβL 的一个极大线性无关组,因此向量组()()()12,m σβσβσβL 的秩等于秩()B 。

高等代数考研复习[线性变换]描述

高等代数考研复习[线性变换]描述
d) A 可逆 A可逆,且
A 1(1,2, ,n )= (1,2, ,n ) A1.
(ⅴ)同一线性变换在不同基下矩阵之间的关系: 设1,2, ,n 与 1, 2, , n 是线性空间V的两
组基,且 (1, 2, , n ) (1,2, ,n ) X . 如果 A (1,2, ,n ) (1,2, ,n ) A,
则称 A B 是V的线性变换,并称它为 A 与 B
的乘积. 说明:变换乘积满足结合律,乘法对加法的分 配率,数乘结合律.但是不满足交换律.
线性变换的方幂与多项式变换:
n个线性变换 A 的乘积称为 A 的n次幂,记为 A n即 A n =AA A. 规定:A 0 =E.当A 可逆时,规定
(A 1)n =A n . 一般地,A B B A , 但是
那么 A 就是V上满足条件的线性变换.
(ⅲ) 线性变换的矩阵
A 设1,2, ,n 是n维空间V的一组基, 是V
的线性变换,如果基的像可以被基线性表出,
即 A (1) a111 + a212
A
(2 ) a121 + a222

A (n ) a1n1 + a2n2
(2)如果对任意的α ∈V,A(α)=α,则称A为V的 恒等变换(也叫单位变换). (3)A是V的线性变换的充分必要条件是:
A (k l ) kA () lA ( ),, ,V ,k,l P.
1.2 线性变换性质: 设V是数域P上的线性空间,A是V的线性变
换,则有 (1) A (0) 0, A () A ();
变换. 说明:线性空间V上的所有线性变换对于线性
变换的加法与数乘变换构成P上的线性空间,记 为L(V).即对 A ,B L(V ) A +B L(V ), kA L(V ).

线性变换的相关知识点总结

线性变换的相关知识点总结

线性变换的相关知识点总结一、线性变换的定义线性变换是指一个向量空间V到另一个向量空间W的一个函数T,满足以下两条性质:1.加法性质:对于向量空间V中的任意两个向量x和y,有T(x+y)=T(x)+T(y)。

2.数乘性质:对于向量空间V中的任意向量x和标量a,有T(ax)=aT(x)。

根据以上的定义,我们可以得出线性变换的几个重要性质:1. 线性变换保持向量空间中的原点不变;2. 线性变换保持向量空间中的直线和平面不变;3. 线性变换将线性相关的向量映射为线性相关的向量;4. 线性变换将线性无关的向量映射为线性无关的向量。

二、线性变换的矩阵表示在研究线性变换时,我们通常会使用矩阵来表示线性变换。

设V和W分别是n维和m维向量空间,选择它们的一组基{v1, v2, ..., vn}和{w1, w2, ..., wm}。

线性变换T可以用一个m×n的矩阵A来表示,假设向量x在基{v1, v2, ..., vn}下的坐标为[x],向量T(x)在基{w1, w2, ..., wm}下的坐标为[T(x)],则有[T(x)]=[A][x]。

由此可见,矩阵A中的每一列都是T(vi)在基{w1, w2, ..., wm}下的坐标,而T(vi)可以写成基{w1, w2, ..., wm}的线性组合,所以矩阵A的列向量就是线性变换T对基{v1, v2, ..., vn}下的坐标系的映射。

