数学人教版八年级下册小专题 平行四边形的证明思路

合集下载

平行四边形的判定说课稿人教版数学八年级下册

平行四边形的判定说课稿人教版数学八年级下册
过程与方法目标:通过观察、猜想、验证等教学活动,培养学生的空间想象能力和逻辑推理能力。
情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的合作意识和团队精神,使学生在探索过程中体会数学的严谨性和美妙。
(三)教学重难点
教学重点:平行四边形的判定方法。
教学难点:
1.对角线互相平分的四边形是平行四边形这一判定方法的理解和应用;
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
1.案例分析:给出一些具体的四边形图形,让学生运用所学判定方法进行判断。
2.小组合作:分组讨论,让学生互相出题,考查对方对平行四边形判定方法的掌握程度。
3.实践活动:让学生在课后寻找生活中的平行四边形,并拍照记录,下次课上进行分享和讨论。
这些教具和多媒体资源在教学中的作用是:使抽象的数学知识形象化、具体化,提高学生的学习兴趣和注意力,增强课堂的趣味性和互动性。
(三)互动方式
我将设计以下师生互动和生生互动环节,以促进学生的参与和合作:
1.师生互动:在讲解平行四边形的判定方法时,通过提问、引导和启发,让学生积极参与课堂讨论,分享自己的思考和解题策略。
平行四边形的判定说课稿人教版数学八年级下册
一、教材分析
(一)内容概述
本节课选自人教版数学八年级下册,课题为“平行四边形的判定”。在整个课程体系中,这部分内容是学生在学习了平行四边形的性质、矩形、菱形和正方形的基础上展开的,是对平行四边形知识的进一步深化和应用。通过本节课的学习,学生将掌握平行四边形的几种判定方法,提高空间想象能力和逻辑推理能力。
本节课的主要知识点包括:
1.平行四边形的定义:两组对边分别平行的四边形。
2.平行四边形的判定方法:

初二数学平行四边形7大常见题型+知识点+误区

初二数学平行四边形7大常见题型+知识点+误区

初二数学平行四边形7大常见题型+知识点+误区平行四边形是初二数学必考内容,甚至于中考卷里也时常出现它的身影,而且所占分值还不少。

为此,特意给大家整理了初二数学下册必考之【平行四边形】,7大常见题型+知识点+误区!平行四边形定义:有两组对边分别平行的四边形是平行四边形。

表示:平行四边形用符号“□”来表示。

平行四边形性质:平行四边形对边相等;平行四边形对角相等;平行四边形对角线互相平分平行四边形的面积等于底和高的积,即S□ABCD=ah,其中a可以是平行四边形的任何一边,h必须是a边到其对边的距离,即对应的高。

平行四边形的判定:两组对边分别平行的四边形是平行四边形两组对角分别相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形从对角线看:对角钱互相平分的四边形是平行四边形从角看:两组对角分别相等的四边形是平行四边形。

若一条直线过平行四边形对角线的交点,则直线被一组对边截下的线段以对角线的交点为中点,且这条直线二等分平行四边形的面积。

7大常见题型分析(1)利用平行四边形的性质,求角度、线段长、周长等例题1:如图,E、F在ABCD的对角线AC上,AE=EF=CD,∠ADF=90°,∠BCD=54°,求∠ADE的度数分析:直角三角形斜边上的中线等于斜边的一半,由此可以得到DE=AE=EF=CD,多条线段相等,可设最小的角为x,即设∠EAD=∠ADE=x,根据外角等于不相邻的内角和,得到∠DEC=∠DCE=2x,由平行四边形的性质得出∠DCE=∠BCD-∠BCA=54°-x,得出方程,解方程即可。

例题2:如图,已知四边形ABCD和四边形ADEF均为平行四边形,点B,C,F,E在同一直线上,AF交CD于O,若BC=10,AO=FO,求CE的长。

分析:根据平行四边形的性质得出AD=BC=EF,AD∥BE,从而得到∠DAO=∠CFO,再加上对顶角相等,可以得到△AOD≌△FOC,根据全等三角形的性质得到AD=CF,即AD=BC=EF=CF,从而得到线段CE的长度。

