人教版七年级数学上册-《有理数绝对值化简运算》强化训练(含答案)
七年级数学上册1.2.4 绝对值-化简绝对值 选择题专项练习三(人教版,含解析)

2021-2022学年度人教版七年级数学上册练习1.2.4 绝对值-化简绝对值1.下列关系一定成立的是( )A .若|a|=|b|,则a =bB .若|a|=b ,则a =bC .若|a|=﹣b ,则a =bD .若a =﹣b ,则|a|=|b|2.若|a|=3,|b|=5,a 与b 异号,则|a -b|的值为( )A .2B .2-C .8D .2或83.|x|=2,则x 是( )A .2B .2-C .12 D .2或2-4.|-2018|等于( )A .-2018B .2018C .8012D .120185.a ,b ,c 的大小关系如图所示,则 a b b c caa b b c c a ----+---∣∣∣∣∣∣ 的值是 ( )A .3-B .1-C .1D .36.若aab b =- ,则下列结论正确的是( )A .0,0a b <<B . 0,0a b >>C .0ab >D . 0ab ≤7.已知a 、b 、c 都是不等于0的数,求a b c abca b c abc +++的所有可能的值有()个. A .1 B .2 C .3 D .48.把下列各数在数轴上表示出来,表示在数轴最左边的数是( )A .23- B .32- C .0 D .()2.5--9.有理数a 在数轴上的表示如图所示,那么1a +=( )A .1+aB .1-aC .-1-aD .-1+a10.如果|a|=-a ,那么a 一定是 ( )A .正数B .负数C .非正数D .非负数11.如图数轴的A 、B 、C 三点所表示的数分别为a 、b 、c .若|a ﹣b|=3,|b ﹣c|=5,且原点O 与A 、B 的距离分别为4、1,则关于O 的位置,下列叙述何者正确?( )A .在A 的左边B .介于A 、B 之间C .介于B 、C 之间D .在C 的右边12.x 、y 、z 在数轴上的位置如图所示,则化简|x ﹣y|+|z ﹣y|的结果是( )A .x ﹣zB .z ﹣xC .x+z ﹣2yD .以上都不对13.已知∣a∣=-a,化简∣a -1∣-∣a -2∣所得的结果是( )A .-1B .1C .2a -3D .3-2a14.对于任何有理数a ,下列各式中一定为负数的是( ).A .(3)a --+B .a -C .1a -+D .1a --15.有理数a ,b ,c 在数轴上对应的点的位置如图所示,则下列各式正确的个数有( ) ①abc >0;②a ﹣b+c <0;③||||1||a bc a b c ++=-;④|a+b|﹣|b ﹣c|+|a ﹣c|=﹣2c .A .4个B .3个C .2个D .1个16.有理数a ,b ,c 在数轴上对应的点的位置如图所示,则下列各式正确的个数有()①0abc <;②0a b c -+<;③3abca b c ++=;④2a b b c a c a --++-=.A .4个B .3个C .2个D .1个17.在﹣710,0,﹣|﹣5|,﹣0.6,2,﹣(﹣13),﹣10中负数的个数有( )A .3B .4C .5D .618.有理数a 、b 在数轴上的位置如图所示,则化简|a+b|-|a -b|的结果为( )A .2aB .-2bC .-2aD .2b19.实数a ,b 在数轴上的位置如图所示,则|a|﹣|b|可化简为( )A .a ﹣bB .b ﹣aC .a+bD .﹣a ﹣b20.若a 是负数,则||a a +的值是( )A .负数B .零C .非负数D .无法确定参考答案1.D解析:根据绝对值的定义进行分析即可得出正确结论.详解:选项A、B、C中,a与b的关系还有可能互为相反数,故选项A、B、C不一定成立,D.若a=﹣b,则|a|=|b|,正确,故选D.点睛:本题考查了绝对值的定义,熟练掌握绝对值相等的两个数的关系是相等或互为相反数是解题的关键.2.C解析:先根据绝对值的性质求出a、b的值,再根据a、b异号讨论a、b的值,代入代数式进行计算.详解:∣|a|=3,|b|=5,∣a=±3,b=±5,∣a、b异号,∣当a=3时,b=-5,此时原式=|3-(-5)|=|8|=8;当a=-3时,b=5,此时原式=|-3-5|=|-8|=8.故选C.点睛:本题考查的是绝对值的性质及代数式求值,熟练掌握绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0是解题的关键.3.D解析:利用绝对值的代数意义求出x的值即可.详解:|x|=2,则x是2或-2,故选:D.点睛:此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.解析:根据绝对值的概念判断即可.详解:|-2018|=2018故选B点睛:本题考查绝对值得概念,熟悉“正数的绝对是是它本事,负数的绝对值是它的相反数”是解题关键.5.A解析:先根据数轴分别判断出a b b c c a ---,,的符号,然后根据绝对值的性质去绝对值,化简即可.详解:解:由数轴可知: 0,00a b b c c a -<->-<, ∣a b b c c a a b b c c a ----+---∣∣∣∣∣∣=()()a b b c c a a b b c c a ----+----- =()111--+-=3-故选A.点睛:此题考查的是数轴的比较大小和去绝对值,掌握利用数轴比较大小和绝对值的性质是解决此题的关键.6.D解析:根据绝对值的性质:正数的绝对值等于这个数本身,负数的绝对值等于这个数的相反数,0的绝对值还是0进行判断.详解:a ab b=- ∴0a b≤ ∴a,b 异号∴ 0ab ≤故选D.本题考查了绝对值的化简,熟练掌握绝对值的性质是解题的关键.7.C解析:根据a b c 、、的符号分情况讨论,再根据绝对值运算进行化简即可得.详解:由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .点睛:本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.8.B解析:先根据绝对值运算、去括号法则化简选项,再根据数轴的定义即可得.详解:()22, 2.5 2.533-=--= 由数轴的定义,将四个选项在数轴上表示出来如下:由此可知,表示在数轴最左边的数是32-故选:B .点睛:本题考查了绝对值运算、去括号法则、数轴的定义,掌握理解数轴的定义是解题关键.9.B解析:由数轴可得到-1<a<0<1,从而逐步去掉绝对值,进而得出答案.详解:解:∣-1<a<0<1,∣|a|=a,1-a>0,+=1a-=1-a.则1a故答案选择B.点睛:从数轴得出a的取值范围,依据绝对值的性质逐步去掉绝对值是解题的关键.10.C解析:根据负数的绝对值等于他的相反数,可得答案.详解:∣负数的绝对值等于他的相反数,|a|=-a,∣a一定是非正数,故选C.点睛:考查了绝对值,注意负数的绝对值等于他的相反数.11.C解析:分析:由A、B、C三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O与A、B的距离分别为4、1,即可得出a=±4、b=±1,结合a、b、c间的关系即可求出a、b、c的值,由此即可得出结论.解析:∣|a﹣b|=3,|b﹣c|=5,∣b=a+3,c=b+5,∣原点O与A、B的距离分别为4、1,∣a=±4,b=±1,∣b=a+3,∣a=﹣4,b=﹣1,∣c=b+5,∣c=4.∣点O介于B、C点之间.故选C.点睛:本题考查了数值以及绝对值,解题的关键是确定a、b、c的值.本题属于基础题,难度不大,解决该题型题目时,根据数轴上点的位置关系分别找出各点代表的数是关键.12.B解析:根据x、y、z在数轴上的位置,先判断出x-y和z-y的符号,在此基础上,根据绝对值的性质来化简给出的式子.详解:由数轴上x、y、z的位置,知:x<y<z;所以x-y<0,z-y>0;故|x-y|+|z-y|=-(x-y)+z-y=z-x.故选B.点睛:此题借助数轴考查了用几何方法化简含有绝对值的式子,能够正确的判断出各数的符号是解答此类题的关键.13.A解析:根据|a|=-a,可知a≤0,继而判断出a-1,a-2的符号,后去绝对值求解.详解:∣|a|=-a,∣a≤0.则|a-1|-|a-2|=-(a-1)+(a-2)=-1.故选:A.点睛:本题考查绝对值的化简:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.14.D解析:负数小于0,可将各项化简,然后再进行判断.详解:解:A、−(−3+a)=3−a,当a≤3时,原式不是负数,故A错误;B、−a,当a≤0时,原式不是负数,故B错误;C、−|a+1|≤0,当a=−1时,原式不是负数,故C错误;D、∣−|a|≤0,∣−|a|−1≤−1<0,原式一定是负数,故选D.点评:点睛:本题考查了负数的定义和绝对值化简,掌握负数的定义以及绝对值的性质是解答此题的关键.15.B解析:先由数轴观察得出b<c<0<a,|b|>|c|>|a|,据此逐项计算验证即可.详解:解:∣由数轴可得:b <c <0<a ,|b|>|c|>|a|∣abc >0,①正确;a ﹣b+c >0,②错误;||||||a b c a b c++=1﹣1﹣1=﹣1,③正确; |a+b|﹣|b ﹣c|+|a ﹣c|=﹣a ﹣b ﹣(c ﹣b )+a ﹣c=﹣a ﹣b ﹣c+b+a ﹣c=﹣2c④正确.综上,正确的个数为3个.故选B .点睛:本题主要考查数轴上的有理数的正负性,绝对值以及大小比较,掌握有理数的四则运算法则和求绝对值法则,是解题的关键.16.D解析:先由数轴观察得出b <c <0<a ,|b|>|c|>|a|,据此逐项计算验证即可.详解:解:∣由数轴可得:b <c <0<a ,|b|>|c|>|a|∣abc >0,①错误;a -b+c >0,②错误;abca b c ++=1-1-1=-1,③错误;a b b c a c --++-=a -b -(-b -c)+a -c=a -b+b+c+a -c=2a ,④正确.综上,正确的个数为1个.故选:D .点睛:本题考查了利用数轴进行的相关计算,数形结合并明确绝对值等的化简法则,是解题的关键.17.B解析:负数就是小于0的数,依据定义即可求解.详解:解:﹣|﹣5|=﹣5,﹣(﹣13)=13,故负数有﹣710,﹣|﹣5|,﹣0.6,﹣10,共4个. 故选:B .点睛: 此题考查了正数和负数,判断一个数是正数还是负数,要把它化简成最后形式再判断.18.A解析:试题分析:根据有理数a 、b 在数轴上的位置,可得,a<0,b>0,所以∣a∣<∣b∣,所以可得,a+b>0,a -b<0则=(a+b )+a -b=a+b+a -b=2a,故选A 考点:1.数轴;2.绝对值19.C解析:试题分析:观察数轴可得a >0,b <0,所以则|a|﹣|b|=a ﹣(﹣b )=a+b .故答案选C . 考点:数轴;绝对值.20.B解析:根据绝对值的性质化简即可.详解:解:∣a 是负数,∣||0a a a a +=-+=,故选:B .点睛:本题主要考查了化简绝对值,解题的关键是熟知正数和零的绝对值是它本身,负数的绝对值是它的相反数.。
人教版七年级数学上册《有理数的加减法》强化训练卷【含答案】

