2020年山东省泰安市东平县中考数学一模试卷
2020届山东省泰安市中考数学模拟试卷有答案(Word版)(已审阅)

泰安市初中学业水平考试数学试题第Ⅰ卷(选择题 共36分)一、选择题(本大题共12个小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对3分,选错、不选或选出的答案超过一个,均记零分)1.计算:0(2)(2)--+-的结果是( ) A .-3 B .0 C .-1 D .3 2.下列运算正确的是( )A .33623y y y += B .236y y y ⋅= C .236(3)9y y = D .325y y y -÷=3.如图是下列哪个几何体的主视图与俯视图( )A .B .C .D .4.如图,将一张含有30o 角的三角形纸片的两个顶点叠放在矩形的两条对边上,若244∠=o,则1∠的大小为( )A .14oB .16oC .90α-oD .44α-o5.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个) 35 38 42 44 40 47 45 45 则这组数据的中位数、平均数分别是( ) A .42、42 B .43、42 C .43、43 D .44、436.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( ) A .530020015030x y x y +=⎧⎨+=⎩ B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩D .301502005300x y x y +=⎧⎨+=⎩7.二次函数2y ax bx c =++的图象如图所示,则反比例函数ay x=与一次函数y ax b =+在同一坐标系内的大致图象是( )A .B .C .D .8.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( ) A .65a -≤<- B .65a -<≤- C .65a -<<- D .65a -≤≤-9.如图,BM 与O e 相切于点B ,若140MBA ∠=o,则ACB ∠的度数为( )A .40oB .50oC .60oD .70o10.一元二次方程(1)(3)25x x x +-=-根的情况是( )A .无实数根B .有一个正根,一个负根C .有两个正根,且都小于3D .有两个正根,且有一根大于311.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,ABC ∆经过平移后得到111A B C ∆,若AC 上一点(1.2,1.4)P 平移后对应点为1P ,点1P 绕原点顺时针旋转180o ,对应点为2P ,则点2P 的坐标为( )A .(2.8,3.6)B .( 2.8, 3.6)--C .(3.8,2.6)D .( 3.8, 2.6)--12.如图,M e 的半径为2,圆心M 的坐标为(3,4),点P 是M e 上的任意一点,PA PB ⊥,且PA 、PB 与x 轴分别交于A 、B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为( )A .3B .4C .6D .8第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,满分18分.只要求填写最后结果,每小题填对得3分)13.一个铁原子的质量是0.000000000000000000000000093kg ,将这个数据用科学记数法表示为kg .14.如图,O e 是ABC ∆的外接圆,45A ∠=o,4BC =,则O e 的直径..为.15.如图,在矩形ABCD 中,6AB =,10BC =,将矩形ABCD 沿BE 折叠,点A 落在'A 处,若'EA 的延长线恰好过点C ,则sin ABE ∠的值为.16.观察“田”字中各数之间的关系:,…,,则c 的值为.17.如图,在ABC ∆中,6AC =,10BC =,3tan 4C =,点D 是AC 边上的动点(不与点C 重合),过D 作DE BC ⊥,垂足为E ,点F 是BD 的中点,连接EF ,设CD x =,DEF ∆的面积为S ,则S 与x 之间的函数关系式为.18.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,DEFG 是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H 位于GD 的中点,南门K 位于ED 的中点,出东门15步的A 处有一树木,求出南门多少步恰好看到位于A 处的树木(即点D 在直线AC 上)?请你计算KC 的长为步.三、解答题(本大题共7小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)19.先化简,再求值2443(1)11m m m m m -+÷----,其中2m =.20.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本. (1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)21.为增强学生的安全意识,我市某中学组织初三年级1000名学生参加了“校园安全知识竞赛”,随机抽取了一个班学生的成绩进行整理,分为A ,B ,C ,D 四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供的信息,完成下列问题:(1)请估计本校初三年级等级为A 的学生人数;(2)学校决定从得满分的3名女生和2名男生中随机抽取3人参加市级比赛,请求出恰好抽到2名女生和1名男生的概率.22.如图,矩形ABCD 的两边AD 、AB 的长分别为3、8,E 是DC 的中点,反比例函数my x=的图象经过点E ,与AB 交于点F .(1)若点B 坐标为(6,0)-,求m 的值及图象经过A 、E 两点的一次函数的表达式; (2)若2AF AE -=,求反比例函数的表达式.23.如图,ABC ∆中,D 是AB 上一点,DE AC ⊥于点E ,F 是AD 的中点,FG BC ⊥于点G ,与DE 交于点H ,若FG AF =,AG 平分CAB ∠,连接GE ,GD .(1)求证:ECG GHD ∆≅∆;(2)小亮同学经过探究发现:AD AC EC =+.请你帮助小亮同学证明这一结论. (3)若30B ∠=o ,判定四边形AEGF 是否为菱形,并说明理由.24.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点(4,0)A -、(2,0)B ,交y 轴于点(0,6)C ,在y 轴上有一点(0,2)E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值;(3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.25.如图,在菱形ABCD 中,AC 与BD 交于点O ,E 是BD 上一点,//EF AB ,EAB EBA ∠=∠,过点B 作DA 的垂线,交DA 的延长线于点G .(1)DEF ∠和AEF ∠是否相等?若相等,请证明;若不相等,请说明理由; (2)找出图中与AGB ∆相似的三角形,并证明;(3)BF 的延长线交CD 的延长线于点H ,交AC 于点M .求证:2BM MF MH =⋅.泰安市初中学业水平考试 数学试题(A )参考答案一、选择题1-5: DDCAB 6-10: CCBAD 11、12:AC二、填空题13. 269.310-⨯ 14. 16. 270(或8214+) 17. 233252y x x =-+ 18.20003三、解答题19.解:原式22(2)3111m m m m --+=÷--2(2)(2)(2)11m m m m m -+-=÷--2(2)11(2)(2)m m m m m --=⨯-+-22mm-=+.当2m =时,原式1===.20.解:(1)设乙种图书售价每本x 元,则甲种图书售价为每本1.4x 元. 由题意得:14001600101.4x x-=, 解得:20x =.经检验,20x =是原方程的解.所以,甲种图书售价为每本1.42028⨯=元,答:甲种图书售价每本28元,乙种图书售价每本20元. (2)设甲种图书进货a 本,总利润w 元,则(28203)(20142)(1200)w a a =--+---4800a =+.又∵2014(1200)20000a a +⨯-≤,解得16003a ≤, ∵w 随a 的增大而增大, ∴当a 最大时w 最大, ∴当533a =本时w 最大,此时,乙种图书进货本数为1200533667-=(本). 答:甲种图书进货533本,乙种图书进货667本时利润最大. 21.解:(1)由题意得,所抽取班级的人数为:820%40÷=(人), 该班等级为A 的人数为:40258240355---=-=(人), 该校初三年级等级为A 的学生人数约为:5110001000125408⨯=⨯=(人). 答:估计该校初三等级为A 的学生人数约为125人.(2)设两位满分男生为1m ,2m ,三位满分女生为1g ,2g ,3g .从这5名同学中选3名同学的所有可能结果为:121(,,)m m g ,122(,,)m m g ,123(,,)m m g ,112(,,)m g g ,113(,,)m g g ,123(,,)m g g ,212(,,)m g g ,213(,,)m g g ,223(,,)m g g ,123(,,)g g g ,共10种情况. 其中,恰好有2名女生,1名男生的结果为:112(,,)m g g ,113(,,)m g g ,123(,,)m g g ,212(,,)m g g ,213(,,)m g g ,223(,,)m g g ,共6种情况.