另外,矩阵A的行空间也是线性变换T的像空间,而零空间是T的核空间。

线性变换的基本性质在矩阵表示下也可以得到进一步的解释,例如线性变换的复合、逆变换等都可以在矩阵表示下进行研究。

因此,矩阵表示是研究线性变换的重要工具。

三、特征值和特征向量特征值和特征向量是线性代数中的一个非常重要的概念,它们在研究线性变换的性质时有非常重要的应用。

设T是一个n维向量空间V上的线性变换,那么存在一个标量λ和一个非零向量v,使得Tv=λv。

这里的λ就是T的特征值,v就是T的特征向量。

高等代数--第七章 线性变换_OK

高等代数--第七章 线性变换_OK
• 乘法 • 加 减 数乘 • 逆变换 • 变换的多项式
45
线性变换的乘法
首先,线性空间的线性变换作为映射的特殊 情形当然可以定义乘法。设A,B 是线性空间V 的两个线性变换,定义它们的乘积AB为
(A B )() A (B ()) ( V ).
容易证明,线性变换的乘积也是线性变换。事 实上,
(A B )( ) A (B ( )) A (B () B ())
A ( ) k1A (1) k2A (2) krA (r ),
14
又如果1 , 2 ,, r之间有一线性关系式 k11 k22 krr 0,
那么它们的象之间也有同样的关系
A ( ) k1A (1) k2A (2) krA (r ),
15
3. 线性变换把线性相关的向量组变成线性 相关的向量组.
A x1A 1 x2A 2 xnA n x1B 1 x2B 2 xnB n B .
20
结论1的意义就是,一个线性变换完全被它 在一组基上的作用所决定。
2.设 1,2,,n是线性空间V的一组基。对于
任意一组向量 1,2,,n一定有一个线性变换A
使
A i i ,i 1, 2, , n.
46
A (B ()) A (B ( )) (A B )( ) (A B )( ),
(A B )(k) A (B (k)) A (kB ())
kA (B ()) k(A B )().
这说明AB是线性的。
既然一般映射的乘法适合结合律,线性变换
的乘法当然也适合结合律,即
(A B )C A (B C ).
29
例3 在 F 22 中定义线性变换 A
X
a c
b
d
X

第七章 线性变换

第七章  线性变换
1
,即A
1
B .
可以证明,可逆线性变换一定是双射,从而它就是线性空间到其自身的同构映射。
类似于方阵的幂与多项式概念,关于线性变换,也有所谓幂与多项式概念,具体如下 定义 1.7 设 A L(V ), 利用乘法定义可以归纳地定义线性变换的正整数次幂:
2
A
A A , A
3
A
2
A , , A
第七章
线性变换
变换的思想是数学中一个十分重要的思想,几乎可以说无处不在,也可以这么说,如 果不研究变换,数学就变得死水一潭、没有意义。线性变换是高等代数中一个重要概念, 它对研究线性空间本身结构有着重要作用,为矩阵运算的简化以及矩阵的分解提供了方法。
§1
线性空间上的线性变换及其运算
如果说同构映射反映了两个线性空间之间的关系, 那么, 这一节将要介绍的线性空间上 的线性变换反映的将是线性空间到其自身的关系。 定义 1.1 设 V 是数域 P 上一个线性空间,如果映射 A : V V 满足:
3
( x, y, z )T 3 , 定义 A ( x, y, 0)T 3 , 证明: A 是 3 上的线性变换。
4. 设 A 是实数域 上 3 维线性空间 中绕 Oz 轴由 Ox 向 Oy 方向旋转 90 的变换,证
3
明: A 是 上的线性变换,并且 A 5. 6. 证明性质 1.1, 1.3.
3
4
E .
在 P[ x] 中, 对任意 f ( x) P[ x], A f ( x) f' ( x), B f ( x) xf ( x), 其中 f' ( x) 是 f ( x) 的导函数,证明: AB BA E , 这里E 为恒等变换。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 7章 线性变换7.1知识点归纳与要点解析一.线性变换的概念与判别 1.线性变换的定义数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ和数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。

注:V 的线性变换就是其保持向量的加法与数量乘法的变换。

2.线性变换的判别设σ为数域P 上线性空间V 的一个变换,那么:σ为V 的线性变换⇔()()()k l k l ,,V ,k,l P σαβσασβαβ+=+∀∈∀∈ 3.线性变换的性质设V 是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα∀∈。