人教版七年级数学上册《有理数的加减法》强化训练卷1.计算(1)(﹣6)+(﹣13).(2)(﹣)+.2.计算(1)(﹣4)+9 (2)13+(﹣12)+17+(﹣18)3.在横线上填写每步运算的依据.解:(﹣6)+(﹣15)+(+6)=(﹣6)+(+6)+(﹣15)( )=[(﹣6)+(+6)]+(﹣15)( )=0+(﹣15)( )=﹣15( )4.计算:(1);(2).5.先将下列各式写成省略加号的和的形式,再按括号内要求交换加数的位置.(1)(+16)+(﹣28)﹣(﹣6)﹣(﹣13)﹣(+7)= (写成省略加号的和)= (使符号相同的加数在一起)= (运算结果);(2)(﹣3.1)﹣(﹣4.5)+(4.4)﹣(+1.3)+(﹣2.5)= (写成省略加号的和)= (使和为整数的加数在一起)= (运算结果).6.计算(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7(2)(﹣)+13+(﹣)+17.7.阅读下面文字对于(﹣5)+(﹣9)+17+(﹣3)可以如下计算:原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+(17+)+[(﹣3)+(﹣)]=[(﹣5)+(﹣9)+17+(﹣3)]+[(﹣)+(﹣)++(﹣)]=0+(﹣1)=﹣1上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,计算:(1)﹣1+(﹣2)+7+(﹣4)(2)(﹣2019)+2018+(﹣2017)+20168.计算:(1)(2)9.用适当的方法计算(能用简便运算的就用简便运算)(1)﹣6﹣7+19﹣11+3;(2)|﹣1|﹣(﹣1)﹣|﹣1|﹣(﹣);(3)﹣(﹣1)+(﹣1)﹣.10.已知|a|=8,b2=36,且b>a,求a+b的值.11.若x2=9,|y|=2,且x<y,求x+y的值.12.已知|m|=4,|n|=6,且|m+n|=m+n,求m﹣n的值.13.若x是最大的负整数,|y|=5,z是相反数等于本身的数,求:x+y+z的值.14.已知|m|=4,|n|=3.(1)当m、n同号时,求m﹣n的值;(2)当m、n异号时,求m+n的值.15.在有些情况下,不需要计算出结果也能把绝对值符号去掉.例如:|6+7|=6+7;|6﹣7|=7﹣6;|7﹣6|=7﹣6;|﹣6﹣7|=6+7(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7﹣21|= ;②|﹣﹣0.8|= ;③|﹣|= :(2)数a在数轴上的位置如图所示,则|a﹣2.5|= .A.a﹣2.5B.2.5﹣aC.a+2.5D.﹣a﹣2.5(3)利用上述介绍的方法计算或化简:①|﹣|+|﹣|﹣|﹣|+;②|﹣|+|﹣|﹣|﹣|+2(),其中a>2.16.若,…,照此规律试求:(1)= ;(2)计算;(3)计算.答案1.解:(1)(﹣6)+(﹣13)=﹣(6+13).=﹣19;(2)(﹣)+=﹣+=﹣+=﹣.2.解:(1)(﹣4)+9=5;(2)13+(﹣12)+17+(﹣18)=13+17+(﹣12)+(﹣18)=30+(﹣30)=0.3.解:(﹣6)+(﹣15)+(+6)=(﹣6)+(+6)+(﹣15)(加法交换律)=[(﹣6)+(+6)]+(﹣15)(加法交结合律)=0+(﹣15)(互为相反数的两个数相加得零)=﹣15(一个数与零相加仍得这个数)故加法交换律;加法结合律;互为相反数的两个数相加得零;一个数与零相加仍得这个数4.解:(1)=﹣4(2)=4.5+(﹣54)=﹣49.55.解:(1)原式=16﹣28+6+13﹣7=16+6+13+(﹣28﹣7)=0;(2)原式=﹣3.1+4.5+4.4﹣1.3﹣2.5=(4.4﹣3.1﹣1.3)+(4.5﹣2.5)=2.故(1)16﹣28+6+13﹣7;16+6+13+(﹣28﹣7);0.(2)﹣3.1+4.5+4.4﹣1.3﹣2.5;(4.4﹣3.1﹣1.3)+(4.5﹣2.5);2.6.解:(1)原式=﹣10.7+5.7=﹣5;(2)原式=﹣1+30=29.7.解:(1)﹣1+(﹣2)+7+(﹣4)=(﹣1﹣)+(﹣2﹣)+(7+)+(﹣4﹣)=(﹣1﹣2+7﹣4)+(﹣﹣+﹣)=0﹣=﹣;(2)(﹣2019)+2018+(﹣2017)+2016=(﹣2019﹣)+(2018+)+(﹣2017﹣)+(2016+)=(﹣2019+2018﹣2017+2016)+(﹣+﹣+)=﹣2﹣=﹣2.8.解:(1)原式==10﹣6=4;(2)原式==﹣100.9.解:(1)﹣6﹣7+19﹣11+3=﹣6﹣7﹣11+19+3=﹣24+22=﹣2;(2)===;(3)===.10.解:∵|a|=8,b2=36∴a=±8,b=±6,由b>a,得a=﹣8,b=±6,所以a+b=6+(﹣8)=﹣2 或a+b=﹣6+(﹣8)=﹣14.11.解:∵x2=9,|y|=2,∴x=±3,y=±2,∵x<y,∴x=﹣3,y=2或x=﹣3,y=﹣2,∴x+y=﹣1或﹣5.12.解:∵|m|=4,|n|=6,∴m=±4,n=±6,∵|m+n|=m+n,∴m+n≥0,∴m=±4,n=6,∴当m=4,n=6时,m﹣n=﹣2,当m=﹣4,n=6时,m﹣n=﹣10,综上:m﹣n=﹣2或﹣10.13.解:根据题意得:x=﹣1,y=±5,z=0,则x+y+z=﹣1﹣5+0=﹣6或x+y+z=﹣1+5+0=4.14.解:(1)∵|m|=4,|n|=3,∴当m、n同号时,m=4,则n=3,故m﹣n=1;m=﹣4时,n=﹣3,故m﹣n=﹣1;(2))∵|m|=4,|n|=3,∴当m、n异号时,m=4,则n=﹣3,故m+n=1;m=﹣4时,n=3,故m+n=﹣1.15.解:(1)①|7﹣21|=21﹣7;②|﹣﹣0.8|=;③|﹣|=﹣;故①21﹣7;②+0.8;③﹣;(2)由数轴得:a<2.5,则|a﹣2.5|=2.5﹣a,故选:B;(3)利用上述介绍的方法计算或化简:①|﹣|+|﹣|﹣|﹣|+;=+﹣+,=﹣+,=,②|﹣|+|﹣|﹣|﹣|+2(),其中a>2.当2<a<5时,原式=﹣+﹣﹣+,=﹣+,=,当a≥5时,原式=+﹣﹣+,=.16.解:(1)=.故;(2)原式===;(3)原式===.。
新人教版数学七年级上册第1章有理数基础巩固与训练(含解析答案)

新人教版数学七年级上册第一章有理数基础巩固与训练总分数分时长:题型单选题填空题简答题综合题题量8 6 1 5总分一、选择题(共8题 ,总计0分)1.- 的倒数是()A. -4B. 4C.D. -2.下列说法正确的是()A. 一个数的绝对值一定比0大B. 一个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. 最小的正整数是13.计算(-3)3+52-(-2)2=()A. 2B. 5C. -3D. -64.点A为数轴上表示-2的动点,当点A沿数轴移动4个单位长度到B时,点B所表示的数是()A. 1B. -6C. 2或-6D. 不同于以上答案5.下面各数是负数的是()A. 0B. -2017C.D.6.如图,a,b两个数在数轴上的位置如图所示,则下列各式正确的是()A. a+b<0B. ab<0C. b-a<0D. >07.某日,北京、上海、重庆、银川的最低气温分别是-4 ℃,5 ℃,6 ℃,-8 ℃.这四个城市中,气温最低的是()A. 北京B. 上海C. 重庆D. 银川8.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140 000 m3.140 000用科学记数法表示为()A. 14×104B. 1.4×105C. 1.4×106D. 0.14×106二、填空题(共6题 ,总计0分)9.如果把增产10%记作+10%,那么减产50%记作____1____,-12%表示____2____.10.若(a+3)2+|b-2|=0,则(a+b)2015=____1____.11.若x2=16,则x=____1____;若x3=-8,则x=____2____.12.一个数的相反数是它本身,这个数是____1____;一个数的倒数是它本身,这个数是____2____;一个数的绝对值是它本身,这个数是____3____;最大的负整数是____4____. 13.观察下列一组数:,….根据该组数的排列规律,可推出第10个数是____1____.14.一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.如一组数1,1,2,3,4就可以构成一个集合,记为A={1,2,3,4}.类比实数有加法运算,集合也可以“相加”.定义:集合A与集合B中的所有元素组成的集合称为集合A与集合B的和,记为A+B.若A={-2,0,1,5,7},B={-3,0,1,3,5},则A+B=____1____.三、解答题(共6题 ,总计0分)15.把下列各数按要求分类.-4,10%,-1,-2,101,2,-1.5,0,,0.,7.(1).负整数集合:{____1____},(2).正分数集合:{____1____},(3).负分数集合:{____1____},(4).整数集合:{____1____}.16.计算:(1). ×××;(2).(-3.2)×(-4.8)-6.8×(-4.8);(3).×(-36);(4).9×15-12×(-8).17.小明和小红都想参加学校组织的数学兴趣小组,根据学校分配的名额,他们两人只能有一人参加,数学老师想出了一个主意,如图,给他们六张卡片,每张卡片上都有一些数,将化简后的数在数轴上表示出来,再用“<”连接起来,谁先按照要求做对,谁就参加兴趣小组.你也一起来试一试吧!18.综合(1).填空:①(2×3)2=____1____,22×32=____2____;=____3____,=____4____;=____5____,____6____.(2).想一想:(1)中每组中的两个算式的结果是否相等?(3).猜一猜:当n为正整数时,(ab)n等于什么?(4).试一试:结果是多少?19.观察下面的点阵图形和与之相对应的等式,探究其中的规律:(1).请你在④和⑤后面的横线上分别写出相对应的等式:(2).通过猜想,写出与第n个图形相对应的等式.20.某自行车厂计划一周生产自行车1 400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正,减产记为负).一二三四五六日星期+5 -2 -4 +13 -10 +16 -9 生产辆数(1).根据记录的数据可知该厂星期五生产自行车辆.(2).根据记录的数据可知该厂本周实际生产自行车辆.(3).该厂实行每日计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;若没有完成计划产量,少生产一辆扣20元.那么该厂工人这一周的工资总额是多少元?(4).若将上面第(3)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,在此方式下这一周工人的工资与按日计件的工资哪一个更多?请说明理由.第1章基础巩固与训练参考答案与试题解析一、选择题(共8题 ,总计0分)1.- 的倒数是()A. -4B. 4C.D. -【解析】略【答案】A2.下列说法正确的是()A. 一个数的绝对值一定比0大B. 一个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. 最小的正整数是1【解析】一个数的绝对值不一定比0大,有可能等于0,故选项A错误;负数的相反数比它本身大,0的相反数是0,故选项B错误;0的绝对值等于其本身,故选项C错误.【答案】D3.计算(-3)3+52-(-2)2=()A. 2B. 5C. -3D. -6【解析】原式=-27+25-4=-6.【答案】D4.点A为数轴上表示-2的动点,当点A沿数轴移动4个单位长度到B时,点B所表示的数是()A. 1B. -6C. 2或-6D. 不同于以上答案【解析】向右移动时,点B表示的数是2;向左移动时,点B表示的数是-6.【答案】C5.下面各数是负数的是()A. 0B. -2017C.D.【解析】|-2017|=2017,只有-2017为负数.【答案】B6.如图,a,b两个数在数轴上的位置如图所示,则下列各式正确的是()A. a+b<0B. ab<0C. b-a<0D. >0【解析】由题图知a<0,b>0,|a|<|b|,所以a+b>0,ab<0,b-a>0,<0.只有选项B正确.【答案】B7.某日,北京、上海、重庆、银川的最低气温分别是-4 ℃,5 ℃,6 ℃,-8 ℃.这四个城市中,气温最低的是()A. 北京B. 上海C. 重庆D. 银川【解析】本题考查实数的大小比较.-4,5,6,-8这四个数中,按大小顺序排列为6>5>-4>-8,因此最小的数是-8,所以银川的气温最低.【答案】D8.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140 000 m3.140000用科学记数法表示为()A. 14×104B. 1.4×105C. 1.4×106D. 0.14×106【解析】略【答案】B二、填空题(共6题 ,总计0分)9.如果把增产10%记作+10%,那么减产50%记作____1____,-12%表示____2____.【解析】略【答案】-50%减产12%10.若(a+3)2+|b-2|=0,则(a+b)2015=____1____.【解析】由题意得a+3=0,b-2=0,得a=-3,b=2,所以(a+b)2015=(-3+2)2015=(-1)2015=-1.【答案】-111.若x2=16,则x=____1____;若x3=-8,则x=____2____.【解析】略【答案】±4-212.一个数的相反数是它本身,这个数是____1____;一个数的倒数是它本身,这个数是____2____;一个数的绝对值是它本身,这个数是____3____;最大的负整数是____4____. 【解析】略【答案】0±1非负数-113.观察下列一组数:,….根据该组数的排列规律,可推出第10个数是____1____.【解析】分母为奇数,分子为自然数,所以它的规律用含n的代数式表示为,则n=10时可得结果为.【答案】14.一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.如一组数1,1,2,3,4就可以构成一个集合,记为A={1,2,3,4}.类比实数有加法运算,集合也可以“相加”.定义:集合A与集合B中的所有元素组成的集合称为集合A与集合B的和,记为A+B.若A={-2,0,1,5,7},B={-3,0,1,3,5},则A+B=____1____.【解析】由定义可得将集合A与集合B的所有元素放一起但必须删除重复的那部分元素0,1,5.【答案】{-3,-2,0,1,3,5,7}三、解答题(共6题 ,总计0分)15.把下列各数按要求分类.-4,10%,-1,-2,101,2,-1.5,0,,0.,7.