所以恰有2名女生,1名男生的概率为63105=. 22.解:(1)∵(6,0)B -,3AD =,8AB =,E 为CD 的中点, ∴(3,4)E -,(6,8)A -, ∵反比例函数图象过点(3,4)E -, ∴3412m =-⨯=-.设图象经过A 、E 两点的一次函数表达式为:y kx b =+,∴6834k b k b -+=⎧⎨-+=⎩,解得430k x b ⎧=-⎪⎨⎪=⎩,∴43y x =-. (2)∵3AD =,4DE =, ∴5AE =, ∵2AF AE -=, ∴7AF =,//∴1BF =.设E 点坐标为(,4)a ,则点F 坐标为(3,1)a -, ∵E ,F 两点在my x=图象上, ∴43a a =-, 解得1a =-, ∴(1,4)E -, ∴4m =-, ∴4y x=-.23.(1)证明:∵AF FG =, ∴FAG FGA ∠=∠, ∵AG 平分CAB ∠, ∴CAG FAG ∠=∠, ∴CAG FGA ∠=∠, ∴//AC FG . ∵DE AC ⊥, ∴FG DE ⊥, ∵FG BC ⊥, ∴//DE BC , ∴AC BC ⊥,∴90C DHG ∠=∠=o,CGE GED ∠=∠, ∵F 是AD 的中点,//FG AE , ∴H 是ED 的中点,∴FG 是线段ED 的垂直平分线, ∴GE GD =,GDE GED ∠=∠, ∴CGE GDE ∠=∠, ∴ECG GHD ∆≅∆.(2)证明:过点G 作GP AB ⊥于点P ,//∴GC GP =, ∴CAG PAG ∆≅∆, ∴AC AP =.由(1)得EG DG =, ∴Rt ECG Rt GPD ∆≅∆, ∴EC PD =,∴AD AP PD AC EC =+=+. (3)四边形AEGF 是菱形,理由如下: ∵30B ∠=o , ∴30ADE ∠=o , ∴12AE AD =, ∴AE AF FG ==. 由(1)得//AE FG , ∴四边形AEGF 是菱形.24.解:(1)由题意可得16404206a b c a b c c -+=⎧⎪++=⎨⎪=⎩, 解得34326a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,所以二次函数的解析式为233642y x x =--+. (2)由(4,0)A -,(0,2)E -,可求得AE 所在直线解析式为122y x =--.//过点D 作DN 与y 轴平行,交AE 于点F ,交x 轴于点G ,过点E 作EH DF ⊥,垂足为H , 设D 点坐标为200033(,6)42x x x --+,则F 点坐标为001(,2)2x x --, 则20033642DF x x =--+200013(2)824x x x ---=--+, 又ADE ADF EDF S S S ∆∆∆=+, ∴1122ADE S DF AG DF EH ∆=⋅⋅+⋅ 142DF =⨯⨯ 20032(8)4x x =⨯--+ 203250()233x =-++. ∴当023x =-时,ADE ∆的面积取得最大值503.(3)P 点的坐标为(1,1)-,(1,-,(1,2--±.25.解:(1)DEF AEF ∠=∠,理由如下:∵//EF AB ,∴DEF EBA ∠=∠,AEF EAB ∠=∠,又∵EAB EBA ∠=∠,∴DEF AEF ∠=∠.(2)EOA AGB ∆∆:,证明如下:∵四边形ABCD 是菱形,∴AB AD =,AC BD ⊥,∴2GAB ABE ADB ABE ∠=∠+∠=∠.又∵2AEO ABE BAE ABE ∠=∠+∠=∠,∴GAB AEO ∠=∠,//又90AGB AOE ∠=∠=o ,∴EOA AGB ∆∆:.(3)连接DM .∵四边形ABCD 是菱形,由对称性可知 BM DM =,ADM ABM ∠=∠, ∵//AB CH ,∴ABM H ∠=∠,∴ADM H ∠=∠,又∵DMH FMD ∠=∠,∴MFD MDH ∆∆:, ∴DM MFMH DM =,∴2DM MF MH =⋅,∴2BM MF MH =⋅.。
山东省泰安市2020年中考数学一模试卷(I)卷

山东省泰安市2020年中考数学一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·北碚期末) 在- ,0,-|-5|,-0.6,2,,-10中负数的个数有()A . 3B . 4C . 5D . 62. (2分)下列运算,结果正确的是()A . m2+m2=m4B . (m+)2=m2+C . (3mn2)2=6m2n4D . 2m2n÷=2mn23. (2分)(2013·绍兴) 地球半径约为6400000米,则此数用科学记数法表示为()A . 0.64×109B . 6.4×106C . 6.4×104D . 64×1034. (2分)某几何体的三视图如图所示,该几何体是()A .B .C .D .5. (2分)下列运算中,结果正确的是()A . 2a2+a=3a2B . 2a﹣1=C . (﹣a)3•a2=﹣a6D . =2﹣6. (2分)﹣|﹣a|是一个()A . 正数B . 正数或零C . 负数D . 负数或零7. (2分)(2019·江川模拟) 下列说法正确的是()A . 一个游戏的中奖概率是则做10次这样的游戏一定会中奖B . 为了解全国中学生的心理健康情况,应该采用普查的方式C . 一组数据 8 , 8 , 7 , 10 , 6 , 8 , 9 的众数和中位数都是 8D . 若甲组数据的方差 S =" 0.01" ,乙组数据的方差 s = 0 .1 ,则乙组数据比甲组数据稳定8. (2分)如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在A1处,已知OA=, AB=1,则点A1的坐标是()A . (,)B . (,3)C . (,)D . (,)9. (2分) (2018八上·罗湖期末) 甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则下列结论正确的个数有()①乙的速度是4米/秒;②离开起点后,甲、乙两人第一次相遇时,距离起点12米;③甲从起点到终点共用时83秒;④乙到达终点时,甲、乙两人相距68米;⑤乙离开起点12秒后,甲乙第一次相遇.A . 4个B . 3个’C . 2个D . 1个10. (2分) (2019九上·孝义期中) 如图,在四边形ABCD中,∠ABC=∠ACB=∠ADC= ,若AD=4,CD=2,则BD的长为()A . 6B .C . 5D .二、填空题 (共4题;共4分)11. (1分)计算:sin60°﹣cot30°=________12. (1分) (2010七下·浦东竞赛) 一条直街上有5栋楼,按从左至右顺序编号为1、2、3、4、5,第k号楼恰好有k(k=1、2、3、4、5)个A厂的职工,相邻两楼之间的距离为50米.A厂打算在直街上建一车站,为使这5栋楼所有A厂职工去车站所走的路程之和最小,车站应建在距1号楼________米处.13. (1分) (2017九上·肇源期末) 若分式方程的解为正数,则a的取值范围是________.14. (1分) (2018八下·江都月考) 小明尝试着将矩形纸片(如图(1) , )沿过点的直线折叠,使得点落在边上的点处,折痕为(如图(2));再沿过点的直线折叠,使得点落在边上的点处,点落在边上的点处,折痕为(如图(3)).如果第二次折叠后,点正好在的平分线上,那么矩形长与宽的比值为________ .三、解答题 (共9题;共80分)15. (5分) (2017七下·临沧期末) 解不等式组,并将解集在数轴上表示出来.16. (2分) (2017七上·新疆期末) 用黑白两种颜色的正六边形地砖按下图所示的规律,拼成若干个图案.(1)第4个图案中有白色地砖________块;(2)第n个图案中有白色地砖________块.17. (11分) (2017九上·宣化期末) △ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.按要求作图:(1)画出△ABC关于原点O的中心对称图形△A1B1C1;(2)画出将△ABC绕点A逆时针旋转90°得到△AB2C2,(3)△A1B1C1中顶点A1坐标为________.18. (5分)如图所示,有一个绳索拉直的木马秋千,秋千绳索AB的长度为4米,将它往前推进2米(即DE=2米),求此时秋千的绳索与静止时所夹的角度及木马上升的高度.(精确到0.1米)19. (10分)(2018·云南模拟) 某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字 1、2、3、4 的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.20. (10分) (2017·北京) 如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O的半径.21. (10分) (2018九上·福州期中) 小芳从家骑自行车去学校,所需时间y(min)与骑车速度x(m/min)之间的反比例函数关系如图.(1)写出y与x的函数表达式(2)学校要求学生每天7点20分前到校,而小芳的骑车速度最快不超过300m/min,为了安全起见,她每天至少要几点出发?.22. (12分)(2017·南京) 张老师计划到超市购买甲种文具100个,他到超市后发现还有乙种文具可供选择,如果调整文具的购买品种,每减少购买1个甲种文具,需增加购买2个乙种文具.设购买x个甲种文具时,需购买y个乙种文具.(1)当减少购买1个甲种文具时,x=________,y=________;(2)求y与x之间的函数表达式.