第18章平行四边形典型题型总结课件课件2021—2022学年人教版数学八年级下册

第18章平行四边形典型题型总结课件课件2021—2022学年人教版数学八年级下册

△AOB的周长比△DOA的周长长5cm,求这个平行四边形
各边的长.
D
C
解:∵四边形ABCD是平行四边形,
O
∴OB=OD,AB=CD,AD=BC. A
B
∵△AOB的周长比△DOA的周长长5cm,∴AB-AD=5cm.
又∵ ABCD的周长为60cm,∴AB+AD=30cm.
则AB=CD=17.5cm,AD=BC=12.5cm. 提示:平行四边形被对角线分成四个小三角形,相邻两个 三角形的周长之差等于邻边边长之差.
∴∠BAE=∠DCF.
B
FC
又∵AE=CF,
∴ △ABE≌ △CDF.
∴BE=DF.
如图,小明用一根36m长的绳子围成了一个平行四边形的 场地,其中一条边AB长为8m,其他三条边各长多少?
A 8m B
D C
解:∵ 四边形ABCD是平行四边形, ∴AB=CD, AD=BC. ∵AB=8m, ∴CD=8m. 又AB+BC+CD+AD=36m, ∴ AD=BC=10m.
=S△AOB+S△COB=1 S
∴S四边形ANMB=S四边形CMND,
2
ABCD
.
即平行四边形ABCD被EF所分的两个四边形面积相等.
把一个平行四边形分成3个三角形,已知两个阴影三角形的面 积分别是9cm2和12cm2,求平行四边形的面积.
解:(9+12)×2 =21×2 =42(cm2)
答:平行四边形的面积是42cm2.
∴AB∥ CD , AD∥ BC.
∴四边形ABCD是平行四边形.
十一.利用两组对边分别相等识别平行四边形 如图,在Rt△MON中,∠MON=90°.求证:

人教版八年级下册数学平行四边形知识点总结

人教版八年级下册数学平行四边形知识点总结

平行四边形、矩形、菱形、正方形知识点总结杭信一中何逸冬一.正确理解定义(1)定义:两组对边分别平行的四边形是平行四边形.平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.(2ABCD记作 ABCD,读作“平行四边形ABCD”.2.熟练掌握性质平行四边形的有关性质和判定都是从边、角、对角线三个方面的特征进行简述的.(1)角:平行四边形的邻角互补,对角相等;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)面积:①S=底高ah;②平行四边形的对角线将四边形分成4个面积相等=⨯的三角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对角分别相等的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形④方法3:对角线互相平分的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形二、.几种特殊四边形的有关概念(1)矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:①平行四边形;②一个角是直角,两者缺一不可.(2)菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:①平行四边形;②一组邻边相等,两者缺一不可.(3)正方形:有一组邻边相等且有一个直角的平行四边形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.(4)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形,对于这个定义,要注意把握:①一组对边平行;②一组对边不平行,同时要注意和平行四边形义的区别,还要注意腰、底、高等概念以及梯形的分类等问题.(5)等腰梯形:是一种特殊的梯形,它是两腰相等的梯形,特殊梯形还有直角梯形.2.几种特殊四边形的有关性质(1)矩形:①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条).(2)菱形:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角;④对称性:轴对称图形(对角线所在直线,2条).(3)正方形:①边:四条边都相等;②角:四角相等;③对角线:对角线互相垂直平分相等,对角线与边的夹角为450;④对称性:轴对称图形(4条).(4)等腰梯形:①边:上下底平行但不相等,两腰相等;②角:同一底边上的两个角相等;对角互补对角:对角线相等;④对称性:轴对称图形(上下底中点所在直线).3.几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等.(3)正方形的判定:满足下列条件之一的四边形是正方形.①有一组邻边相等且有一个直角的平行四边形②有一组邻边相等的矩形;③对角线互相垂直的矩形.④有一个角是直角的菱形⑤对角线相等的菱形;(4)等腰梯形的判定:满足下列条件之一的梯形是等腰梯形①同一底两个底角相等的梯形;②对角线相等的梯形.4.几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③说明四边形ABCD的三个角是直角.(2)识别菱形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等.②先说明四边形ABCD为平行四边形,再说明对角线互相垂直.③说明四边形ABCD的四条相等.(3)识别正方形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的一个角为直角且有一组邻边相等.②先说明四边形ABCD为平行四边形,再说明对角线互相垂直且相等.③先说明四边形ABCD为矩形,再说明矩形的一组邻边相等.④先说明四边形ABCD为菱形,再说明菱形ABCD的一个角为直角.(4)识别等腰梯形的常用方法①先说明四边形ABCD为梯形,再说明两腰相等.②先说明四边形ABCD为梯形,再说明同一底上的两个内角相等.③先说明四边形ABCD为梯形,再说明对角线相等.5.几种特殊四边形的面积问题①设矩形ABCD的两邻边长分别为a,b,则S矩形=ab.②设菱形ABCD的一边长为a,高为h,则S菱形=ah;若菱形的两对角线的长分别为a,b,则S菱形=12 ab.③ 设正方形ABCD 的一边长为a ,则S 正方形=2a ;若正方形的对角线的长为a ,则S 正方形=212a .④ 设梯形ABCD 的上底为a ,下底为b ,高为h ,则S 梯形=1()2a b h .平行四边形 矩形 菱形 正方形 图形性质1.对边且 ;2.对角 ; 邻角 ;3.对角线; 1.对边且 ;2.对角且四个角都是 ;3.对角线;1.对边 且四条边都 ;2.对角 ; 3.对角线 且每 条对角线 ;1.对边 且四条边都 ;2.对角 且四个角都是 ; 3.对角线 且每条对角线 ;面积【素材积累】1、只要心中有希望存摘,旧有幸福存摘。