(1).负整数集合:{____1____},(2).正分数集合:{____1____},(3).负分数集合:{____1____},(4).整数集合:{____1____}.【解析】(1)略(2)略(3)略(4)略【答案】(1)-4,-2(2)10%,,(3) -1,-1.5(4)-4,-2,101,2,0,716.计算:(1). ×××;(2).(-3.2)×(-4.8)-6.8×(-4.8);(3).×(-36);(4).9×15-12×(-8).【解析】(1)略(2)略(3)略(4)略【答案】(1)×××=-×××=-.(2)(-3.2)×(-4.8)-6.8×(-4.8)=-4.8×(-3.2-6.8)=-4.8×(-10)=48.(3)×(-36)=-×36+×36-×36+×36=-28+30-21+120=101.(4)9×15-12×(-8)=×15-×(-8)=150-+104-2=251.17.小明和小红都想参加学校组织的数学兴趣小组,根据学校分配的名额,他们两人只能有一人参加,数学老师想出了一个主意,如图,给他们六张卡片,每张卡片上都有一些数,将化简后的数在数轴上表示出来,再用“<”连接起来,谁先按照要求做对,谁就参加兴趣小组.你也一起来试一试吧!【解析】略【答案】解:①-(-2)=2;②(-1)3=-1;③-|-3|=-3;④0的相反数是0;⑤-0.4的倒数是- ;⑥比-1大的数是.在数轴上表示如下:用“<”连接起来为:③<⑤<②<④<⑥<①.18.综合(1).填空:①(2×3)2=____1____,22×32=____2____;=____3____,=____4____;=____5____,____6____.(2).想一想:(1)中每组中的两个算式的结果是否相等?(3).猜一猜:当n为正整数时,(ab)n等于什么?(4).试一试:结果是多少?【解析】(1)略(2)略(3)略(4)略【答案】(1)36361616-1-1(2)由上面的计算结果可知,(1)中每组中的两个算式的结果相等.(3)(ab)n=a n b n.(4)==119.观察下面的点阵图形和与之相对应的等式,探究其中的规律:(1).请你在④和⑤后面的横线上分别写出相对应的等式:(2).通过猜想,写出与第n个图形相对应的等式.【解析】(1)略(2)略【答案】(1)④4×3+1=4×4-3⑤4×4+1=4×5-3(2)4(n-1)+1=4n-3.20.某自行车厂计划一周生产自行车1 400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正,减产记为负).一二三四五六日星期生产+5 -2 -4 +13 -10 +16 -9(1).根据记录的数据可知该厂星期五生产自行车辆.(2).根据记录的数据可知该厂本周实际生产自行车辆.(3).该厂实行每日计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;若没有完成计划产量,少生产一辆扣20元.那么该厂工人这一周的工资总额是多少元?(4).若将上面第(3)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,在此方式下这一周工人的工资与按日计件的工资哪一个更多?请说明理由.【解析】(1)略(2)略(3)略(4)略【答案】(1)周五生产自行车减产10辆,实际生产200+(-10)=190(辆).(2)本周生产自行车为1400+(+5-2-4+13-10+16-9)=1400+9=1409(辆).(3)1409×60+15(5+13+16)+20(-2-4-10-9)=84540+510-500=84550(元).(4)周计工资更多,因为实行每周计件工资制,总工资为1409×60+15(5+13+16-2-4-10-9)=84540+15×9=84675(元).84675>84550,所以按周计件工资更多.。
人教版初中七年级数学上册第一章《有理数》经典练习(含答案解析)(4)

人教版初中七年级数学上册第一章《有理数》经典练习(含答案解析)(4)一、选择题1.(0分)如果a =14-,b =-2,c =324-,那么︱a ︱+︱b ︱-︱c ︱等于( ) A .-12 B .112C .12D .-112A 解析:A 【分析】逐一求出三个数的绝对值,代入原式即可求解. 【详解】1144a =-=,22b =-=,332244c =-= ∴原式=13122442+-=- 故答案为A . 【点睛】本题考查了求一个数的绝对值,有理数加减法混合运算,正数的绝对值为本身,0的绝对值为0,负数的绝对值是它的相反数.2.(0分)某测绘小组的技术员要测量A ,B 两处的高度差(A ,B 两处无法直接测量),他们首先选择了D ,E ,F ,G 四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A ,B 之间的高度关系为( ) A .B 处比A 处高 B .A 处比B 处高 C .A ,B 两处一样高 D .无法确定B解析:B 【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高. 【详解】 根据题意,得:()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+ =A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------= ∵1.5>0 ∴A B h h >【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.3.(0分)有理数a 、b 在数轴上,则下列结论正确的是( )A .a >0B .ab >0C .a <bD .b <0C解析:C 【分析】根据数轴的性质,得到b >0>a ,然后根据有理数乘法计算法则判断即可. 【详解】根据数轴上点的位置,得到b >0>a ,所以A 、D 错误,C 正确; 而a 和b 异号,因此乘积的符号为负号,即ab <0所以B 错误; 故选C . 【点睛】本题考查了数轴,以及有理数乘法,原点右侧的点表示的数大于原点左侧的点表示的数;异号两数相乘,符号为负号;本题关键是根据a 和b 的位置正确判断a 和b 的大小. 4.(0分)已知n 为正整数,则()()2200111n-+-=( )A .-2B .-1C .0D .2C解析:C 【解析】 【分析】根据-1的偶次幂等于1,奇次幂等于-1,即可求得答案. 【详解】 ∵n 为正整数, ∴2n 为偶数.∴(-1)2n +(-1)2001=1+(-1)=0 故选C. 【点睛】此题考查了有理数的乘方,关键点是正确的判定-1的偶次幂等于1,奇次幂等于-1. 5.(0分)若21(3)0a b -++=,则b a -=( ) A .-412B .-212C .-4D .1C解析:C 【解析】 【分析】根据非负数的性质可得a-1=0,b+3=0,求出a 、b 后代入式子进行计算即可得.由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.6.(0分)将(-3.4)3,(-3.4)4,(-3.4)5从小到大排列正确的是()A.(-3.4)3<(-3.4)4<(-3.4)5B.(-3.4)5<(-3.4)4<(-3.4)3C.(-3.4)5<(-3.4)3<(-3.4)4D.(-3.4)3<(-3.4)5<(-3.4)4C解析:C【解析】(-3.4)3、 (-3.4)5的积为负数,且(-3.4)3的绝对值小于 (-3.4)5的绝对值,所以(-3.4)3>(-3.4)5;(-3.4)4的积为正数,根据正数大于负数,即可得(-3.4)5<(-3.4)3<(-3.4)4,故选C.7.(0分)如果a,b,c为非零有理数且a + b + c = 0,那么a b c abca b c abc+++的所有可能的值为(A.0 B.1或- 1 C.2或- 2 D.0或- 2A解析:A【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(-1)+(-1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(-1)+(-1)+1=0,综上,a b c abca b c abc+++的值为0,故答案为:0.【点睛】此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键.8.(0分)若|a|=1,|b|=4,且ab<0,则a+b的值为()A.3±B.3-C.3 D.5± A解析:A【分析】通过ab<0可得a、b异号,再由|a|=1,|b|=4,可得a=1,b=﹣4或者a=﹣1,b=4;就可以得到a+b的值【详解】解:∵|a|=1,|b|=4,∴a=±1,b=±4,∵ab<0,∴a+b=1-4=-3或a+b=-1+4=3,故选A.【点睛】本题主要考查了绝对值的运算,先根据题意确定绝对值符号中数的正负再计算结果,比较简单.9.(0分)一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A.少5 B.少10 C.多5 D.多10D解析:D【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D.10.(0分)当A地高于海平面152米时,记作“海拔+152米”,那么B地低于海平面23米时,记作()A.海拔23米B.海拔﹣23米C.海拔175米D.海拔129米B解析:B【解析】由已知,当A地高于海平面152米时,记作“海拔+152米”,那么B地低于海平面23米时,则应该记作“海拔-23米”,故选B.二、填空题11.(0分)大肠杆菌每过20分钟便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成_____个.512【解析】分析:由于3小时有9个20分而大肠杆菌每过20分便由1个分裂成2个那么经过第一个20分钟变为2个经过第二个20分钟变为22个然后根据有理数的乘方定义可得结果详解:∵3小时有9个20分而解析:512【解析】分析:由于3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,然后根据有理数的乘方定义可得结果.详解:∵3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,⋯经过第九个20分钟变为29个,即:29=512个.所以,经过3小时后这种大肠杆菌由1个分裂成512个.故答案为512.点睛:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.12.(0分)小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a由题意得:-1<a<3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2【分析】根据题意可以确定被污染部分的取值范围,继而求出答案.【详解】设被污染的部分为a,由题意得:-1<a<3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2.故答案为0,1,2.【点睛】考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念.13.(0分)把35.89543精确到百分位所得到的近似数为________.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答解析:90【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【详解】解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90,故答案为:35.90.【点睛】本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.14.(0分)某商店营业员每月的基本工资为4000元,奖金制度是每月完成规定指标10000元营业额,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%.该商店的一名营业员九月份完成营业额13200元,则他九月份的收入为________元.4460【分析】工资应分两个部分:基本工资+奖金而奖金又分区间所以分段计算最后求和【详解】根据题意得他九月份工资为(元)故答案为:4460【点睛】主要考查了有理数的混合运算解题的关键是正确理解文字语解析:4460【分析】工资应分两个部分:基本工资+奖金,而奖金又分区间,所以分段计算,最后求和.【详解】++-⨯=(元).根据题意,得他九月份工资为4000300(1320010000)5%4460故答案为:4460.【点睛】主要考查了有理数的混合运算,解题的关键是正确理解文字语言中的关键词,找到其中的数量关系,列出式子计算即可.