(3)已知甲种文具每个5元,乙种文具每个3元,张老师购买这两种文具共用去540元,甲、乙两种文具各购买了多少个?23. (15分)(2015·湖州) 问题背景已知在△ABC中,AB边上的动点D由A向B运动(与A,B不重合),点E与点D同时出发,由点C沿BC的延长线方向运动(E不与C重合),连接DE交AC于点F,点H是线段AF上一点.(1)初步尝试如图1,若△ABC是等边三角形,DH⊥AC,且点D,E的运动速度相等.求证:HF=AH+CF.小五同学发现可以由以下两种思路解决此问题:思路一:过点D作DG∥BC,交AC于点G,先证GH=AH,再证GF=CF,从而证得结论成立;思路二:过点E作EM⊥AC,交AC的延长线于点M,先证CM=AH,再证HF=MF,从而证得结论成立.请你任选一种思路,完整地书写本小题的证明过程(如用两种方法作答,则以第一种方法评分);(2)类比探究如图2,若在△ABC中,∠ABC=90°,∠ADH=∠BAC=30°,且D,E的运动速度之比是:1,求的值;(3)延伸拓展如图3,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,记 =m,且点D,E运动速度相等,试用含m的代数式表示(直接写出结果,不必写解答过程).参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、解答题 (共9题;共80分)15-1、16-1、16-2、17-1、17-2、17-3、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、。
泰安市2020年中考数学模拟试卷(I)卷

泰安市2020年中考数学模拟试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分) (2018七上·灌阳期中) 温家宝总理有句名言:多么小的问题乘以13亿,都会变得很大;多么大的经济总量,除以13亿都会变得很小.将13亿用科学记数法表示为()A .B .C .D .2. (2分)已知α为锐角,则m=sin2α+cos2α的值()A . m>1B . m=1C . m<1D . m≥13. (2分)点P(﹣3,4)关于原点的对称点是Q(3,m),则m的值是()A . -4B . 4C . -3D . 34. (2分)世界文化遗产中国长城总长约6700000 m,用科学记数法可表示为()A . 0.67×107mB . 6.7×106mC . 6.7×105 mD . 67×105 m5. (2分) (2015九上·宁波月考) 下列四个几何体中,三视图都是中心对称图形的几何体是()A . 圆锥B . 三棱柱C . 圆柱D . 五棱柱6. (2分) (2016七下·黄冈期中)的值为()A . 5B .C . 1D .7. (2分)张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是,矩形的周长是2(x+);当矩形成为正方形时,就有x=(x>0),解得x=1,这时矩形的周长2(x+)=4最小,因此x+(x>0)的最小值是2.模仿张华的推导,你求得式子(x>0)的最小值是()A . 2B . 1C . 6D . 108. (2分)方程x(x﹣1)=2(x﹣1)的根是()A . x=2B . x=1C . x1=1,x2=3D . x1=1,x2=29. (2分)要使二次根式有意义,字母x必须满足的条件是()A . x≥1B . x>-1C . x≥-1D . x>110. (2分)在△ABC中,AC=5,中线AD=4,那么边AB的取值范围为()A . 1<AB<9B . 3<AB<13C . 5<AB<13D . 9<AB<1311. (2分) (2015九上·重庆期末) 如图,正方形ABCD和正方形DEFG的顶点在y轴上,顶点D,F在x轴上,点C在DE边上,反比例函数y= (k≠0)的图象经过B,C和边EF的中点M,若S四边形ABCD=8,则正方形DEFG的面积是()A .B .C . 16D .12. (2分)(2018·广安) 已知点P为某个封闭图形边界上的一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示y与x的函数图象大致如图所示,则该封闭图形可能是()A .B .C .D .二、填空题: (共6题;共6分)13. (1分)若4x2•□=8x3y,则“□”中应填入的代数式是________ .14. (1分)(2017·北海) 计算: =________.15. (1分)(2017·北海) 在完全相同的四张卡片上分别写有如下四个命题:①半圆所对的弦是直径;②圆既是轴对称图形,也是中心对称图形;③弦的垂线一定经过这条弦所在圆的圆心;④圆内接四边形的对角互补.把这四张卡片放入一个不透明的口袋内搅匀,从口袋内任取一张卡片,则取出卡片上的命题是真命题的概率是________.16. (1分) (2016九下·十堰期末) 如图所示,函数y=ax+b和y=|x|的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是________.17. (1分) (2019九上·十堰期末) 如图,在Rt△ABC中,∠ACB=90°,AC=BC=,将Rt△ABC绕A 点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是________.18. (1分) (2019九上·海门期末) 已知x=﹣m和x=m﹣2时,多项式ax2+bx+4a+1的值都相等,且m≠1,若当1<x<2时,存在x的值,使多项式ax2+bx+4a+1的值为3,则a的取值范围是________.三、简答题: (共7题;共63分)19. (5分) (2017七下·宜城期末) 解不等式组,并将解集在数轴上表示出来.20. (10分) (2016九上·靖江期末) 甲布袋中有三个红球,分别标有数字1,2,3;乙布袋中有三个白球,分别标有数字2,3,4.这些球除颜色和数字外完全相同.小亮从甲袋中随机摸出一个红球,小刚从乙袋中随机摸出一个白球.(1)用画树状图(树形图)或列表的方法,求摸出的两个球上的数字之和为6的概率;(2)小亮和小刚做游戏,规则是:若摸出的两个球上的数字之和为奇数,小亮胜;否则,小刚胜.你认为这个游戏公平吗?为什么?21. (5分)如图,正方形AEFG的顶点E在正方形ABCD的边CD上,AD的延长线交EF于H点.若E为CD的中点,正方形ABCD的边长为4,求DH的长.22. (5分) (2016九上·吴中期末) 如图,抛物线y= x2+mx+n与直线y=﹣ x+3交于A,B两点,交x 轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0).(1)求抛物线的解析式和tan∠BAC的值;(2)在(1)条件下,P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.23. (12分) (2017八下·福清期末) 如图,在平面直角坐标系中,A(0,8),B(4,0),AB的垂直平分线交y轴与点D,连接BD,M(a,1)为第一象限内的点(1)则D(________, ________),并求直线BD的解析式;(2)当时,求a的值;(3)点E为y轴上一个动点,当△CDE为等腰三角形时,求E点的坐标.24. (15分)(2018·中山模拟) 在正方形ABCD中,AB=8,点P在边CD上,tan∠PBC= ,点Q是在射线BP上的一个动点,过点Q作AB的平行线交射线AD于点M,点R在射线AD上,使RQ始终与直线BP垂直.(1)如图1,当点R与点D重合时,求PQ的长;(2)如图2,试探索:的比值是否随点Q的运动而发生变化?若有变化,请说明你的理由;若没有变化,请求出它的比值;(3)如图3,若点Q在线段BP上,设PQ=x,RM=y,求y关于x的函数关系式,并写出它的定义域.25. (11分) (2018九上·扬州期末) 如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点,与y轴交于C点,对称轴与抛物线相交于点M,与x轴相交于点N.点P是线段MN上的一动点,过点P作PE⊥CP交x轴于点E.(1)直接写出抛物线的顶点M的坐标是________.(2)当点E与点O(原点)重合时,求点P的坐标.(3)点P从M运动到N的过程中,求动点E的运动的路径长.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、简答题: (共7题;共63分)19-1、20-1、20-2、21-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、。
2020年泰安市中考数学第一次模拟试题及答案

a3,
……
an
,其中
a1
1,
a2
1 1 a1
, a3
1 1 a2
,
, an
1 1 an1
,
则 a1 a2 a3
a2014 __________.
15.分解因式:x3﹣4xy2=_____.
16.若一个数的平方等于 5,则这个数等于_____.
17.在学习解直角三角形以后,某兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆 AB
24.已知抛物线 y=ax2﹣ 1 x+c 经过 A(﹣2,0),B(0,2)两点,动点 P,Q 同时从原点出发 3
均以 1 个单位/秒的速度运动,动点 P 沿 x 轴正方向运动,动点 Q 沿 y 轴正方向运动,连接 PQ,设运动时间为 t 秒 (1)求抛物线的解析式;
(2)当 BQ= 1 AP 时,求 t 的值; 3
∴S 菱形 ABCO= 1 B×AC= 1 ×2×2 3 =2 3 ,
2
2
120
S 扇形 AOC=
22
4
,
360
3
则图中阴影部分面积为 S 菱形 ABCO﹣S 扇形 AOC= 4 2 3 , 3
故选 C.