人教版数学八年级下册第十八章平行四边形性质与判定专题复习辅导讲义

人教版数学八年级下册第十八章平行四边形性质与判定专题复习辅导讲义

辅导讲义学员编号:年级:课时数:学员姓名:辅导科目:学科老师:授课类型T 平行四边形的概念、性质T 平行四边形的断定C中位线定理授课日期时段教学内容一、同步学问梳理学问点1:平行四边形的定义:两组对边分别平行的四边形是平行四边形.表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD,记作ABCD”,读作“平行四边形ABCD”.留意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.学问点2:平行四边形的性质:(1)边:平行四边形的对边平行且相等.(2)角:平行四边形的对角相等.邻角互补(3)对角线:平行四边形的对角线相互平分对称性:平行四边形是中心对称图形,两条对角线的交点是对称中心;二、同步题型分析题型1:平行四边形的边、角例1:已知,如图1,四边形ABCD为平行四边形,∠A+∠C=80°,平行四边形ABCD的周长为46 cm,且AB-BC=3 cm,求平行四边形ABCD的各边长和各内角的度数.分析:由平行四边形的对角相等,邻角互补可求得各内角的度数;由平行四边形的对边相等,得AB+BC=23 cm,解方程组即可求出各边的长.解:由平行四边形的对角相等,∠A+∠C=80°,得∠A=∠C=40°又DC∥AB,∠D及∠A为同旁内角互补,∴∠D=180°-∠A=180°-40°=140°.∴∠B=140°.由平行四边形对边相等,得AB=CD,AD=BC.因周长为46 am,因此AB+BC=23 cm,而AB-BC=3 cm,得AB=13 cm,BC=10 cm,∴CD=13 am.AD=10 cm.题后反思:留意充分利用性质解题.例2:如图2,在平行四边形ABCD中,E、F是直线BD上的两点,且DE=BF,你认为AE=CF吗?试说明理由.分析:本题主要考察平行四边形的性质.要证明AE=CF,可以把两线段分别放在两个三角形里,然后证明两三角形全等.解:AE=CF.理由:在平行四边形ABCD中,∵AB=CD且AB∥CD.∴∠ABE=∠CDF.∵DE=BF,∴ DE+BD=BF+BD,即BE=DF:∴△ABE≌△CDF ∴ AE=CF题后反思:利用平行四边形的性质解题时,一般要用到三角形全等学问,此题还可以证明其他三角形全等来证明两线段相等.题型2:平行四边形的周长例1:如图3,在平行四边形ABCD中,AC、BD相交于点O,作OE⊥BD于O,交CD于E,连接BE,若△BCE的周长为6,则平行四边形ABCD的周长为( B )图3A. 6B. 12C. 18D. 不确定分析:本题主要考察平行四边形的性质:对角线相互平分。