++-+++-++++-=_____.【分析】15.(0分)计算:(1)(2)(3)(4)(2019)(2020)第1个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两-解析:1010【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】=-+-++-=-----=-.原式(12)(34)(20192020)11111010-.故答案为:1010【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.16.(0分)分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运解析:0 【分析】根据图表运算程序,把输入的值-1,-2分别代入进行计算即可得解. 【详解】当输入1-时,输出的结果为14(3)514351-+---=-++-=; 当输入2-时,输出的结果为24(3)524350-+---=-++-=. 故答案为:①1;②0 【点睛】本题考查了有理数的加减混合运算,是基础题,读懂图表理解运算程序是解题的关键. 17.(0分)阅读理解:根据乘方的意义,可得:22×23=(2×2)×(2×2×2)=25.请你试一试,完成以下题目:(1)a 3•a 4=(a•a•a )•(a•a•a•a )=__; (2)归纳、概括:a m •a n =__;(3)如果x m =4,x n =9,运用以上的结论,计算:x m+n =__.a7am+n36【分析】(1)根据题意乘方的意义7个a 相乘可以写成a7即可解决;(2)根据题意总结规律可以知道是几个相同的数相乘指数相加即可解决;(3)运用以上的结论可以知道:xm+n =xm•xn 即解析:a 7 a m+n 36 【分析】(1)根据题意,乘方的意义,7个a 相乘可以写成a 7即可解决;(2)根据题意,总结规律,可以知道是几个相同的数相乘,指数相加即可解决; (3)运用以上的结论,可以知道:x m+n =x m •x n ,即可解决问题. 【详解】解:(1)根据材料规律可得a 3•a 4=(a•a•a )•(a•a•a•a )=a 7;(2)归纳、概括:a m •a n=mna a a a ⎛⎫⎛⎫⎪⎪⎪⎪⎝⎭⎝⎭=a m+n ; (3)如果x m =4,x n =9,运用以上的结论,计算:x m+n =x m •x n =4×9=36.故答案为:a 7,a m+n ,36. 【点睛】本题主要考查了有理数的乘方的认识,能够读懂乘方的意义并且能够仿照例题写出答案是解决本题的关键.18.(0分)气温由﹣20℃下降50℃后是__℃.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.19.(0分)截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为_____.051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10nn为整数位数减1【详解】解:1051万=10510000=1051×107故答案为:1051×107【点睛】本题考查了科学解析:051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.【详解】解:1051万=10510000=1.051×107.故答案为:1.051×107.【点睛】本题考查了科学记数法-表示较大的数,科学记数法中a的要求和10的指数n的表示规律为关键,20.(0分)在数轴上,与表示-2的点的距离是4个单位的点所对应的数是___________.2或-6【分析】分在-2的左边和右边两种情况讨论求解即可【详解】解:如图在-2的左边时-2-4=-6在-2右边时-2+4=2所以点对应的数是-6或2故答案为-6或2【点睛】本题考查了数轴难点在于分情解析:2或-6【分析】分在-2的左边和右边两种情况讨论求解即可.【详解】解:如图,在-2的左边时,-2-4=-6,在-2右边时,-2+4=2,所以,点对应的数是-6或2.故答案为-6或2.【点睛】本题考查了数轴,难点在于分情况讨论,作出图形更形象直观.三、解答题21.(0分)在数轴上,一只蚂蚁从原点O出发,它先向左爬了2个单位长度到达点A,再向右爬了3个单位长度到达点B,最后向左爬了9个单位长度到达点C.(1)写出A,B,C三点表示的数;(2)根据点C在数轴上的位置回答,蚂蚁实际上是从原点出发,向什么方向爬了几个单位长度?解析:(1)A,B,C三点表示的数分别是-2,1,-8;(2)向左爬了8个单位.【分析】(1)向左用减法,向右用加法,列式求解即可写出答案;(2)根据C点表示的数,向右为正,向左为负,继而得出答案.【详解】解:(1)A点表示的数是0-2=-2,B点表示的数是-2+3=1,C点表示的数是1-9=-8;(2)∵O点表示的数是0;C点表示的数是-8,∴蚂蚁实际上是从原点出发,向左爬了8个单位.【点睛】本题考查了数轴的知识及有理数的加减法的应用,属于基础题,比较简单,理解向左用减法,向右用加法,是关键.22.(0分)一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?解析:(1)回到了球门线的位置;(2)11米;(3)56米【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【详解】解:(1)(+5)+(﹣4)+(+10)+(﹣8)+(﹣6)+(+13)+(﹣10)=(5+10+13)-(4+8+6+10)=28-28=0.答:守门员最后回到了球门线的位置; (2)(3)|+5|+|﹣4|+|+10|+|﹣8|+|﹣6|+|+13|+|﹣10| =5+4+10+8+6+13+10 =56(米).答:守门员全部练习结束后,他共跑了56米. 【点睛】本题考查了正数和负数以及有理数加减运算的应用等知识点,解题的关键是理解“正”和“负”的相对性,确定具有相反意义的量.23.(0分)(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯-解析:(1)-29;(2)13. 【分析】(1)利用乘法分配律进行简便运算,即可得出结果; (2)先计算有理数的乘方与乘法,再进行加减运算即可. 【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭37(1242424)812=-⨯-⨯+⨯(24914)=--+29=-;(2)431(2)2(3)----⨯- 1(8)(6)=----- 186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键. 24.(0分)计算: (1)117483612⎛⎫-+-⨯ ⎪⎝⎭; (2)20213281(2)(3)3---÷⨯-.解析:(1)36-;(2)26. 【分析】(1)利用乘法分配律进行简便运算即可;(2)先算乘方,再算乘除,最后计算加减即可.【详解】解:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭ 1174848483612=-⨯+⨯-⨯ 16828=-+-36=-;(2)20213281(2)(3)3---÷⨯- 31(89)8=---⨯⨯ 127=-+26=.【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键.25.(0分)计算:(1)()21112424248⎛⎫-+--+⨯- ⎪⎝⎭(2)()()1178245122-÷-⨯--⨯+÷ 解析:(1)9;(2)34【分析】 (1)根据绝对值的性质、乘法分配律计算各项,即可求解;(2)先算乘除,再算加减,即可求解.【详解】解:(1)()21112424248⎛⎫-+--+⨯- ⎪⎝⎭ ()()()11144242424248=-+-⨯-+⨯--⨯- 01263=+-+9=;(2)()()1178245122-÷-⨯--⨯+÷ ()()1174204+=----34=. 【点睛】本题考查有理数的混合运算,掌握有理数的运算法则是解题的关键.26.(0分)计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】 (1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.27.(0分)计算:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦(2)121123436⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ 解析:(1)10;(2)3【分析】(1)先算乘方和小括号,再算中括号,后算加减即可;(2)把除法转化为乘法,再用乘法的分配率计算即可.【详解】解:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦ 1[4(1)5]=+--⨯1(45)10=++=;(2)1211121(36)23436234⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121(36)(36)(36)234=-⨯-+⨯--⨯- 182493=-+=.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.28.(0分)出租车司机张师傅11月1日这一天上午的营运全在一条东西向的街道上进行,如果规定向东为正,那么他这天上午载了五位乘客所行车的里程如下(单位:km ):8+,6-,3+,7-,1+.(1)将最后一名乘客送到目的地时,张师傅距出车地点的位置如何?(2)若汽车耗油为0.08L/km ,则这天上午汽车共耗油多少升?解析:(1)在出车地点西边1千米处;(2)2升【分析】(1)计算张师傅行驶的路程的和即可;(2)计算出每段路程的绝对值的和后乘以0.08,即为这天上午汽车共耗油数.【详解】解:(1)规定向东为正,则向西为负,(+8)+(-6)+(+3)+(-7)+(+1)=8-6+3-7+1=-1千米.答:将最后一名乘客送到目的地,张师傅在出车地点西边1千米处.(2)(8+6+3+7+1)×0.08=2升.答:这天午共耗油2升.【点睛】本题考查了有理数的混合运算,注意要针对不同情况用不同的计算方法.。
七年级数学上册-绝对值化简强化训练(含答案)

七年级数学上册——绝对值化简强化训练1.在数轴上有示a、b、c三个实数的点的位置如图所示,化简|b-a|+|c-a|-|c-b|。
解:由图可知c<0<a<b,故而b-a>0,c-a<0,c-b<0∴ |b-a|+|c-a|-|c-b|=(b-a)+(a-c)-(b-c)=b-a+a-c-b+c=02.已知有理数a、b、c在数轴上的位置如图所示,化简|b-c|-|c-a|+|b-a|。
解:由图可知c<b<0<a,故而b-c>0,c-a<0,b-a<0∴ |b-c|-|c-a|+|b-a|=(b-c)-(a-c)+(a-b)=b-c-a+c+a-b=03.有理数a、b、c在数轴上的位置如图所示,化简|a-b|+2|a+c|-|b-2c|。
解:由图可知c<a<0<b,故而a-b<0,a+c<0,b-2c>0∴ |a-b|+2|a+c|-|b-2c|=(b-a)+2[-(a+c)]-(b-2c)=b-a-2a-2c-b+2c =-3a4.有理数a、b、c在数轴上的位置如图所示,化简|b+a|-|b-c|+|a-c|。
解:由图可知c<a<0<b且|b|<|a|<|c|,故而b+a<0,b-c>0,a-c>0 ∴ |b+a|-|b-c|+|a-c|=-(b+a)-(b-c)+(a-c)=-b-a-b+c+a-c=2b5.有理数a、b、c在数轴上的位置如图所示,化简|a-c|-|c-2b|+|a+c|-|a+b|。
解:由图可知c<a<0<b,故而a-c>0,c-2b<0,a+c<0,a+b>0∴ |a-c|-|c-2b|+|a+c|-|a+b|=(a-c)-(2b-c)+[-(a+c)]-(a+b)=-a-3b-c 6.若有理数a、b、c在数轴上的位置如图所示,化简|a+c|+|2a+b|-|c-b|。
人教版七年级数学上册-《有理数绝对值化简运算》强化训练(含答案)