点睛:本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积= 1 a•b 2
的影子一部分落在水平地面 L 的影长 BC 为 5 米,落在斜坡上的部分影长 CD 为 4 米.测得
斜 CD 的坡度 i=1: .太阳光线与斜坡的夹角∠ADC=80°,则旗杆 AB 的高度
_____.(精确到 0.1 米)(参考数据:sin50°=0.8,tan50°=1.2, =1.732)
18.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区 覆盖总人口约为 4400000000 人,将数据 4400000000 用科学记数法表示为______. 19.如图,矩形 ABCD 中,AB=3,BC=4,点 E 是 BC 边上一点,连接 AE,把∠B 沿 AE 折 叠,使点 B 落在点 处,当△ 为直角三角形时,BE 的长为 .
山东省泰安市2020年数学中考一模试卷(II)卷

山东省泰安市2020年数学中考一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) -2的绝对值是()A . -2B . 2C .D .2. (2分)下列二次根式中,最简二次根式是()A .B .C .D .3. (2分) 2008年我国的国民生产总值约为130800亿元,那么130800用科学记数法表示正确的是().A .B .C .D .4. (2分)下列运算正确的是()A . x6÷x2=x3B . 2x﹣1=C . (﹣2x3)2=4x6D . ﹣2a2•a3=﹣2a65. (2分) (2016八上·柘城期中) 设三角形三边之长分别为3,8,1﹣2a,则a的取值范围为()A . 3<a<6B . ﹣5<a<﹣2C . ﹣2<a<5D . a<﹣5或a>26. (2分)物业公司为了了解某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:月用水量/t4569户数3421则下列关于这10户家庭的月用水量的说法,错误的是()A . 中位数是5 tB . 众数是5 tC . 方差是3D . 平均数是5.3 t7. (2分)(2018·常州) 下列图形中,哪一个是圆锥的侧面展开图?()A .B .C .D .8. (2分) (2018九上·邓州期中) 如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是()A . 4.5B . 8C . 10.5D . 149. (2分)如图,小明在A时测得某树的影长为1m,B时又测得该树的影长为4米,若两次日照的光线互相垂直,树的高度为()A . 2mB . mC . mD . m10. (2分)皮皮拿着一块正方形纸板在阳光下做投影实验,正方形纸板在投影面上形成的投影不可能是()A . 正方形B . 长方形C . 线段D . 梯形11. (2分)(2016·连云港) 如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6 .其中S1=16,S2=45,S5=11,S6=14,则S3+S4=()A . 86B . 64C . 54D . 4812. (2分) (2019九上·新蔡期中) 如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD= .其中正确的结论有()A . 4个B . 3个C . 2个D . 1个二、填空题 (共6题;共7分)13. (1分) (2019八下·江津月考) 若代数式有意义,则的取值范围是________.14. (1分)(2016·沈阳) 若一个多边形的内角和是540°,则这个多边形是________边形.15. (1分)(2017·葫芦岛) 一艘货轮由西向东航行,在A处测得灯塔P在它的北偏东60°方向,继续航行到达B处,测得灯塔P在它的东北方向,若灯塔P正南方向4海里的C处是港口,点A,B,C在一条直线上,则这艘货轮由A到B航行的路程为________海里(结果保留根号).16. (1分)(2012·朝阳) 如图,△ABC三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC绕点C顺时针旋转到△A′B′C的位置,且A′、B′仍落在格点上,则线段AC扫过的扇形所围成的圆锥体的底面半径是________单位长度.17. (2分)(2018·富阳模拟) 如图,在矩形中,点同时从点出发,分别在,上运动,若点的运动速度是每秒2个单位长度,且是点运动速度的2倍,当其中一个点到达终点时,停止一切运动.以为对称轴作的对称图形.点恰好在上的时间为________秒.在整个运动过程中,与矩形重叠部分面积的最大值为________.18. (1分)已知抛物线y=ax2﹣4ax+c经过点A(0,2),顶点B的纵坐标为3.将直线AB向下平移,与x 轴、y轴分别交于点C、D,与抛物线的一个交点为P,若D是线段CP的中点,则点P的坐标为________ .三、解答题 (共8题;共89分)19. (5分)(2017·丹东模拟) 先化简,再求值:(1﹣)÷ ,其中a=(﹣)﹣1 .20. (12分) (2019九上·孝感月考) 已知△ABC的两边AB、AC的长恰好是关于x的方程x2+(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5(1)求证:AB≠AC(2)如果△ABC是以BC为斜边的直角三角形,求k的值(3)填空:当k=________时,△ABC是等腰三角形,△ABC的周长为________21. (6分)(2020·许昌模拟) 有四张反面完全相同的纸牌,其正面分别画有四个不同的几何图形,将四张纸牌洗匀正面朝下随机放在桌面上.(1)从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是________.(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张,不放回.再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形既是轴对称图形又是中心对称图形,则小亮获胜,否则小明获胜.这个游戏公平吗?请用列表法(或画树状图)说明理由.(纸牌用表示)若不公平,请你帮忙修改一下游戏规则,使游戏公平.22. (11分)某校为了解学生孝敬父母的情况,在全校范围内随机抽取了若干名学生进行调查,调查的内容包括:A.帮父母做家务;B.给父母买礼物;C.陪父母聊天、散步;D.其他.调查结果如图:根据以上信息解答下列问题:(1)该校共调查了________ 名学生;(2)请把条形统计图补充完整;(3)若该校有2000名学生,估计该校全体学生中选择C选项的有多少人?24. (10分)已知一个长方体的体积是100cm3 ,它的长是ycm,宽是10cm,高是xcm.(1)写出y与x之间的函数关系式;(2)当x=2cm时,求y的值.25. (20分)(2017·嘉兴模拟) 如图,已知抛物线经过点A(2,0)和B(t,0)(t≥2),与y轴交于点C,直线l:y=x+2t经过点C,交x轴于点D,直线AE交抛物线于点E,且有∠CAE=∠CDO,作CF⊥AE于点F.(1)求∠CDO的度数;(2)求出点F坐标的表达式(用含t的代数式表示);(3)当S△COD﹣S四边形COAF=7时,求抛物线解析式;(4)当以B,C,O三点为顶点的三角形与△CEF相似时,请直接写出t的值.26. (15分) (2016九上·阳新期中) 如图1抛物线y=ax2+bx+c过 A(﹣1,0)、B(4,0)、C(0,2)三点.(1)求抛物线解析式;(2)点C,D关于抛物线对称轴对称,求△BCD的面积;(3)如图2,过点E(1,﹣1)作EF⊥x轴于点F,将△AEF绕平面内某点旋转180°得△MNQ(点M、N、Q分别与A、E、F对应)使得M、N在抛物线上,求M、N的坐标.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共89分)19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、24-1、24-2、25-1、25-2、25-3、25-4、26-1、26-2、26-3、。
山东省泰安市2020版数学中考一模试卷(I)卷