人教版八年级数学下册18.1《平行四边形的性质》教案

人教版八年级数学下册18.1《平行四边形的性质》教案
学生小组讨论时,围绕平行四边形在实际生活中的应用,大家提出了很多有创意的想法。我作为引导者,尽量提出开放性问题,鼓励学生们思考,看到他们在这个过程中能够自主探索,我觉得非常欣慰。
然而,我也注意到,一些学生在逻辑推理和数学表达方面还存在困难。在未来的教学中,我需要更多地关注这部分学生,提供更多的指导和支持,帮助他们克服这些难点。
3.增强学生的空间观念,通过实际操作和解决具体问题,让学生理解平行四边形在实际生活中的应用,提高解决几何问题的能力。
4.培养学生的数学建模素养,使学生能够运用平行四边形的性质构建数学模型,解决实际问题,体会数学与实际生活的紧密联系。
三、教学难点与重点
1.教学重点
a.平行四边形的定义及其判定方法:熟练掌握平行四边形的定义,能快速识别图形是否为平行四边形。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行四边形的定义、性质和在实际生活中的应用。同时,我们也通过实践活动和小组讨论加深了对平行四边形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂中,我们探讨了平行四边形的性质,我发现学生们对这一几何图形的概念和性质表现出很大的兴趣。在导入环节,通过提出与生活相关的问题,成功吸引了学生的注意力,他们积极参与,提出了不少有趣的观察和问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平行四边形的基本概念。平行四边形是具有两对对边平行的四边形。它在几何图形中非常重要,广泛应用于日常生活和建筑领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了平行四边形在建筑设计中的应用,以及它如何帮助我们解决实际问题。
3.重点难点解析:在讲授过程中,我会特别强调平行四边形的定义和性质这两个重点。对于难点部分,我会通过图形示例和逻辑推理来帮助大家理解。

人教版八年级数学下册第十八章《平行四边形》第一节《平行四边形的性质》第一课时优秀教学案例

3.教师对学生的学习过程和结果进行综合评价,关注学生的知识掌握、能力发展和情感态度,以鼓励和赞赏的方式,帮助学生建立成功体验,增强学生克服困难的勇气和信心。
作为一名特级教师,我深知教学策略的重要性,它能够帮助我更好地实现教学目标,提高学生的学习效果。在教学过程中,我注重情景创设、问题导向、小组合作和反思与评价等策略的灵活运用,以激发学生的学习兴趣,培养学生的思维能力、合作意识和自我反思能力,促进学生的全面发展。
人教版八年级数学下册第十八章《平行四边形》第一节《平行四边形的性质》第一课时优秀教学案例
一、案例背景
本案例背景基于人教版八年级数学下册第十八章《平行四边形》第一节《平行四边形的性质》第一课时内容。本节课主要介绍平行四边形的性质,包括平行四边形的定义、对边相等、对角相等、对边平行和对角线互相平分等特点。
五、案例亮点
1.生活情境的创设:通过带领学生参观公园并观察现实生活中的平行四边形物体,我成功激发了学生对平行四边形性质的兴趣和好奇心。这种生活情境的创设使学生能够更好地将数学知识与实际生活联系起来,提高了学生的学习动力。
2.问题导向的运用:在教学过程中,我提出了一系列具有启发性的问题,引导学生进行思考和探索。这种问题导向的教学方法使得学生能够主动参与到学习过程中,培养了自己的逻辑思维和解决问题的能力。
5.教学策略的灵活运用:在教学过程中,我综合运用了情景创设、问题导向、小组合作和反思与评价等多种教学策略。这种策略的灵活运用使得学生能够在不同的学习活动中得到全面的发展,提高了学习效果。
作为一名特级教师,我深知教学案例亮点的重要性。这些亮点不仅体现了我对教学内容和方法的深入思考和精心设计,也体现了我对学生学习需求和发展的关注。在今后的教学中,我将继续努力,不断探索和创新,为学生提供更优质的教学服务。

人教版数学八年级下册平行四边形的个判定定理课件


OB=OD
A
求证:四边形ABCD是平行四边形
证明:在△AOD和△COB中
OA=OC(已知) ∠AOD=∠COB (对顶角相等) B
1
O
2
D C
OD=OB (已知) ∴△AOD≌△COB(SAS)
∴ AD=CB(全等三角形的对应边相等)
同理可得: AB=CD
∴四边形ABCD是平行四边形
平行四边形的判定定理3:
同理可证AB∥CD
∴四边形ABCD是平行四边形。
平行四边形的判定定理2:
两组对角分别相等的四边形是平行四边形
符号语言:
A
D
B
C
∵∠A=∠C,∠B=∠D
∴四边形ABCD是平行四边形
(两组对角分别相等的四边形是平行四边形)
D
A
O
B
C
对角线互相平分的四边形是平行四边形?
已知:四边形ABCD, 对角线AC、BD相交于点O,且OA=OC,
∴△ABC≌△CDA(SSS)
∴∠1=∠2,∠3=∠4(全等三角形的对应角相等)
∴ AB∥CD,AD∥BC (内错角相等,两直线平行) ∴四边形ABCD是平行四边形.
平行四边形的判定定理1:
ห้องสมุดไป่ตู้
两组对边分别相等的四边形是平行四边形。
符号语言:
A
D
∵AB=CD,AD=BC B
C
∴四边形ABCD是平行四边形
∴△AOD≌△COB(SAS)