牢记方法规则:1.判断绝对值里面量的正负2.去掉绝对值产生括号3.去掉括号合并同类项第1天1.在数轴上有示a、b、c三个实数的点的位置如图所示,化简|b﹣a|+|c﹣a|﹣|c﹣b|.:2.已知有理数a,b,c在数轴上的位置如图所示,化简|b﹣c|﹣|c﹣a|+|b﹣a|.3.有理数a、b、c在数轴上的位置如图所示,化简|a﹣b|+2|a+c|﹣|b﹣2c|.:4.有理数a,b,c在数轴上的位置如图所示,化简|b+a|﹣|b﹣c|+|a﹣c|.,5.有理数a、b、c在数轴上的位置如图所示,化简|a﹣c|﹣|c﹣2b|+|a+c|﹣|a+b|.第2天6.若有理数a,b,c在数轴上的位置如图所示,化简|a+c|+|2a+b|﹣|c﹣b|.*7.有理数a、b、c的位置如图所示,化简|b|+|a﹣c|+|b﹣c|﹣|a﹣b|.8.有理数a、b、c在数轴上的位置如图所示,化简-|b|-|a﹣c|+|b﹣c|+|a﹣b|.(9.有理数a、b、c在数轴上的位置如图所示,化简|c﹣1|+|a﹣c|+|a﹣b|.—10.已知有理数a,b,c在数轴上的位置如图所示,化简|a﹣c|﹣|a+b|﹣|b﹣c|+|2b|.!第3天11.有理数a、b、c在数轴上的位置如图所示,化简|c|﹣|c+b|+|a﹣c|+|b+a|.12.数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|b﹣c|﹣|a+c|﹣|b|+2|a|.【13.已知有理数a,b,c在数轴上对应点的位置如图所示,化简|b﹣c|+2|c+a|﹣3|a﹣b|.^14.已知有理数a,b,c在数轴上对应点的位置如图所示,化简:|2b﹣c|-2|c-a|+3|a﹣b|.】15.已知有理数a,b,c在数轴上的位置如图所示,化简|a|﹣|a﹣b|+|c﹣a|+|b+c|.第4天16.有理数a、b、c在数轴上的位置如图所示,化简:|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.*17.已知有理数a、b、c在数轴上的位置如图所示,化简:|2a﹣b|+3|c﹣a|﹣2|b﹣c|》18.已知有理数a,b,c在数轴上对应的点的位置如图所示,化简|a﹣b|+3|c﹣a|﹣|b﹣c|.19.有理数a、b、c在数轴上的位置如图所示:化简|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.!20.有理数a,b,c在数轴上的位置如图所示,化简3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|.!参考答案1.在数轴上有示a、b、c三个实数的点的位置如图所示,化简|b﹣a|+|c﹣a|﹣|c﹣b|.解:由数轴上点的位置可得:c<0<a<b,∴b﹣a>0,c﹣a<0,c﹣b<0,∴|b﹣a|+|c﹣a|﹣|c﹣b|=b﹣a+a﹣c+c﹣b=0.2.已知有理数a,b,c在数轴上的位置如图所示,化简|b﹣c|﹣|c﹣a|+|b﹣a|.【解:由图可得,c<b<0<a,则|b﹣c|﹣|c﹣a|+|b﹣a|=b﹣c+c﹣a﹣b+a=0.3.有理数a、b、c在数轴上的位置如图所示,化简|a﹣b|+2|a+c|﹣|b﹣2c|.解:由数轴可知c<a<0<b,且|a|<|b|<|c|,则a﹣b<0、a+c<0、b﹣2c>0,∴原式=b﹣a﹣2(a+c)﹣(b﹣2c):=b﹣a﹣2a﹣2c﹣b+2c=﹣3a.4.有理数a,b,c在数轴上的位置如图所示,化简|b+a|﹣|b﹣c|+|a﹣c|.解:根据题意得:c<a<0<b,且|b|<|a|<|c|,∴b+a<0,b﹣c>0,a﹣c>0,则原式=﹣b﹣a﹣b+c+a﹣c=﹣2b.5.有理数a、b、c在数轴上的位置如图所示,化简|a﹣c|﹣|c﹣2b|+|a+c|﹣|a+b|.,解:∵由图可知,c<a<b,∴a﹣c>0,c﹣2b<0,a+c<0,a+b>0,∴原式=(a﹣c)﹣(2b﹣c)﹣(a+c)﹣(a+b)=a﹣c﹣2b+c﹣a﹣c﹣a﹣b=﹣a﹣3b﹣c.6.若有理数a,b,c在数轴上的位置如图所示,化简|a+c|+|2a+b|﹣|c﹣b|.$解:根据图示,可得c<b<0<a,且a<|c|,∴a+c<0,2a+b>0,c﹣b<0,∴|a+c|+|2a+b|﹣|c﹣b|=﹣(a+c)+(2a+b)+(c﹣b)=﹣a﹣c+2a+b+c﹣b=a.7.有理数a、b、c的位置如图所示,化简|b|+|a﹣c|+|b﹣c|﹣|a﹣b|.解:由数轴可得:b>0,a﹣c<0,b﹣c>0,a﹣b<0,故:|b|+|a﹣c|+|b﹣c|﹣|a﹣b|=b+c﹣a+b﹣c﹣(b﹣a)$=b.8.有理数a、b、c在数轴上的位置如图所示,化简-|b|-|a﹣c|+|b﹣c|+|a﹣b|.解:由数轴得,a<c<0<b,∴b>0,a﹣c<0,b﹣c>0,a﹣b<0,∴|b|+|a﹣c|+|b﹣c|+|a﹣b|=-b+a﹣c+b﹣c+b﹣a=b﹣2c.9.有理数a、b、c在数轴上的位置如图所示,化简|c﹣1|+|a﹣c|+|a﹣b|.&解:根据数轴上点的位置得:﹣1<c<0<a<b,∴c﹣1<0,a﹣c>0,a﹣b<0,则原式=1﹣c+a﹣c+b﹣a=1﹣2c+b.10.已知有理数a,b,c在数轴上的位置如图所示,化简|a﹣c|﹣|a+b|﹣|b﹣c|+|2b|.解:根据数轴上点的位置得:b<0<a<c,|c|>|a|>|b|,∴a﹣c<0,a+b>0,b﹣c<0,2b<0原式=c﹣a﹣(a+b)﹣(c﹣b)+(﹣2b)`=c﹣a﹣a﹣b﹣c+b﹣2b=﹣2a﹣2b.11.有理数a、b、c在数轴上的位置如图所示,化简|c|﹣|c+b|+|a﹣c|+|b+a|.解:∵由数轴上a、b、c的位置可知,b<c<0<a,c+b<0,a﹣c>0,a+b<0,∴原式=﹣c+c+b+a﹣c﹣a﹣b=﹣c.)12.数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|b﹣c|﹣|a+c|﹣|b|+2|a|.解:∵由图可知c<0<a<b,|c|>b>a,∴a﹣b<0,b﹣c>0,a+c<0,∴原式=(b﹣a)﹣(b﹣c)﹣(﹣a﹣c)﹣b+2a=b﹣a﹣b+c+a+c﹣b+2a=2a+2c﹣b.13.已知有理数a,b,c在数轴上对应点的位置如图所示,化简|b﹣c|+2|c+a|﹣3|a﹣b|.?解:由图可知,c<a<0<b,所以,b﹣c>0,c+a<0,a﹣b<0,所以,原式=b﹣c﹣2(c+a)﹣3(b﹣a)=b﹣c﹣2c﹣2a﹣3b+3a=a﹣2b﹣3c.14.已知有理数a,b,c在数轴上对应点的位置如图所示,化简:|2b﹣c|-2|c-a|+3|a﹣b|.~解:∵由图可知,c<a<0<b,∴2b﹣c>0,c-a<0,a﹣b<0,∴原式=2b﹣c+2(c-a)+3(b﹣a)=2b﹣c+2c﹣2a+3b-3a=-5a+b+c.15.已知有理数a,b,c在数轴上的位置如图所示,化简|a|﹣|a﹣b|+|c﹣a|+|b+c|.解:∵由数轴上a、b、c的位置可知,a<b<0<c,(∴a﹣b<0,c﹣a>0,b+c>0,∴原式=﹣a﹣[﹣(a﹣b)]+(c﹣a)+(b+c)=﹣a+a﹣b+c﹣a+b+c=﹣a+2c.16.有理数a、b、c在数轴上的位置如图所示,化简:|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.解:根据数轴上点的位置得:a<b<0<c,且|a|<|b|<|c|,∴a+b+c<0,a﹣b﹣c>0,b﹣a<0,b+c<0,,则原式=﹣a﹣b﹣c﹣a+b+c+b﹣a﹣b﹣c=﹣3a﹣c.17.已知有理数a、b、c在数轴上的位置如图所示,化简:|2a﹣b|+3|c﹣a|﹣2|b﹣c|解:由数轴可知a<0<b<c,所以2a﹣b<0,c﹣a>0,b﹣c<0,则|2a﹣b|+3|c﹣a|﹣2|b﹣c|,=﹣(2a﹣b)+3(c﹣a)+2(b﹣c),=﹣2a+b+3c﹣3a+2b﹣2c,=﹣5a+3b+c.18.已知有理数a,b,c在数轴上对应的点的位置如图所示,化简|a﹣b|+3|c﹣a|﹣|b﹣c|.解:由数轴可得:a﹣b<0,c﹣a>0,b﹣c<0,则|a﹣b|+3|c﹣a|﹣|b﹣c|=b﹣a+3(c﹣a)﹣(c﹣b)=b﹣a+3c﹣3a﹣c+b=2b﹣4a+2c.19.有理数a、b、c在数轴上的位置如图所示:化简|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.解:根据图形可得,a>0,b<0,c<0,且|a|<|b|<|c|,∴a+c<0,a﹣b﹣c>0,b﹣a<0,b+c<0,∴|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|,=﹣a﹣c﹣a+b+c+b﹣a﹣b﹣c,=﹣3a﹣c+b.20.有理数a,b,c在数轴上的位置如图所示,化简3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|.解:结合数轴可得:a﹣b<0,a+b<0,c﹣a>0,b﹣c<0,则3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|=﹣3(a﹣b)﹣(a+b)﹣(c﹣a)﹣2(b﹣c)=﹣3a+3b﹣a﹣b﹣c+a﹣2b+2c=﹣3a+c.。
人教版初中七年级数学上册第一章《有理数》阶段练习(含答案解析)

1.13-的倒数的绝对值( )A .-3B .13-C .3D .13C 解析:C【分析】 首先求13-的倒数,然后根据绝对值的含义直接求解即可.【详解】 13-的倒数为-3,-3绝对值是3, 故答案为:C .【点睛】本题考查了倒数和绝对值的概念,熟练掌握概念是解题的关键.2.若b<0,刚a ,a+b ,a-b 的大小关系是( )A .a<a <+b -b aB .<a<a-b a+bC .a<<a-b a+bD .<a<a+b a-b D 解析:D【分析】根据有理数减法法则,两两做差即可求解.【详解】∵b<0∴()0a a b b -+=->,()0a b a b --=->∴()a a b >+,()a b a ->∴()()a b a a b ->>+故选D .【点睛】本题考查了有理数减法运算,减去一个负数等于加上这个数的相反数.3.2--的相反数是( )A .12-B .2-C .12D .2D解析:D【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D .【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0. 4.下列说法中,其中正确的个数是( )(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a 表示正有理数,则-a 一定是负数;(4)a 是大于-1的负数,则a 2小于a 3A .1B .2C .3D .4C解析:C【解析】【分析】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.【详解】解:(1)有理数中,绝对值最小的数是0,符合题意;(2)有理数不是整数就是分数,符合题意;(3)当a 表示正有理数,则-a 一定是负数,符合题意;(4)a 是大于-1的负数,则a 2大于a 3,不符合题意,故选:C .【点睛】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.5.若一个数的绝对值的相反数是17-,则这个数是( ) A .17- B .17+ C .17± D .7± C解析:C【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可.【详解】∵相反数为17-的数是17,而17-或17的绝对值都是17, ∴这个数是17-或17. 故选C.【点睛】熟知“绝对值的代数意义和相反数的定义”是解答本题的关键.6.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.7.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2 B.1,3C.4,2 D.4,3A解析:A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A.点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.8.下列各组数中,互为相反数的是()A.(﹣3)2和﹣32B.(﹣3)2和32C.(﹣2)3和﹣23D.|﹣2|3和|﹣23|A 解析:A【分析】各项中两式计算得到结果,即可作出判断.【详解】A、(﹣3)2=9,﹣32=﹣9,互为相反数;B、(﹣3)2=32=9,不互为相反数;C、(﹣2)3=﹣23=﹣8,不互为相反数;D、|﹣2|3=|﹣23|=8,不互为相反数,故选:A.此题考查了有理数的乘方,相反数,以及绝对值,熟练掌握运算法则是解本题的关键. 9.下列运算正确的是( )A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=- D 解析:D【分析】 根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D .【详解】A 、()22-2-2441÷=-÷=-,该选项错误; B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误; D 、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确; 故选:D .【点睛】 本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 10.