山东省泰安市2020版数学中考一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) 3的相反数是()A .B .C . 3D . -32. (2分)下列图形中,是轴对称图形,但不是中心对称图形的是()A .B .C .D .3. (2分)(2017·黑龙江模拟) 如图,是一个由3个相同的正方体组成的立体图形,则它的主视图为()A .B .C .D .4. (2分)(2017·黄石) 地球绕太阳公转的速度约为110000km/h,则110000用科学记数法可表示为()A . 0.11×106B . 1.1×105C . 0.11×105D . 1.1×1065. (2分) (2017七下·泸县期末) 如图,OA⊥OB,∠BOC=30°,OD平分∠AOC,则∠BOD的大小是()A . 20°B . 30°C . 40°D . 60°6. (2分)若□•(﹣3xy2)=﹣6x2y3 ,则□内应填的代数式是()A . 2xB . 3xyC . ﹣2xyD . 2xy7. (2分)(2018·徐州模拟) 某同学一周中每天体育运动时间(单位:分钟)分别为:35、40、45、40、55、40、48.这组数据的众数、中位数是()A . 55、40B . 40、42.5C . 40、40D . 40、458. (2分)(2019·杭州模拟) 抛物线y=﹣(x+1)2+3有()A . 最大值3B . 最小值3C . 最大值﹣3D . 最小值﹣39. (2分) (2016九上·金东期末) 在一个布袋中装着只有颜色不同,其它都相同的红、黄、黑三种小球各一个,从中任意摸出一个球,记下颜色后放回并搅匀,再摸出一个球,两次摸球所有可能的结果如图所示,则摸出的两个球中,一个是红球,一个是黑球的概率是()A .B .C .D .10. (2分)已知小球从点A运动到点B,速度v(米/秒)是时间t(秒)的正比例函数,3秒时小球的速度是6米/秒,那么速度v与时间t之间的关系式是()A . v=B . v=C . v=3tD . v=2t二、填空题 (共5题;共5分)11. (1分)(2017·无棣模拟) 计算:﹣× ×3﹣1=________.12. (1分) (2019八上·宣城期末) 老师给出了一个函数,甲、乙两学生分别指出了这个函数的一个性质,甲:第二、四象限有它的图象;乙:在y轴上的截距为-2,请你写出一个能满足上述性质的函数关系式:________.13. (1分) (2017八下·邗江期中) 如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC 至点D,使CD= BD,连接DM、DN、MN.若AB=6,则DN=________.14. (1分)(2018·寮步模拟) 如图,在△ABC中,AB=AC,∠A=120°,BC=,⊙A与BC相切于点D,且交AB,AC于M、N两点,则图中阴影部分的面积是________(结果保留π).15. (1分) (2017八上·江都期末) 如图,△ABC中,、的平分线交于O点,过O点作EF∥BC 交AB、AC于E、F. EF=6, BE=2,则CF=________.三、解答题 (共8题;共71分)16. (5分)(2017·柘城模拟) 先化简,再在0,﹣1,2中选取一个适当的数代入求值.17. (13分)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.请你根据以上图表提供的信息解答下列问题:①a=________,b=________ ;②在扇形统计图中,器乐类所对应扇形的圆心角的度数是________ ;(3)若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.18. (6分)(2017·东莞模拟) 平行四边形ABCD的对角线AC和BD交于O点,分别过顶点B,C作两对角线的平行线交于点E,得平行四边形OBEC.(1)如果四边形ABCD为矩形(如图),四边形OBEC为何种四边形?请证明你的结论;(2)当四边形ABCD是________形时,四边形OBEC是正方形.19. (10分)(2017·昌平模拟) 一次函数y=﹣ x+b(b为常数)的图象与x轴交于点A(2,0),与y轴交于点B,与反比例函数y= 的图象交于点C(﹣2,m).(1)求点C的坐标及反比例函数的表达式;(2)过点C的直线与y轴交于点D,且S△CBD:S△BOC=2:1,求点D的坐标.20. (5分)已知直线y=x+6交x轴于点A,交y轴于点C,经过A和原点O的抛物线y=ax2+bx(a<0)的顶点B在直线AC上.(1)求抛物线的函数关系式;(2)以B点为圆心,以AB为半径作⊙B,将⊙B沿x轴翻折得到⊙D,试判断直线AC与⊙D的位置关系,并说明理由;(3)若E为⊙B优弧ACO上一动点,连结AE、OE,问在抛物线上是否存在一点M,使∠MOA︰∠AEO=2︰3,若存在,试求出点M的坐标;若不存在,试说明理由.21. (10分)(2016八上·宁海月考)(1)解不等式,并求出它的自然数解.(2)解不等式,并把解集在数轴上表示.22. (7分) (2016九上·北京期中) 如图,在平面直角坐标系中,四边形OABC四个顶点的坐标分别为O(0,0),A(﹣3,0),B(﹣4,2),C(﹣1,2).将四边形OABC绕点O顺时针旋转90°后,点A,B,C分别落在点A′,B′,C′处.(1)请你在所给的直角坐标系中画出旋转后的四边形OA′B′C′;(2)点C旋转到点C′所经过的弧的半径是________,点C经过的路线长是________.23. (15分)(2019·临沂) 在平面直角坐标系中,直线与轴交于点,与轴交于点,抛物线经过点、.(1)求、满足的关系式及的值.(2)当时,若的函数值随的增大而增大,求的取值范围.(3)如图,当时,在抛物线上是否存在点,使的面积为1?若存在,请求出符合条件的所有点的坐标;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共71分)16-1、17-1、17-2、17-3、18-1、18-2、19-1、19-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、。
山东省泰安市东平县2024届九年级下学期中考一模数学试卷(含解析)

数学试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中选择题48分,非选择题102分,满分150分,考试时间120分钟;2.选择题选出答案后,用2B铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,答案写在试卷上无效;3.数学考试不允许使用计算器,考试结束后,应将答题卡交回.第Ⅰ卷(选择题共48分)一、单选题(本大题共12个小题,每小题4分,共48分.每小题给出的四个答案中,只有一项是正确的.)1. 的相反数是()A. B. C. D.答案:C解析:详解:解:的相反数是.故选:C2. 下列计算正确的是()A. B.C. D.答案:B解析:详解:解:、,故本选项不符合题意;、,故本选项符合题意;、,故本选项不符合题意;、,故本选项不符合题意;故选:B.3. 5G是第五代移动通信技术,5G网络理论下载速度可以达到每秒1300000KB以上.用科学记数法表示1300000是()A. B. C. D.答案:C解析:详解:解:∵,故选:C.4. 花钿()是古时汉族妇女脸上用金翠珠宝制成的一种花形首饰,有红、绿、黄三种颜色,其中以红色为最多,是唐代比较流行的一种首饰.下列四种眉心花钿图案既是轴对称图形又是中心对称图形的是()A. B.C. D.答案:D解析:详解:解:A.是轴对称图形不是中心对称图形,故该选项不符合题意;B.是轴对称图形不是中心对称图形,故该选项不符合题意;C.既不是轴对称图形也不是中心对称图形,故该选项不符合题意;D.轴对称图形也是中心对称图形,故该选项符合题意;故选:D.5. 如图,先在纸上画两条直线a,b,使,再将一块直角三角板平放在纸上,使其直角顶点落在直线b 上,若,则的度数是()A. B. C. D.答案:B解析:详解:解:如图,∵∴,∵,∴,故选:B6. 某学校组织学生进行了视力测试.刘明所在的学习小组每人视力测试的结果分别为:5.0,4.8,4.5,4.8,4.6,这组数据的众数和中位数分别为()A. 4.8 4.74B. 4.8 4.5C. 5.0 4.5D. 4.8 4.8答案:D解析:详解:解:把这组数据从小到大排列为,,,,,排在中间的数是,故中位数是;这组数据中出现的次数最多,故众数为.故选:D.7. 如图,是的直径,点C,D,E在上,若,则的度数为( )A. B. C. D.答案:B解析:详解:连接,如图,∵是的直径,∴,∵,∴.故选:B.8. 在同一平面直角坐标系中,函数与(其中m,n是常数,)的大致图象可能是()A. B.C. D.答案:C解析:详解:A选项,依图得,此时一次函数中,,,则,则在反比例函数中,,反比例函数图像应在一、三象限,与图像不符,A选项错误;B选项,依图得,此时一次函数中,,,则,则在反比例函数中,,反比例函数图像应在一、三象限,与图像不符,B选项错误;C选项,依图得,此时一次函数中,,,则,则在反比例函数中,,反比例函数图像应在二、四象限,与图像相符,C选项正确;D选项,依图得,此时一次函数中,,,则,则在反比例函数中,,反比例函数图像应在二、四象限,与图像不符,D选项错误.故选:C.9. 