理 形是平行四边形。
0
C ∵OA=OC,OB=OD ∴…是平行四边形
3


A
D
(A)AB∥CD,AD∥BC
(两组对边分别平行)

小专题(一):平行四边形的证明思路

小专题(一)平行四边形的证明思路类型1 若已知(已证)四边形中边的关系(1)已知一组对边平行,可以证这一组对边相等或另一组对边平行;(2)已知一组对边相等,可以证这一组对边平行或另一组对边相等.1.如图,在△ABC中,AB AC=,点D在AB上,过点D作BC的平行线,与AC相交于点E,点F在BC上,EF EC=.求证:四边形DBFE是平行四边形.2.如图,在ABCD中,点O是对角线,AC BD的交点,点E是边CD的中点,点F在BC的延长线上,且12CF BC=,求证:四边形OCFE是平行四边形.3.(2018·孝感)如图,点,,,B EC F在一条直线上,已知//,//AB DE AC DF,BE CF=,连接AD.求证:四边形ABED是平行四边形.4.如图,在ABCD中,分别以,AD BC为边向内作等边△ADE和等边△BCF,连接,BE DF.求证:四边形BEDF是平行四边形.5.如图,已知点,,D E F 分别在△ABC 的边,,BC AB AC 上,且//,DE AF DE AF =,将FD 延长到点G ,使2FG DF =,连接AG ,则ED 与AG 互相平分吗?请说明理由.6.如图,在ABCD 中,,E F 分别是,AD BC 的中点,AF 与BE 交于点,G CE 与DF 交于点H ,求证:四边形EGFH 是平行四边形.类型2 若已知条件(己证结论)与对角线有关,则可以通过证明对角线互相平分得到平行四边形7.如图,ABCD 的对角线相交于点O ,直线EF 经过点O ,分别与,AB CD 的延长线交于点,E F .求证:四边形AECF 是平行四边形.8.如图,在ABCD 中,点O 是对角线AC 的中点,EF 过点O ,与,AD BC 分别相交于点,,E F GH 过点O ,与,AB CD 分别相交于点,G H ,连接,,,EG FG FH EH .求证:四边形EGFH 是平行四边形.参考答案1.证明:,.,AB AC B C EF EC EFC C =∴∠=∠=∴∠=∠.B EFC ∴∠=∠. //AB EF ∴.又//,DE BC ∴四边形DBFE 是平行四边形.2.证明:∵四边形ABCD 是平行四边形,∴点O 是BD 的中点.又∵点E 是边CD 的中点,OE ∴是△BCD 的中位线. //OE BC ∴,且12OE BC =.又12CF BC =, OE CF ∴=.又∵点F 在BC 的延长线上,//.OE CF ∴∴四边形OCFE 是平行四边形.3.证明://,AB DE B DEF ∴∠=∠.//,AC DF ACB F ∴∠=∠.BE CF =,BE CE CF CE ∴+=+,即BC EF =.在△ABC 和△DEF 中,,,,B DEF BC EF ACB F ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DEF (ASA ). .//,AB DE AB DE ∴=∴四边形ABED 是平行四边形.4.证明:∵四边形ABCD 是平行四边形,,CD AB AD CB ∴==,DAB BCD ∠=∠.又∵△ADE 和△BCF 都是等边三角形,∴,DE AD AE CF BF BC ====,60.DAE BCF BF ︒∠=∠=∴=,.DE CF AE DCF BCD BCF =∠=∠-∠,,BAE DAB DAE DCF BAE ∠=∠-∠∴∠=∠.在△DCF 和△BAE 中, ,,,CD AB DCF BAE CF AE =⎧⎪∠=∠⎨⎪=⎩∴△DCF ≌△BAE(SAS ). DF BE =.又,BF DE =∴四边形BEDF 是平行四边形.5.解:ED 与AG 互相平分.理由:连接,,//,,EG AD DE AF DE AF =∴四边形AEDF 是平行四边形.//,AE DF AE DF ∴=.又2,.FG DF DG DF AE DG =∴=∴=.又//,AE DG ∴四边形AEGD 是平行四边形.ED ∴与AG 互相平分.6.证明:∵四边形ABCD 是平行四边形,//,AD BC AD BC ∴=.,E F 分别是,AD BC 的中点,11,,//,,22AE AD FC BC AE FC AE FC ∴==∴=∴四边形AECF 是平行四边形.//GF EH ∴.同理可证://ED BF 且.ED BF =∴四边形BFDE 是平行四边形.//.GE FH ∴∴四边形EGFH 是平行四边形.7.证明:∵四边形ABCD 是平行四边形,,OD OB OA OC ∴==,//AB CD .,DFO BEO FDO EBO ∴∠=∠∠=∠.在△FDO 和△EBO 中,,,,DFO BEO FDO EBO OD OB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△FDO ≌△EBO (AAS ).∴OF OE =.又,OA OC =∴四边形AECF 是平行四边形.8.证明:∵四边形ABCD 是平行四边形,//..AD BC EAO FCO O ∴∴∠=∠为AC 的中点,OA OC ∴=.在△OAE 和△OCF 中,,,,EAO FCO OA OC AOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△OAE ≌△OCF (ASA ).OE OF ∴=.同理可证:.OG OH =∴四边形EGFH 是平行四边形.。