计算-3-1的结果是( )A .2B .-2C .4D .-4D解析:D【解析】试题-3-1=-3+(-1)=-(3+1)=-4.故选D.11.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃B 解析:B【解析】【分析】根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解.解:设温度为x ℃,根据题意可知1538x x x x ≥⎧⎪≤⎪⎨≥⎪⎪≤⎩ 解得35x ≤≤.故选:B .【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.12.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18B .1-C .18-D .2C解析:C【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解.【详解】∵一个数比10的相反数大2,∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意;故选:C .【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.13.计算-2的结果是( ) A .0B .-2C .-4D .4A 解析:A【详解】解:因为|-2|-2=2-2=0,故选A .考点:绝对值、有理数的减法14.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a+b <0B .a+b >0C .a ﹣b <0D .ab >0A【分析】根据数轴判断出a 、b 的符号和取值范围,逐项判断即可.【详解】解:从图上可以看出,b <﹣1<0,0<a <1,∴a+b <0,故选项A 符合题意,选项B 不合题意;a ﹣b >0,故选项C 不合题意;ab <0,故选项D 不合题意.故选:A .【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a 、b 的符号,熟知有理数的运算法则是解题关键.15.若2020M M +-=+,则M 一定是( )A .任意一个有理数B .任意一个非负数C .任意一个非正数D .任意一个负数B 解析:B【分析】直接利用绝对值的性质即可解答.【详解】解:∵M +|-20|=|M |+|20|,∴M≥0,为非负数.故答案为B .【点睛】本题考查了绝对值的应用,灵活应用绝对值的性质是正确解答本题的关键.1.已知|a |=3,|b |=2,且ab <0,则a ﹣b =_____.5或﹣5【分析】先根据绝对值的定义求出ab 的值然后根据ab <0确定ab 的值最后代入a ﹣b 中求值即可【详解】解:∵|a|=3|b|=2∴a =±3b =±2;∵ab <0∴当a =3时b =﹣2;当a =﹣3时b解析:5或﹣5【分析】先根据绝对值的定义,求出a 、b 的值,然后根据ab <0确定a 、b 的值,最后代入a ﹣b 中求值即可.【详解】解:∵|a|=3,|b|=2,∴a =±3,b =±2;∵ab <0,∴当a =3时b =﹣2;当a =﹣3时b =2,∴a ﹣b =3﹣(﹣2)=5或a ﹣b =﹣3﹣2=﹣5.故填5或﹣5.【点睛】本题主要考查的是有理数的乘法、绝对值、有理数的减法,熟练掌握相关法则是解题的关键.2.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a由题意得:-1<a<3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2【分析】根据题意可以确定被污染部分的取值范围,继而求出答案.【详解】设被污染的部分为a,由题意得:-1<a<3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2.故答案为0,1,2.【点睛】考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念.3.在如图所示的运算流程中,若输出的数y=5,则输入的数x=_____.910【详解】试题分析:由运算流程可以得出有两种情况当输入的x为偶数时就有y=x当输入的x为奇数就有y=(x+1)把y=5分别代入解析式就可以求出x的值而得出结论解:由题意得当输入的数x是偶数时则y解析:9,10【详解】试题分析:由运算流程可以得出有两种情况,当输入的x为偶数时就有y=12x,当输入的x为奇数就有y=12(x+1),把y=5分别代入解析式就可以求出x的值而得出结论.解:由题意,得当输入的数x是偶数时,则y=12x,当输入的x为奇数时,则y=12(x+1).当y=5时,∴5=12x或5=12(x+1).∴x=10或9故答案为9,10考点:一元一次方程的应用;代数式求值.4.已知一个数的绝对值为5,另一个数的绝对值为3,且两数之积为负,则两数之差为____.±8【分析】首先根据绝对值的性质得出两数进而分析得出答案【详解】设|a|=5|b|=3则a=±5b=±3∵ab<0∴当a=5时b=-3∴5-(-3)=8;当a=-5时b=3∴-5-3=-8故答案为:解析:±8【分析】首先根据绝对值的性质得出两数,进而分析得出答案.【详解】设|a|=5,|b|=3,则a=±5,b=±3,∵ab<0,∴当a=5时,b=-3,∴5-(-3)=8;当a=-5时,b=3,∴-5-3=-8.故答案为:±8.【点睛】本题主要考查了绝对值的性质以及有理数的混合运算,熟练掌握绝对值的性质是解题关键.5.运用加法运算律填空:(1)[(-1)+2]+(-4)=___=___;(2)117+(-44)+(-17)+14=____=____.(-1)+(-4)+2-3117+(-17)+(-44)+1470【分析】(1)根据同号相加的特点利用加法的交换律先计算(-1)+(-4);(2)利用抵消的特点利用加法的交换律和结合律进行简便计算【解析:[(-1)+(-4)]+2 -3 [117+(-17)]+[(-44)+14] 70【分析】(1)根据同号相加的特点,利用加法的交换律,先计算(-1)+(-4);(2)利用抵消的特点,利用加法的交换律和结合律进行简便计算.【详解】(1)同号相加较为简单,故:[(-1)+2]+(-4)=[(-1)+(-4)]+2=-3(2)117和(-17)可通过抵消凑整,(-44)和14也可通过抵消凑整,故:117+(-44)+(-17)+14=[117+(-17)]+[(-44)+14]=70.【点睛】本题考查有理数加法的简算,解题关键是灵活利用加法交换律和结合律,凑整进行简算.6.把点P从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,此时点P所表示的数是______.【分析】根据向右移动加向左移动减进行解答即可【详解】因为点P从数轴的原点开始先向右移动2个单位长度再向左移动7个单位长度所以点P所表示的数是0+2-7=-5故答案为:-5【点睛】本题考查的是数轴熟知解析:5【分析】根据向右移动加,向左移动减进行解答即可.【详解】因为点P从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,所以点P所表示的数是 0+2-7=-5.故答案为:-5.【点睛】本题考查的是数轴,熟知数轴的特点是解答此题的关键.7.下面是七年级一班在学校举行的足球赛中的成绩,现规定赢球为“正”,输球为“负”,打平为“0”,请按照示例填空:例:若上半场输了2个球,下半场输了1个球,则全场输了3个球,也就是(-2)+(-1)=-3;(1)若上半场赢了3个球,下半场输了2个球,则全场赢了____个球,也就是____;(2)若上半场输了3个球,下半场赢了2个球,则全场输了___个球,也就是_____;(3)若上半场赢了3个球,下半场打平,则全场赢了___个球,也就是____.3+(-2)=11(-3)+2=-133+0=3【分析】根据定义赢球记为正输球记为负打平记为0先用有理数表示出输赢情况然后根据有理数的加减运算求解【详解】(1)上半场赢了3个为3下半场输了2个记为(解析:3+(-2)=1 1 (-3)+2=-1 3 3+0=3【分析】根据定义,赢球记为“正”,输球记为“负”,打平记为“0”,先用有理数表示出输赢情况,然后根据有理数的加减运算求解.【详解】(1)上半场赢了3个,为3,下半场输了2个,记为(-2),也就是:3+(-2)=1;(2)上半场输了3个,为(-3),下半场赢了2个,记为2,也就是:(-3)+2=-1;(3)上半场赢了3个,为3,下半场打平,记为0,也就是:3+0=3.【点睛】本题考查用正负数表示相反意义的量,并求解有理数的加法,解题关键是用正负数正确表示出输赢球的数量关系.8.绝对值小于100的所有整数的积是______.0【分析】先找出绝对值小于100的所有整数再求它们的乘积【详解】:绝对值小于100的所有整数为:0±1±2±3…±100因为在因数中有0所以其积为0故答案为0【点睛】本题考查了绝对值的性质要求掌握绝解析:0【分析】先找出绝对值小于100的所有整数,再求它们的乘积.【详解】:绝对值小于100的所有整数为:0,±1,±2,±3,…,±100,因为在因数中有0所以其积为0.故答案为0.【点睛】本题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.9.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()a a b cd b++-=___________.2【分析】利用相反数倒数的性质确定出a+bcd 的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运解析:2【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,1a b =- 则原式=0+1-(-1)=2.故答案为:2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.10.计算:(-0.25)-134⎛⎫- ⎪⎝⎭+2.75-172⎛⎫+ ⎪⎝⎭=___.-175【分析】根据减法法则将减法全部转化为加法同时把分数化成小数然后利用加法的交换结合律进行计算【详解】解:原式=-025+325+275-75=(-025-75)+(325+275)=-775+解析:-1.75【分析】根据减法法则将减法全部转化为加法,同时把分数化成小数,然后利用加法的交换结合律进行计算.【详解】解:原式=-0.25+3.25+2.75-7.5=(-0.25-7.5)+( 3.25+2.75)=-7.75+6=-1.75.故答案为:-1.75.【点睛】本题考查了有理数加减混合运算,一般思路是先把加减法统一为加法,然后利用加法的运算律进行计算.11.某班同学用一张长为1.8×103mm,宽为1.65×103mm的大彩色纸板制作一些边长为3×102mm的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,∴最多能制作5×6=30(张).故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.1.计算(1)21145()5 -÷⨯-(2)21(2)8(2)()2--÷-⨯-.解析:(1)4125;(2)2.【分析】第(1)和(2)小题都属于有理数的混合运算,根据混合运算的运算顺序:先算乘方,并利用有理数的除法法则将除法转化为乘法,再计算乘法,最后计算加减即可求出结果.【详解】解:(1)21145()5 -÷⨯-11116()55=-⨯⨯- 16125=+ 4125=; (2)21(2)8(2)()2--÷-⨯- 1148()()22=-⨯-⨯- 42=-2=.【点睛】本题考查了有理数的混合运算,解题的关键是确定正确的运算顺序并运用运算法则准确计算.2.(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯- 解析:(1)-29;(2)13.【分析】(1)利用乘法分配律进行简便运算,即可得出结果;(2)先计算有理数的乘方与乘法,再进行加减运算即可.【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭ 37(1242424)812=-⨯-⨯+⨯ (24914)=--+29=-;(2)431(2)2(3)----⨯-1(8)(6)=-----186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键.3.计算(1)3124623⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭(2)()()34011 1.950.50|5|5---+-⨯⨯--+.解析:(1)14;(2)0【分析】(1)先计算乘法和除法,再计算加法;(2)分别计算乘方、乘法和绝对值,再计算加法和减法.【详解】解:(1)原式=2124633⎛⎫⎛⎫-⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭()162=+-14=;(2)原式011055=-++-+=0.【点睛】本题考查有理数的混合运算.(1)中注意要先把除法化为乘法再计算;(2)中注意多个有理数相乘时,只要有一个因数为0,那么积就为0.4.计算下列各式的值:(1)1243 3.55-+-(2)131(48)64⎛⎫-+⨯- ⎪⎝⎭(3)22350(5)1--÷--解析:(1)-24.3;(2)-76;(3)-12【分析】(1)先将减法化为加法,再计算加法即可;(2)利用乘法分配律计算即可;(3)先计算乘方,再计算除法,最后计算减法.【详解】解:(1)原式=24 3.2( 3.5)-++-=-24.3;(2)原式=131(48)(48)(48)64⨯--⨯-+⨯-=488(36)-++-=-76;(3)原式=950251--÷-=921---=9(2)(1)-+-+-=-12.【点睛】本题考查有理数的混合运算.熟记运算顺序和每一步的运算法则是解题关键.。