如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧,再分别以E、F为圆心,1为半径作圆弧、,则图中阴影部分的面积为( )A. π﹣1B. π﹣2C. π﹣3D. 4﹣π答案:B解析:详解:解:由题意可得,阴影部分的面积是:•π×22﹣﹣2(1×1﹣•π×12)=π﹣2,故选:B.10. 出口贸易是我国经济发展的重要因素,由于出口贸易持续增长,一企业生产某种商品的数量增加明显.已知今年生产该商品的数量比今年和去年生产的数量总和的一半多11万件,去年的数量比今年和去年生产数量总和的三分之一少2万件.设今年生产该商品的数量为x万件,去年生产该商品的数量为y万件,根据题意可列出的方程组是()A. B.C. D.答案:D解析:详解:设今年生产该商品的数量为x万件,去年生产该商品的数量为y万件,由题意可得:,故选:D.11. 如图,在四边形ABCD中,,,连接,,且,的平分线分别交、于点O、E,则①、②、③、④.上述结论正确的有()A. 1个B. 2个C. 3个D. 4个答案:B解析:详解:解:①即,且,∴,,又∵平分,∴,∴,∵,∴,∴,即①正确,②过点A、O作于F,于G,∵平分,,,∴,又∵,,∴是等腰直角三角形,,∴,∴,∴,∴,即②错误;③∵,∴,∵,,∴,又∵于F,∴四边形是矩形,是等腰直角三角形,,∴,∴∵,∴∴,即③错误;④∵,,∴,即平分,∴与若以和为底边,高相等;以和作底边,高相同;∴,(高相等时,三角形面积之比等于底边之比)∵,,∴,∴,∴,即④正确;故正确的有:①④,共两个,故选B.12. 如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC 于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为( )A. B. C. 1 D. 2答案:C解析:详解:连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ACB为等腰直角三角形,∴AC=BC=AB=,∠A=∠B=45°,∵O为AB的中点,∴OC⊥AB,OC平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt△AOP和△COQ中,∴Rt△AOP≌△COQ,∴AP=CQ,易得△APE和△BFQ都为等腰直角三角形,∴PE=AP=CQ,QF=BQ,∴PE+QF=(CQ+BQ)=BC==1,∵M点为PQ的中点,∴MH为梯形PEFQ的中位线,∴MH=(PE+QF)=,即点M到AB的距离为,而CO=1,∴点M的运动路线为△ABC的中位线,∴当点P从点A运动到点C时,点M所经过的路线长=AB=1,故选C.第Ⅱ卷(非选择题共102分)二、填空题(本大题共6个小题,每小题4分,共24分,只要求填写最后结果)13. 关于x的一元二次方程有实根,则m取值范围是___________.答案:且解析:详解:解:∵关于的一元二次方程有实数根,,解得且.故答案为:且.14. 如图1是我国明末《崇祯历书》之《割圆勾股八线表》中所绘的割圆八线图.如图2,根据割圆八线图,在扇形中,,和都是的切线,点和点是切点,交于点,交于点,.若,则的长为_________.答案:##解析:详解:解:如图,,,,,,是的切线,点是切点,,即,,在中,,,,在中,,,,.故答案为:.15. 《中华人民共和国道路交通安全法》规定,同车道行驶的机动车,后车应当与前车保持足以采取紧急制动措施的安全距离,其原因可以用物理和数学的知识来解释.公路上行驶的汽车急刹车时,刹车距离与时间的函数关系式为,当遇到紧急情况刹车时,由于惯性的作用,汽车最远要滑行___________才能停下.答案:16解析:详解:解:依题意,该函数关系式化简为,当时,汽车停下来,滑行了16米,汽车最远要滑行16米才能停下,故答案为:16.16. 如图,将的按下面的方式放置在一把刻度尺上,顶点O与尺下沿的端点重合,与尺下沿重合,与尺上沿的交点B在尺上的读数为,若按相同的方式将的放置在该刻度尺上,则尺上沿的交点C在尺上的读数是________(结果精确到,参考数据)答案:解析:详解:解:作于,作于,如图:依题意得:,在中,,,,,,,且,,在中,,,,,即:,解得:,点C在尺上的读数约为,故答案为:.17. 如图,已知等边三角形纸片,点E在边上,点F在边上,沿折叠,使点落在边上的点的位置,且,则的度数为_____.答案:##度解析:详解:由翻折性质可知:,∵为等边三角形,∴,,,∵,∴为直角三角形,∴,∵是的外角,∴,∵是由翻折得到,∴,故答案为:.18. 如图,在平面直角坐标系中,已知点的坐标是,以为边在右侧作等边三角形,过点作轴的垂线,垂足为点,以为边在右侧作等边三角形,再过点作轴的垂线,垂足为点,以为边在右侧作等边三角形,按此规律继续作下去,得到等边三角形,则点的纵坐标为______答案:解析:详解:解:∵点的坐标是,以为边在右侧作等边三角开过点作轴的垂线,垂足为点∴∴,点纵坐标是,∵以为边在右侧作等边三角形,过点作轴的垂线,垂足为点,∴,,∴,∴点纵坐标,即,∵以为边在右侧作等边三角形,同理,得点纵坐标是,按此规律继续作下去,得:点的纵坐标是,即.故答案为:三、解答题(本大题共7个小题,共78分,写出必要的文字说明、证明过程或推演步骤.)19. (1)计算:(2)化简:答案:(1);(2)2解析:详解:解:(1)原式;(2)原式.20. 某学校为了开展好课后延时服务,举办了A:机器人;B:航模;C:科幻绘画:D:信息学;E:科技小制作等五个兴趣小组(每人限报一项),将参加各兴趣小组的人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)求本次参加课后延时服务的学生人数;(2)把条形统计图补充完整,并求扇形统计图中的度数;(3)在C组最优秀的2名同学(1名男生1名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加全区的课后延时服务成果展示比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.答案:(1)80 (2)图形见解析;(3)树状图见解析;所选两名同学中恰好是1名男生1名女生的概率为解析:小问1详解:解:本次参加课后延时服务的学生人数是(名).小问2详解:参加组的人数为(名).补全条形统计图如图所示.扇形统计图中的的度数是.小问3详解:设组的1名男生和1名女生分别记为组的2名男生和1名女生分别记为.画树状图如下:共有6种等可能的结果,其中所选两名同学中恰好是1名男生1名女生的结果有:,,共3种,所选两名同学中恰好是1名男生1名女生的概率为.21. 如图,一次函数的图象与反比例函数的图象相交于A,B两点,其中点A的坐标为,点B的坐标为.(1)求这两个函数的表达式;(2)根据图象,直接写出满足的取值范围;(3)求的面积;答案:(1)反比例函数关系式为,一次函数关系式为:;(2)或;(3).解析:小问1详解:解:∵图象过点,则,解得:,∴反比例函数关系式为,当时,,∴B点坐标为,设一次函数关系式为,则,解得:,∴一次函数关系式为:;小问2详解:解:由图象得,当或时,一次函数的值大于反比例函数的值;小问3详解:解:设直线与x轴的交点为C,由(2)知,,令,则,即.则.22. 为了响应国家发展科技的号召,某公司计划对A、B两类科研项目投资研发.已知研发1个A类科研项目比研发1个B类科研项目少投资75万元,且投资1200万元研发A类科研项目的个数与投资1500万元研发B类科研项目的个数相同.(1)研发一个A类科研项目所需的资金是多少万元?(2)该公司今年计划投资研发A、B两类科研项目共40个,且该公司投入研发A、B两类科研项目总资金不超过1亿3200万元,则该公司投资研发A类科研项目至少是多少个?答案:(1)研发一个类科研项目所需资金是300万元(2)今年研发类科研项目至少24个解析:小问1详解:解:设研发一个类科研项目所需资金为万元,则研发一个类科研项目所需资金为万元,根据题意,得,解得.经检验,是原分式方程的解,.答:研发一个类科研项目所需资金是300万元.小问2详解:解:设今年研发类科研项目个,则研发类科研项目个,根据题意,得,解得.答:今年研发类科研项目至少24个.23. 如图1,已知四边形是矩形,点E在的延长线上,.与相交于点G,与相交于点F,.(1)求证:;(2)若,求;(3)如图2,连接,请判定,,三者之间的数量关系并证明.答案:(1)见解析(2)(3),证明见解析解析:小问1详解:证明:∵四边形是矩形,点E在的延长线上,∴,又∵,∴,∴,∴,即,故;小问2详解:解:∵四边形是矩形,∴,,∴,∴,又∵,,即,解得或(舍去);∴;小问3详解:解;,证明如下:如图,在线段上取点,使得,在与中,,∴,∴,∴,∴为等腰直角三角形,∴,即.24. 综合实践问题背景:借助三角形的中位线可构造一组相似三角形,若将它们绕公共顶点旋转,对应顶点连线的长度存在特殊的数量关系,数学小组对此进行了研究.如图1,在“中,,,分别取,的中点D,E,作.如图2所示,将绕点A逆时针旋转,连接,.