性质1.()()00,σσαα==-;性质2. 若12s ,,,ααα线性相关,那么()()()12s ,,,σασασα也线性相关。

性质3. 设线性变换σ为单射,如果12s ,,,ααα线性无关,那么()()()12s ,,,σασασα也线性无关。

注:设V 是数域P 上的线性空间,12,,,m βββ,12,,,s γγγ是V 中的两个向量组,如果:11111221221122221122s ss s m m m ms sc c c c c c c c c βγγγβγγγβγγγ=+++=+++=+++记:()()1121112222121212,,,,,,m m m s s s ms c c c c c c c c c βββγγγ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭于是,若()dim V n =,12,,,n ααα是V 的一组基,σ是V 的线性变换, 12,,,m βββ是V 中任意一组向量,如果:()()()11111221221122221122n n n n m m m mn nb b b b b b b b b σβααασβααασβααα=+++=+++=+++记:()()()()()1212,,,,m m σβββσβσβσβ=那么:()()1121112222121212,,,,,,m m m n n n mn b b c b b c b b c σβββααα⎛⎫⎪ ⎪= ⎪⎪⎝⎭设112111222212m m n n mn b b c b b c B b b c ⎛⎫⎪ ⎪= ⎪⎪⎝⎭,12,,,m ηηη是矩阵B 的列向量组,如果12,,,r i i i ηηη是12,,,m ηηη的一个极大线性无关组,那么()()()12,ri i iσβσβσβ就是()()()12,m σβσβσβ的一个极大线性无关组,因此向量组()()()12,m σβσβσβ的秩等于秩()B 。

4. 线性变换举例(1)设V 是数域P 上的任一线性空间。

零变换: ()00,V αα=∀∈; 恒等变换:(),V εααα=∀∈。

幂零线性变换:设σ是数域P 上的线性空间V 的线性变换,如果存在正整数m ,使得σ=m0,就称σ为幂零变换。

幂等变换:设σ是数域P上的线性空间V的线性变换,如果2σσ=,就称σ为幂等变换。

(2)nV P =,任意取定数域P 上的一个n 级方阵A ,令:111222n n n n x x x x x x A ,P x x x σ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=∀∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭。

(3)[]V P x =,()()()()[]D f x f x ,f x P x '=∀∈。

(4)n nV P⨯=,()ij A a =是V 中一固定矩阵,()n n X AX ,X P τ⨯=∀∈。

二.线性变换的运算、矩阵 1. 加法、乘法、数量乘法(1) 定义: 设V 是数域P 上的线性空间,,στ是V 的两个线性变换,定义它们的和στ+、乘积στ分别为:对任意的V α∈()()()()στασατα+=+,()()()()σταστα=任取k P ∈,定义数量乘积k σ为:对任意的V α∈()()()k k σασα=σ的负变换-σ为:对任意的V α∈()()()-=-σασα则στ+、στ、k σ与-σ都是V 的线性变换。

(2)()L V ={σσ为V 的线性变换},按线性变换的加法和数乘运算做成数域P 上的维线性空间。

2. 线性变换的矩阵(1)定义:设V 是数域P 上的n 维线性空间,σ是V 的线性变换,12,,,n ααα是V 的一组基,如果:()()()11111221221122221122n n n n n n n nn na a a a a a a a a σαααασαααασαααα=+++=+++=+++那么称矩阵112111222212n n nnnn a a a a a a A a a a ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭为线性变换σ在基12,,,n ααα下的矩阵。

此时:()()()()()()121212,,,,,,,n n n A σααασασασαααα==(2)线性变换的和、乘积、数量乘积、逆变换、负变换及线性变换多项式的矩阵:设12,,,n ααα是数域P 上的n 维线性空间V 的一组基,(),L V στ∀∈,设它们在12,,,n ααα下的矩阵分别为A,B 。

1)():n nf L V P⨯→,A σ是数域P 上的线性空间()L V 到数域P 上的线性空间n n P ⨯的同构映射,因此()n n L V P ⨯≅。

2)σ可逆⇔A 可逆3)①στ+、στ与-σ在基12,,,n ααα下的矩阵分别为A B,AB +与A -; ② 任取k P ∈,k σ在基12,,,n ααα下的矩阵为kA ;③ 若σ为可逆线性变换,则1σ-在基12,,,n ααα下的矩阵为1A -;④ 设()1110mm m m f x a x a xa x a --=++++为数域P 上的任一多项式,那么()1110m m m m f a a a a σσσσε--=++++(ε为V 的恒等变换)在基12,,,n ααα下的矩阵为:()1110m m m m n f A a A a A a A a E --=++++。

三.特征值、特征向量与对角矩阵1. 矩阵的特征值与特征向量(1)矩阵的特征多项式:设A 为n 级复方阵,将多项式()λλ=-A n f E A 称为A 的特征多项式。