2023-2024学年人教版七年级数学上册第一章【有理数】训练卷附答案解析

2023-2024学年七年级数学上册第一章【有理数】训练卷(满分120分)一、选择题(本大题共10小题,共30分)1.−2023的绝对值是()A.12023B.2023C.−12023D.−20232.中国人最早使用负数,可追溯到两千多年前的秦汉时期,−0.5的相反数是()A.0.5B.±0.5C.−0.5D.53.负数的概念最早出现在我国古代著名的数学专著《九章算术》中,如果把收入5元记作+5元,那么支出5元记作()A.−5元B.0元C.+5元D.+10元4.以下说法正确的是()A.正整数和负整数统称整数B.整数和分数统称有理数C.正有理数和负有理数统称有理数D.有理数包括整数、零、分数5.用四舍五入法对0.06045取近似值,错误的是()A.0.1(精确到0.1)B.0.06(精确到百分位)C.0.061(精确到千分位)D.0.0605(精确到0.0001)6.2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功,C919可储存约186000升燃油,将数据186000用科学记数法表示为()A.0.186×105B.1.86×105C.18.6×104D.186×1037.有4,−92,−3,0四个数,其中最小的是()A.4B.−92C.−3D.08.如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=6,则点A表示的数为()A.−3B.0C.3D.−69.中国人最先使用负数,魏晋时期的数学家刘徽在其著作《九章算术注》中,用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正,黑色为负).如图1表示的是(+2)+(−2),根据这种表示法,可推算出图2所表示的算式是()A.(+3)+(+6)B.(+3)+(−6)C.(−3)+(+6)D.(−3)+(−6)10.观察下列等式:31=3,32=9,33=27,34=81,35=243,…,根据其中的规律可得31+32+33+…+32023的结果的个位数字是()A.0B.2C.7D.9二、填空题(本大题共5小题,共15分)11.在−1、0、1、2这四个数中,既不是正数也不是负数的是.12.比较大小:−12−1;−2−|−3|;−(−12)−(−13).13.计算:1+(−2)+3+(−4)+…+2023+(−2024)=________.14.若|x+2|+(y−3)2=0,则x y=.15.已知有理数a、b、c在数轴上对应点的位置如图所示,则|b−c|−|a−b|−|c|的化简结果为.三、计算题(本大题共8小题,共75分)16.(12分)计算:(1)(−16+34−512)×12(2) (−20)−(+5)−(−5)−(−12).(3)(+325)+(−278)−(−535)−(+18)(4)−12−(12−23)÷13×[−2+(−3)2].17.(6分)将下列各数在数轴上表示出来,并用“<”把它们连接起来.−4,−|−3|,0,−13,+(+2),π18.(7分)现有10袋小麦,称量后记录如下(单位:千克) :91,91,91.5,89,91.2,91.3,88.7,88.8,91.8,91.1.(1)若以90千克为标准,把超出的千克数记为正数,不足的千克数记为负数,请依次写出10袋小麦的千克数与90的差值.(2)请利用(1)中的差值,求这10袋小麦的质量和.19.(9分)出租车司机老姚某天上午的营运全是在一条笔直的东西走向的路上进行.如果规定向东为正,向西为负,那么他这天上午行车里程(单位:千米)记录如下:+5,−3,+6,−7,+6,−2,−5,+4,+6,−8.(1)将第几名乘客送到目的地时,老姚刚好回到上午的出发点?(2)将最后一名乘客送到目的地时,老姚距上午的出发点多远?在出发点的东面还是西面?(3)若出租车的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元,则姚师傅在这天上午一共收入多少元?20.(10分)某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天的生产量与计划量相比有出入.下表是某周的生产情况(超额记为正、不足记为负):(单位:只)星期一二三四五六日与计划量的差值+5−2−4+13−6+6−3(1)根据记录的数据可知该厂生产风筝最多的一天是星期;(2)产量最多的一天比产量最少的一天多生产多少只风筝⋅(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元,少生产一只扣4元,那么该厂工人这一周的工资总额是多少元⋅21(10分)简便运算能使学生思维的灵活性得到充分锻炼,对提高学生的计算能力起到非常大的作用.阅读下列相关材料.材料一:计算:124÷(23−34+16−512).分析:利用通分计算23−34+16−512会很麻烦,可以采用以下方法进行计算.解:∵(23−34+16−512)÷124=(23−34+16−512)×24=23×24−34×24+16×24−512×24=−8,∴124÷(23−34+16−512)=−18.材料二:下列算式是一类两个两位数相乘的特殊计算方法.38×32=100×(32+3)+8×2=1216;67×63=100×(62+6)+7×3=4221.根据以上材料,完成下列计算:(1)请你根据材料一,计算:(−148)÷(−12+516+34−724).(2)请你根据材料二,计算:(−54)×56.22.(10分)如图,已知在纸面上有一条数轴.操作一:折叠数轴,使表示1的点与表示−1的点重合,则表示−3的点与表示______的点重合.操作二:折叠数轴,使表示1的点与表示3的点重合,在这个操作下回答下列问题:①表示−3的点与表示______的点重合;②若数轴上A,B两点的距离为6(A在B的左侧),且折叠后A,B两点重合,则点A表示的数为______,点B表示的数为______.23(11分)(1)比较下列各式的大小:|5|+|3||5+3|,|−5|+|−3||(−5)+(−3)|,|−5|+|3||(−5)+3|,|0|+|−5||0+(−5)|.(2)通过(1)的比较、观察,请你归纳猜想:当a,b为有理数时,|a|+|b|a+b|.(填“≥”“≤”“>”或“<”)(3)根据以上信息,小华提出:“当|x|+|−2|=|x−2|成立时,x是负数”,你同意他的观点吗⋅请说明理由.答案和解析1.【答案】B解:因为负数的绝对值等于它的相反数,所以−2023的绝对值是:2023.故选:B.2.【答案】A解:−0.5的相反数是0.5,故选:A.3.【答案】A【解答】解:由把收入5元记作+5元,可知支出5元记作−5元;故选A.4.【答案】B解:A.正整数,负整数和0统称整数,所以本选项错误;B.整数和分数统称为有理数,本选项正确;C.正有理数,负有理数和0统称有理数,故C选项错误;D.有理数包括整数、分数,故D选项错误,故选B.5.【答案】C解:A、0.06045精确到0.1得0.1,故本选项不符合题意;B、0.06045精确到百分位得0.06,故本选项不符合题意;C、0.06045精确到千分位得0.060,故本选项符合题意;D、0.06045精确到0.0001得0.0605,故本选项不符合题意.故选:C.【点睛】6.【答案】B解:将数据186000用科学记数法表示为 1.86×105;故选B7.【答案】B解:−92<−3<0<4,故最小的数为−92,故选:B.8.【答案】A解:因为a+b=0,所以a=−b,即a与b互为相反数.又因为AB=6,所以b−a=6.所以2b=6.所以b=3.所以a=−3,即点A表示的数为−3.故选:A.9.【答案】B解:由题意可知:(+3)+(−6),故选:B.10.【答案】D解:由已知可知31=3,32=9,33=27,34=81,…个位数字每四个一组循环,∵31=3,32=9,33=27,34=81四个数的个位数字之和是0,又2023÷4=505…3,∴3+9+7=19,∴31+32+33+…+32023的结果的个位数字是9.故选:D.11.【答案】0解:一个数既不是正数,也不是负数,则这个数是0.故答案为:0.12.【答案】>>13.【答案】−1013解:1+(−2)+3+(−4)+…+2025+(−2026)=[1+(−2)]+[3+(−4)]+…+[2023+(−2024)] =(−1)+(−1)+…+(−1)=−1×1012=−1012.故答案为−1012.14.【答案】−8解:因为|x+2|+(y−3)2=0,所以x+2=0,y−3=0,所以x=−2,y=3,所以(−2)3=−8.故答案为:−8.15.【答案】a解:由数轴可知,a<0,b>0,c<0,∴b−c>0,a−b<0,∴|b−c|−|a−b|−|c|=(b−c)−(b−a)−(−c)=b−c−b+a+c=a,故答案为:a.16.【答案】解:(1) (−16+34−512)×12=−16×12+34×12−512×12=−2+9−5=2(2)原式=−20+(−5)+5+12=−8.(3)原式=325+535−278−18=9−3=6.(4)原式=2.5.17.【答案】在数轴上表示如下.−4<−|−3|<−13<0<+(+2)<π.18.【答案】【小题1】+1,+1,+1.5,−1,+1.2,+1.3,−1.3,−1.2,+1.8,+1.1.【小题2】905.4千克.19.【答案】解:(1)因为5−3+6−7+6−2−5=0,所以将第7名乘客送到目的地时,老姚刚好回到上午的出发点.(2)因为5−3+6−7+6−2−5+4+6−8=2,所以将最后一名乘客送到目的地时,老姚距上午的出发点2 km,在出发点的东面.(3)8+2×2+8+8+2×3+8+2×4+8+2×3+8+8+2×2+8+2×1+8+2×3+8+ 2×5=126(元).所以姚师傅在这天上午一共收入126元.20..【答案】【小题1】四【小题2】+13−(−6)=13+6=19(只).答:产量最多的一天比产量最少的一天多生产19只风筝.【小题3】(+5)+(−2)+(−4)+(+13)+(−6)+(+6)+(−3)=9(只),(700+9)×20+9×5=709×20+45=14180+45=14225(元).答:该厂工人这一周的工资总额是14225元.21.【答案】【小题1】−113.【小题2】−3024.22.【答案】37−15解:操作一:∵折叠数轴,使表示1的点与表示−1的点重合,∴原点为折叠点,即1与−1的中点为原点,∵表示−3的点距原点的距离为3,表示3的点距原点的距离为3,∴表示−3的点与表示3的点重合.故答案为:3.操作二:①∵折叠数轴,使表示1的点与表示3的点重合,∴表示2的点为折叠点,即表示2的点为重合点的中点,∵表示−3的点距表示2的距离为5,表示7的点距表示2的距离为5,∴表示−3的点与表示7的点重合;故答案为:7.②∵AB=6,折叠后A,B两点重合,∴点A到表示2的点的距离与点B到表示2的点的距离都为3,∵到表示2的点的距离等于3的点对应的数分别为:−1,5,又∵A在B的左侧,∴A点表示的数为−1,B点表示的数为5.故答案为:−1;5.本题主要考查了数轴,两点之间的距离,本题是操作型题目,根据折叠的对称性是解题的关键.23.【答案】【小题1】==>=【小题2】≥【小题3】不同意,x还可以是0,那么x应该是非正数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册-《有理数绝对值化简运算》强化训练(含答
案)
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
牢记方法规则:1.判断绝对值里面量的正负
2.去掉绝对值产生括号
3.去掉括号合并同类项
第1天
1.在数轴上有示a、b、c三个实数的点的位置如图所示,化简|b﹣a|+|c﹣a|﹣|c﹣b|.