(1)探究发现:旋转过程中,线段和的长度存在怎样的数量关系?写出你的猜想,并证明.(2)性质应用:如图3,当所在直线首次经过点B时,求的长.(3)延伸思考:如图4,在中,,,,分别取,的中点D,E.作,将绕点B逆时针旋转,连接,.当边平分线段时,求的值.答案:(1)猜想,证明见解析(2)(3)解析:小问1详解:解:猜想,证明如下:∵点D和点E为分别为中点,∴由图1可知,,∴,则,∵,∴,∴,根据旋转的性质可得:,∴,∴;小问2详解:解:由图1可知点D和点E为分别为中点,∴,,∴,∴,∴当所在直线经过点B时,,根据勾股定理可得:,由(1)可得:,∴,解得:;小问3详解:解:令相交于点Q,过点E作于点G,根据题意可得:,∵,∴,∴,∵边平分线段,,∴,∴,∵,∴,∴,根据旋转的性质可得:,∴,∴,∴,,∴,∴.25. 如图,在平面直角坐标系中,点、在轴上,点、在轴上,且,,抛物线经过三点,直线与抛物线交于另一点.(1)求这条抛物线的解析式;(2)在抛物线对称轴上是否存在一点,使得的周长最小,若存在,请求出点的坐标,若不存在,请说明理由;(3)点是直线上一动点,点为抛物线上直线下方一动点,当线段的长度最大时,请求出点的坐标和面积的最大值.答案:(1)抛物线的解析式为;(2)时的周长最小;(3)当面积最大时,点的坐标为,面积最大值为.解析:小问1详解:∵,,∴点的坐标为,点的坐标为,点的坐标为,点的坐标为,将,,代入得:,解得:,∴这条抛物线的解析式为;小问2详解:∵,∴抛物线的对称轴为直线,连接,交抛物线对称轴点,如图所示,∵点,关于直线对称,∴,∴∴当点,,三点共线时,取得最小值,即的周长最小,设直线的解析式为,将,代入得:,解得:,∴直线的解析式为,当时,,∴在这条抛物线的对称轴上存在点时的周长最小;小问3详解:∵,,∴直线的解析式为,联立直线和抛物线的解析式成方程组,得:,解得:,,∴点的坐标为,过点作轴,交直线于点,如图所示,设点的坐标为,则点的坐标为,∴,∴,,,,∵,∴当时,的面积取最大值,最大值为,∴当面积最大时,点的坐标为,面积最大值为.。
2020版山东省泰安中考数学模拟测试卷(一)含答案

中考模拟测试卷一(120分钟,120分)一、选择题(每小题3分,共36分)1.计算|√2-1|+(√2)0的结果是( )A.1B.√2C.2-√2D.2√2-12.下列运算正确的是( )A.a3+a3=2a6B.a6÷a-3=a3C.a3·a2=a6D.(-2a2)3=-8a63.在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的最少个数为m,最多个数为n,则m,n的值分别为( )A.m=5,n=13B.m=8,n=10C.m=10,n=13D.m=5,n=104.如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C'处,折痕为EF,若∠ABE=20°,则∠EFC'=()A.115°B.120°C.125°D.130°5.若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为( ) A.7 B.5 C.4 D.36.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x 人,女孩有y 人,则下列方程组正确的是( )A.{x -1=yx =2y B.{x =y x =2(y -1)C.{x -1=y x =2(y -1)D.{x +1=yx =2(y -1)7.如图,二次函数y=ax 2+bx+c 的图象如图所示,则一次函数y=ax+c 和反比例函数y=bx 在同一平面直角坐标系中的图象大致是( )8.(2020辽宁沈阳)如图,正方形ABCD 内接于☉O,AB=2√2,则AB ⏜的长是( )A.πB.32π C.2π D.12π9.若关于x 的不等式组{x -a ≤0,5-2x <1的整数解只有1个,则a 的取值范围是( )A.2<a<3B.3≤a<4C.2<a≤3D.3<a≤410.如图,直尺、有60°角的直角三角板和光盘如图摆放,A 为60°角与直尺的交点,B 为光盘与直尺的交点,AB=3,则光盘表示的圆的直径是( )A.3B.3√3C.6D.6√311.把一元二次方程x 2-6x+1=0配方成(x+m)2=n 的形式,正确的是( )A.(x+3)2=10B.(x-3)2=10C.(x+3)2=8D.(x-3)2=812.在平面直角坐标系中,点P(-4,2)向右平移7个单位长度得到点P 1,点P 1绕原点逆时针旋转90°得到点P 2,则点P 2的坐标是( ) A.(-2,3) B.(-3,2) C.(2,-3) D.(3,-2)二、填空题(每小题3分,共18分)13.H9N2型禽流感病毒的病毒粒子的直径在0.000 08毫米~0.000 12毫米之间,数据0.000 12用科学记数法表示为 . 14.已知△ABC 内接于半径为5厘米的☉O,若∠A=60°,则边BC 的长为 厘米.15.在某一时刻,一个身高1.6米的同学影长2米,同时学校旗杆的影子有一部分落在12米外的墙上,墙上影高1米,则旗杆高为 米.16.如图,在直角坐标系中放入一个矩形纸片ABCO,OC=9.将纸片翻折后,点B 恰好落在x 轴上,记为B',折痕为CE,已知tan∠OB'C=34.则点B'的坐标为 .17.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a 的值为 .18.如图,在△ABC 和△ACD中,∠B=∠D,tan∠B=12,BC=5,CD=3,∠BCA=90°-12∠BCD,则AD= .三、解答题(共7小题,共66分))÷(a2+1),其中a=√2-1.19.(7分)先化简,再求值:(a-1+2a+120.(8分)为响应市政府关于“垃圾不落地·市区更美丽”的主题宣传活动,某校随机调查了部分学生对垃圾分类知识的掌握情况.调查选项分为“A:非常了解,B:比较了解,C:了解较少,D:不了解”四种,并将调查结果绘制成两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)把两幅统计图补充完整;(2)若该校学生有1 000名,根据调查结果,估计该校“非常了解”与“比较了解”的学生共有名;(3)已知“非常了解”的同学有3名男生和1名女生,从中随机抽取2名进行垃圾分类的知识交流,请用画树状图或列表的方法,求恰好抽到一男一女的概率.21.(8分)(2020内蒙古包头)某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2 400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.(1)求该商店3月份这种商品的售价是多少元;(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?22.(8分)如图,已知A(3,m),B(-2,-3)是直线AB和某反比例函数图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x在什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.23.(11分)如图,在△ABC和△DCB中,AB=DC,AC=DB,AC、DB交于点M.(1)求证:△ABC≌△DCB;(2)作CN∥BD,BN∥AC,CN交BN于点N,四边形BNCM是什么四边形?请证明你的结论.x+m与x轴、24.(12分)如图1,在平面直角坐标系xOy中,直线l:y=34x2+bx+c经过点B,且与直y轴分别交于点A和点B(0,-1),抛物线y=12线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l 于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG 的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.25.(12分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路:过点C作CD⊥AB于点D,则CD将△ABC 分割成2个与△A BC相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一题作答:我选择题.A:①如图3-1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a= (用含b的式子表示);②如图3-2,若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a= (用含n,b的式子表示);B:①如图4-1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含b的式子表示);②如图4-2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含m,n,b的式子表示).