人教版八年级数学下册《平行四边形的判定》

课题:18.1平行四边形判定(第一课时)福州七中阮以丹教学目标:1、知识和技能:掌握平行四边形的四个判定定理,能根据不同条件灵活选取适当的判定定理进地推理论证。

2、过程和方法:经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路。

3、情感态度和价值观:在小组和作的氛围中学习,能够让优生在帮助别人的过程中提升价值感和思维和表达能力,让学习能力弱的学生能够得到适时的引导和帮助,体会学习的乐趣和掌握知识后的自豪感,加强弱生对学习数学的兴趣和信心。

教学重点:平行四边形判定方法的探究、运用以及平行四边形的性质和判定的综合运用。

教学难点:对平行四边形判定方法的证明以及平行四边形的性质和判定的综合运用。

教学方法与手段运用观察、猜想、类比、交流、推理、验证等等教学活动,进一步培养学生的动手能力和推理能力;在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力;体会、归纳平行四边形的问题与三角形和平行线的问题的互相转化,渗透化归转化的数学思想。

教学过程:一、回顾旧知(分别以文字、图形、几何语言三种形式写在科作业纸上,组内互批,加1组组长审核加分)1、平行线的性质和判定;2、三角形全等的性质和判定方法;3、平行四边形的定义;4、平行四边形的性质。

设计意图:有些学生对全等三角形的判定方法等又有所遗忘,用图形和符号语言加强对所学知识的理解和掌握,通过小组合作学习的力量,对于基础和学习能力弱的学生来说通过加强复习背默来巩固已学知识,通过回顾熟悉与本节课相关的知识点,为提高新课的学习效率奠定知识和方法基础。

图一二、新知梳理(一)根据下列问题思考并回答问题:1、观察图一,你认为这是个什么图形?2、怎样让大家相信这是个平行四边形?如图一,几何语言表述:因此根据定义可以判定平行四边形:的四边形是平行四边形。

3、类比平行线和全等三角形的学习,参考平行四边形的性质,我们可能从哪几个方面探究判定平行四边形的方法?4、观察图一,从边、角、特殊线段等方面猜想判定平行四边形的方法:从“边”猜想: ,∴四边形ABCD是平行四边形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小专题平行四边形的证明思路
类型1若已知条件出现在四边形的边上则应考虑:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;
③一组对边平行且相等的四边形是平行四边形。

1.如图,在▱ABCD中,点E在AB的延长线上,
且EC∥BD.求证:四边形BECD是平行四边形.
2.如图,AB=DC=EF,AD=BC,DE=CF.
求证:AB∥EF
3.如图,在▱ABCD中,点E,F分别在边AB,CD 上,BE=DF.求证:四边形AECF是平行四边形.
类型2若已知条件出现在四边形的角上,则应考虑利用“两组对角分别相等的四边形是平行四边形”来证明
4.如图,在四边形ABCD中,AD∥BC,∠A=∠
C.求证:四边形ABCD是平行四边形
类型3若已知条件出现在对角线上,则应考虑利用“对角线互相平分的四边形是平行四边形”来证明
5.已知:如图,在四边形ABCD中,AB∥CD,E是BC的中点,直线AE 交DC的延长线于点F.求证:四边形ABFC为平行四边形.。

相关文档
最新文档