2.已知有理数a,b,c在数轴上的位置如图所示,化简|b﹣c|﹣|c﹣a|+|b﹣a|.
3.有理数a、b、c在数轴上的位置如图所示,化简|a﹣b|+2|a+c|﹣|b﹣2c|.
4.有理数a,b,c在数轴上的位置如图所示,化简|b+a|﹣|b﹣c|+|a﹣c|.
5.有理数a、b、c在数轴上的位置如图所示,化简|a﹣c|﹣|c﹣2b|+|a+c|﹣|a+b|.
第2天
6.若有理数a,b,c在数轴上的位置如图所示,化简|a+c|+|2a+b|﹣|c﹣b|.
7.有理数a、b、c的位置如图所示,化简|b|+|a﹣c|+|b﹣c|﹣|a﹣b|.
8.有理数a、b、c在数轴上的位置如图所示,化简-|b|-|a﹣c|+|b﹣c|+|a﹣b|.
9.有理数a、b、c在数轴上的位置如图所示,化简|c﹣1|+|a﹣c|+|a﹣b|.
10.已知有理数a,b,c在数轴上的位置如图所示,化简|a﹣c|﹣|a+b|﹣|b﹣c|+|2b|.
第3天
11.有理数a、b、c在数轴上的位置如图所示,化简|c|﹣|c+b|+|a﹣c|+|b+a|.
12.数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|b﹣c|﹣|a+c|﹣|b|+2|a|.
13.已知有理数a,b,c在数轴上对应点的位置如图所示,化简|b﹣c|+2|c+a|﹣3|a﹣b|.
14.已知有理数a,b,c在数轴上对应点的位置如图所示,化简:|2b﹣c|-2|c-a|+3|a﹣b|.
15.已知有理数a,b,c在数轴上的位置如图所示,化简|a|﹣|a﹣b|+|c﹣a|+|b+c|.
第4天
16.有理数a、b、c在数轴上的位置如图所示,化简:|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.
17.已知有理数a、b、c在数轴上的位置如图所示,化简:|2a﹣b|+3|c﹣a|﹣2|b﹣c|
18.已知有理数a,b,c在数轴上对应的点的位置如图所示,化简|a﹣b|+3|c﹣a|﹣|b ﹣c|.
19.有理数a、b、c在数轴上的位置如图所示:化简|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.
20.有理数a,b,c在数轴上的位置如图所示,化简3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|.
参考答案
1.在数轴上有示a、b、c三个实数的点的位置如图所示,化简|b﹣a|+|c﹣a|﹣|c﹣b|.
解:由数轴上点的位置可得:c<0<a<b,
∴b﹣a>0,c﹣a<0,c﹣b<0,
∴|b﹣a|+|c﹣a|﹣|c﹣b|=b﹣a+a﹣c+c﹣b=0.
2.已知有理数a,b,c在数轴上的位置如图所示,化简|b﹣c|﹣|c﹣a|+|b﹣a|.
解:由图可得,c<b<0<a,
则|b﹣c|﹣|c﹣a|+|b﹣a|=b﹣c+c﹣a﹣b+a=0.
3.有理数a、b、c在数轴上的位置如图所示,化简|a﹣b|+2|a+c|﹣|b﹣2c|.
解:由数轴可知c<a<0<b,且|a|<|b|<|c|,
则a﹣b<0、a+c<0、b﹣2c>0,
∴原式=b﹣a﹣2(a+c)﹣(b﹣2c)
=b﹣a﹣2a﹣2c﹣b+2c
=﹣3a.
4.有理数a,b,c在数轴上的位置如图所示,化简|b+a|﹣|b﹣c|+|a﹣c|.
解:根据题意得:c<a<0<b,且|b|<|a|<|c|,
∴b+a<0,b﹣c>0,a﹣c>0,
则原式=﹣b﹣a﹣b+c+a﹣c=﹣2b.
5.有理数a、b、c在数轴上的位置如图所示,化简|a﹣c|﹣|c﹣2b|+|a+c|﹣|a+b|.
解:∵由图可知,c<a<b,
∴a﹣c>0,c﹣2b<0,a+c<0,a+b>0,
∴原式=(a﹣c)﹣(2b﹣c)﹣(a+c)﹣(a+b)
=a﹣c﹣2b+c﹣a﹣c﹣a﹣b
=﹣a﹣3b﹣c.
6.若有理数a,b,c在数轴上的位置如图所示,化简|a+c|+|2a+b|﹣|c﹣b|.
解:根据图示,可得c<b<0<a,且a<|c|,
∴a+c<0,2a+b>0,c﹣b<0,
∴|a+c|+|2a+b|﹣|c﹣b|=﹣(a+c)+(2a+b)+(c﹣b)=﹣a﹣c+2a+b+c﹣b=a.
7.有理数a、b、c的位置如图所示,化简|b|+|a﹣c|+|b﹣c|﹣|a﹣b|.
解:由数轴可得:b>0,a﹣c<0,b﹣c>0,a﹣b<0,
故:|b|+|a﹣c|+|b﹣c|﹣|a﹣b|
=b+c﹣a+b﹣c﹣(b﹣a)
=b.
8.有理数a、b、c在数轴上的位置如图所示,化简-|b|-|a﹣c|+|b﹣c|+|a﹣b|.
解:由数轴得,a<c<0<b,
∴b>0,a﹣c<0,b﹣c>0,a﹣b<0,
∴|b|+|a﹣c|+|b﹣c|+|a﹣b|=-b+a﹣c+b﹣c+b﹣a=b﹣2c.
9.有理数a、b、c在数轴上的位置如图所示,化简|c﹣1|+|a﹣c|+|a﹣b|.
解:根据数轴上点的位置得:﹣1<c<0<a<b,
∴c﹣1<0,a﹣c>0,a﹣b<0,
则原式=1﹣c+a﹣c+b﹣a=1﹣2c+b.
10.已知有理数a,b,c在数轴上的位置如图所示,化简|a﹣c|﹣|a+b|﹣|b﹣c|+|2b|.
解:根据数轴上点的位置得:b<0<a<c,|c|>|a|>|b|,
∴a﹣c<0,a+b>0,b﹣c<0,2b<0
原式=c﹣a﹣(a+b)﹣(c﹣b)+(﹣2b)
=c﹣a﹣a﹣b﹣c+b﹣2b
=﹣2a﹣2b.
11.有理数a、b、c在数轴上的位置如图所示,化简|c|﹣|c+b|+|a﹣c|+|b+a|.
解:∵由数轴上a、b、c的位置可知,b<c<0<a,c+b<0,a﹣c>0,a+b<0,∴原式=﹣c+c+b+a﹣c﹣a﹣b
=﹣c.
12.数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|b﹣c|﹣|a+c|﹣|b|+2|a|.
解:∵由图可知c<0<a<b,|c|>b>a,
∴a﹣b<0,b﹣c>0,a+c<0,
∴原式=(b﹣a)﹣(b﹣c)﹣(﹣a﹣c)﹣b+2a
=b﹣a﹣b+c+a+c﹣b+2a
=2a+2c﹣b.
13.已知有理数a,b,c在数轴上对应点的位置如图所示,化简|b﹣c|+2|c+a|﹣3|a﹣b|.
解:由图可知,c<a<0<b,
所以,b﹣c>0,c+a<0,a﹣b<0,
所以,原式=b﹣c﹣2(c+a)﹣3(b﹣a)
=b﹣c﹣2c﹣2a﹣3b+3a
=a﹣2b﹣3c.
14.已知有理数a,b,c在数轴上对应点的位置如图所示,化简:|2b﹣c|-2|c-a|+3|a﹣b|.
解:∵由图可知,c<a<0<b,
∴2b﹣c>0,c-a<0,a﹣b<0,
∴原式=2b﹣c+2(c-a)+3(b﹣a)
=2b﹣c+2c﹣2a+3b-3a
=-5a+b+c.
15.已知有理数a,b,c在数轴上的位置如图所示,化简|a|﹣|a﹣b|+|c﹣a|+|b+c|.
解:∵由数轴上a、b、c的位置可知,a<b<0<c,
∴a﹣b<0,c﹣a>0,b+c>0,
∴原式=﹣a﹣[﹣(a﹣b)]+(c﹣a)+(b+c)
=﹣a+a﹣b+c﹣a+b+c
=﹣a+2c.
16.有理数a、b、c在数轴上的位置如图所示,化简:|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.
解:根据数轴上点的位置得:a<b<0<c,且|a|<|b|<|c|,
∴a+b+c<0,a﹣b﹣c>0,b﹣a<0,b+c<0,
则原式=﹣a﹣b﹣c﹣a+b+c+b﹣a﹣b﹣c=﹣3a﹣c.
17.已知有理数a、b、c在数轴上的位置如图所示,化简:|2a﹣b|+3|c﹣a|﹣2|b﹣c|
解:由数轴可知a<0<b<c,所以2a﹣b<0,c﹣a>0,b﹣c<0,则
|2a﹣b|+3|c﹣a|﹣2|b﹣c|,
=﹣(2a﹣b)+3(c﹣a)+2(b﹣c),
=﹣2a+b+3c﹣3a+2b﹣2c,
=﹣5a+3b+c.
18.已知有理数a,b,c在数轴上对应的点的位置如图所示,化简|a﹣b|+3|c﹣a|﹣|b ﹣c|.
解:由数轴可得:a﹣b<0,c﹣a>0,b﹣c<0,
则|a﹣b|+3|c﹣a|﹣|b﹣c|
=b﹣a+3(c﹣a)﹣(c﹣b)
=b﹣a+3c﹣3a﹣c+b
=2b﹣4a+2c.
19.有理数a、b、c在数轴上的位置如图所示:化简|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.
解:根据图形可得,a>0,b<0,c<0,且|a|<|b|<|c|,
∴a+c<0,a﹣b﹣c>0,b﹣a<0,b+c<0,
∴|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|,
=﹣a﹣c﹣a+b+c+b﹣a﹣b﹣c,
=﹣3a﹣c+b.
20.有理数a,b,c在数轴上的位置如图所示,化简3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|.
解:结合数轴可得:a﹣b<0,a+b<0,c﹣a>0,b﹣c<0,
则3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|
=﹣3(a﹣b)﹣(a+b)﹣(c﹣a)﹣2(b﹣c)
=﹣3a+3b﹣a﹣b﹣c+a﹣2b+2c
=﹣3a+c.。