注: 1)若()ijnnA a =,则:()()()()1112211λλλλ-=-=+-+++++-nn n A n nn f E A a a a A()()()11tr 1λλ-=+-++-nn n A A2) 将λ-n E A 称为矩阵A 的特征矩阵,0λ-=n E A 称为矩阵A 的特征方程。

(2) 定义:n 级方阵A 的特征多项式()λλ=-A n f E A 在复数域上的所有根都叫做其特征值(根),设0λ∈C 是A 的特征值,齐次线性方程组()0λ-=n E A X 的每个非零解都叫做矩阵A 的属于其特征值0λ的特征向量。

(3)求法:1)求()λλ=-A n f E A 在复数域上的所有根12λλλn ,,,(重根按重数计算); 2)对()1λ=k k ,n 解齐次线性方程组()0λ-=k n E A X ,得其一个基础解系12,,,,ηηηk k k k l (=-k l n 秩()λ-k n E A ),则矩阵A 的属于特征值λk 的全部特征向量为1122,,ηηη+++k k k k k k k l k l s s s ,其中12,,,,k k k k l s s s 为不全为零的任意常数(复数)。

(4) 重要结论:1)设0λ∈C 是A 的特征值,0X 是A 的属于其特征值0λ的特征向量,()g x 为一复系数多项式。

① ()0λg 为()g A 的特征值,0X 为()g A 的属于特征值()0λg 的特征向量; ② 如果A 还是可逆矩阵,那么1λ与λA分别为1-A 和*A 的特征值,0X 为1-A 的属于特征值01λ的特征向量,0X 为*A 的属于特征值λA的特征向量,③ 若12λλλn ,,,是矩阵A 的全部特征值,那么()()()12λλλn g ,g ,,g 就是()g A 的全部特征值,如果A 还是可逆矩阵,则12111λλλn,,,为1-A 的全部特征值,12λλλnA A A,,,为*A 的全部特征值;2)若12λλλn ,,,是矩阵A 的全部特征值,那么()12tr λλλ=+++n A ,12λλλ=n A 。

2. 线性变换的特征值与特征向量(1)定义:设σ是数域P 上的线性空间V 的线性变换,0λ∈P ,若存在0α≠∈V ,使得()0σαλα=,就称0λ为σ的一个特征值,α为σ的一个属于特征值0λ的特征向量。

(2)线性变换的特征多项式设σ是数域P 上的n 维线性空间V 的线性变换,任取V 的一组基12,,,n ααα,设σ在该基下的矩阵为A ,称矩阵为A 的特征多项式λ-n E A 为σ的特征多项式,记为()σλλ=-n f E A ,即线性变换的特征多项式为其在任意基下矩阵的特征多项式。

(3)求法:设σ是数域P 上的n 维线性空间V 的线性变换。

1)取定V 的一组基12,,,n ααα,求出σ在该基下的矩阵A ;2)求()σλλ=-n f E A 在P 中的所有根12λλλm ,,,(0≤≤m n ,重根按重数计算,且0=m 表示σ无特征值)。

3)若0>m ,对()1λ=k t ,s 解齐次线性方程组()0λ-=k n E A X ,得其一个基础解系12,,,,ηηηk k k k l (=-k l n 秩()λ-k n E A ),则线性变换σ的属于特征值λk 的全部特征向量为()()121122,,,,,αααηηη+++k kn k k k k k l k l s s s ,其中12,,,,k k k k l s s s 为P 中不全为零的任意常数。

3. 矩阵相似(1)定义:设A,B 是数域P 上的两个n 级方阵,如果存在数域P 上的n 级可逆矩阵T ,使得1-=T AT B ,就称矩阵A 相似于矩阵B ,记为AB 。

(2)性质:1)矩阵相似是等价关系,即:设A,B,C 都是n 级方阵,那么:①A A ; ② 若A B ,那么B A ;③ 若A B 且B C ,则AC 。

2)若AB ,那么()()λλλλ=-==-A n B n f E A f E B ,因此矩阵A 与矩阵B 有相同的特征值,相同的迹(()()tr tr =A B ),相同的行列式(=A B )。

3)两个实对称阵相似⇔它们有相同的特征值。

(3)有限维线性空间上的线性变换在不同基底下的矩阵彼此相似。

(4)若1-=T AT B ,那么1-+=∀∈kkB T A T ,k Z 。

相关文档
最新文档