中考模拟测试卷一一、选择题1.B2.D3.A4.C5.C6.C7.D8.A9.B 10.D 11.D 12.A 如图所示:由图可知P 1(3,2),P 2(-2,3),故选A. 二、填空题 13.答案 1.2×10-4 14.答案 5√3解析 连接OB,OC,过点O 作OD⊥BC 于点D,∴BD=CD=12BC,∵∠A=60°, ∴∠BOC=2∠A=120°, ∵OB=OC, ∴∠OBC=∠OCB=180°-∠BOC2=30°,∵OB=5厘米,∴BD=OB·cos 30°=5×√32=5√32(厘米),∴BC=2BD=5√3(厘米). 15.答案 10.6解析 相同时刻的物高与影长成比例,设墙上影高落在地上为y 米,则1.62=1y,解得y=1.25.则学校旗杆的影长为12+1.25=13.25米, 设该旗杆的高度为x 米,则1.62=x 13.25,解得x=10.6.即旗杆高10.6米. 16.答案 (12,0)解析 在Rt△OB'C 中,tan∠OB'C=34,∴OCOB '=34,即9OB '=34,解得OB'=12,则点B'的坐标为(12,0). 17.答案 75解析 观察每个图形最上边正方形中数字规律为1,3,5,7,9,11.左下角数字变化规律为2,22,23,24,25,26.所以,b=26.观察数字关系可以发现,右下角数字等于同图形中最上边数字与左下角数字之和,所以a=26+11=75. 18.答案 2√5解析 如图,延长DC 至Q,使CQ=BC=5,连接AQ,过A 作AH⊥DQ 于H,则DQ=DC+CQ=CD+BC=3+5=8,∵∠BCA+∠ACQ+∠BCD=180°,∠BCA=90°-12∠BCD,设∠BCD=x°,则∠BCA=90°-12x°,∴∠ACQ=180°-x°-(90°-12x °)=90°-12x°=∠BCA,又∵AC=AC,∴△BCA≌△QCA(SAS ), ∴∠B=∠Q=∠D,∴AD=AQ, ∵AH⊥DQ,∴DH=QH=12DQ=4,tan∠B=tan∠Q=AH QH=AH 4=12,∴AH=2,∴AQ=AD=2√5. 三、解答题 19.解析 原式=(a+1)(a -1)+2a+1·1a 2+1=a 2+1a+1·1a 2+1=1a+1,当a=√2-1时,原式=√22.20.解析 (1)∵被调查的学生人数为4÷8%=50,∴C 选项的人数为50×30%=15,D 选项的人数为50-(4+21+15)=10, 则B 选项所占百分比为2150×100%=42%,D 选项所占百分比为1050×100%=20%.补全统计图如下:(2)500.(3)画树状图如下:共有12种等可能结果,其中满足条件的结果有6种, ∴P(一男一女)=12.21.解析 (1)设该商店3月份这种商品的售价为x 元. 根据题意,得2 400x=2 400+8400.9x-30,解得x=40.经检验,x=40是所得方程的解,且符合题意. 答:该商店3月份这种商品的售价为40元. (2)设该商品的进价为a 元. 根据题意,得(40-a)×2 40040=900,解得a=25.4月份的售价:40×0.9=36(元), 4月份的销售数量:2 400+84036=90(件).4月份的利润:(36-25)×90=990(元).答:该商店4月份销售这种商品的利润是990元. 22.解析 (1)设反比例函数解析式为y=kx (k≠0),把B(-2,-3)代入,可得k=-2×(-3)=6, ∴反比例函数解析式为y=6x ;把A(3,m)代入y=6x,可得m=2,∴A(3,2),设直线AB 的解析式为y=ax+b(a≠0),把A(3,2),B(-2,-3)代入,可得{2=3a +b ,-3=-2a +b ,解得{a =1,b =-1,∴直线AB 的解析式为y=x-1.(2)当x<-2或0<x<3时,直线AB 在双曲线的下方.(3)存在点C,使得△OBC 的面积等于△OAB 的面积. ①延长AO 交双曲线于点C 1, ∵点A 与点C 1关于原点对称, ∴AO=C 1O,∴△OBC 1的面积等于△OAB 的面积, 此时,点C 1的坐标为(-3,-2);②过点C 1作BO 的平行线,交双曲线于点C 2,则△OBC 2的面积等于△OBC 1的面积,∴△OBC 2的面积等于△OAB 的面积, 由B(-2,-3)可得OB 的解析式为y=32x,可设直线C 1C 2的解析式为y=32x+b',把C 1(-3,-2)代入,可得-2=32×(-3)+b',解得b'=52,∴直线C 1C 2的解析式为y=32x+52,解方程组{y =6x,y =32x +52,可得C 2(43,92); ③过A 作OB 的平行线,交反比例函数图象于点C 3,则△OBC 3的面积等于△OAB 的面积,设直线AC 3的解析式为y=32x+b″,把A(3,2)代入,可得2=32×3+b″,解得b″=-52,∴直线AC 3的解析式为y=32x-52,联立方程组{y =6x ,y =32x -52,可得C 3(-43,-92),综上所述,点C 的坐标为(-3,-2)或43,92或(-43,-92).23.解析 (1)证明:在△ABC 和△DCB 中, ∵{AB =DC ,AC =DB ,BC =CB ,∴△ABC≌△DCB(SSS). (2)四边形BNCM 为菱形. 证明如下: ∵△ABC≌△DCB, ∴∠DBC=∠ACB, 即MB=MC, ∵BN∥AC,CN∥BD,∴四边形BNCM 为平行四边形, 又∵MB=MC,∴平行四边形BNCM 为菱形.24.解析 (1)∵直线l:y=34x+m 经过点B(0,-1),∴m=-1,∴直线l 的解析式为y=34x-1.∵直线l:y=34x-1经过点C(4,n),∴n=34×4-1=2,∵抛物线y=12x 2+bx+c 经过点C(4,2)和点B(0,-1),∴{12×42+4b +c =2,c =-1,解得{b =-54,c =-1, ∴抛物线的解析式为y=12x 2-54x-1.(2)令y=0,则34x-1=0,解得x=43,∴点A 的坐标为(43,0),∴OA=43.在Rt△OAB 中,OB=1,OA=43,∴AB=√OA 2+OB 2=√(43)2+12=53,∵DE∥y 轴, ∴∠ABO=∠DEF, 在矩形DFEG 中,EF=DE·cos∠DEF=DE·OB AB =35DE,DF=DE·sin∠DEF=DE·OA AB =45DE, ∴p=2(DF+EF)=2×(45+35)DE=145DE,∵点D 的横坐标为t(0<t<4), ∴D (t ,12t 2-54t -1),E (t ,34t -1),∴DE=(34t -1)-(12t 2-54t -1)= -12t 2+2t,∴p=145×(-12t 2+2t)=-75t 2+285t,∵p=-75(t-2)2+285,且-75<0,∴当t=2时,p 有最大值285.(3)点A 1的横坐标为34或-712.∵△AOB 绕点M 沿逆时针方向旋转90°, ∴A 1O 1∥y 轴时,B 1O 1∥x 轴,设点A 1的横坐标为x,①如图1,点O 1、B 1在抛物线上时,点O 1的横坐标为x,点B 1的横坐标为x+1,∴12x 2-54x-1=12(x+1)2-54(x+1)-1,解得x=34;②如图2,点A 1、B 1在抛物线上时,点B 1的横坐标为x+1,点A 1的纵坐标比点B 1的纵坐标大43,∴12x 2-54x-1=12(x+1)2-54(x+1)-1+43,解得x=-712,综上所述,点A 1的横坐标为34或-712.25.解析 (1)12.∵点H 是AD 的中点,∴AH=12AD, ∵正方形AEOH∽正方形ABCD,∴相似比为AH AD =12AD AD =12.(2)45.在Rt△ABC 中,AC=4,BC=3, 根据勾股定理得,AB=5,∴△ACD 与△ABC 的相似比为AC AB =45.(3)A.①如图1,∵矩形ABEF∽矩形ADCB,∴AF AB=AB AD, 即12a b=b a,∴a=√2b.②每个小矩形都是全等的,则其边长为b 和1na,则b 1na=a b,∴a=√n b. B.①如图2,由题意可知纵向2个矩形全等,横向3个矩形也全等, ∴DN=13b,(ⅰ)当DF 是矩形DFMN 的长时, ∵矩形FMND∽矩形ABCD, ∴FD DN=AD CD,即FD 13b=a b,解得FD=13a,∴AF=a -13a=23a,∴AG=AF 2=23a 2=13a,∵矩形GABH∽矩形ABCD, ∴AG AB=AB BC, 即13a b=b a,得a=√3b;(ⅱ)当FM 是矩形DFMN 的长时, ∵矩形DFMN∽矩形ABCD,∴FD DN=AB AD,即FD 13b=b a,解得FD=b 23a , ∴AF=a -b 23a =3a 2-b 23a ,∴AG=AF 2=3a 2-b 26a ,∵矩形GABH∽矩形ABCD,∴AG AB=AB AD,即3a 2-b 26a b=b a,得a=√213b. ②如图3,由题意可知纵向m 个矩形全等,横向n 个矩形也全等,∴DN=1n b, (ⅰ)当DF 是矩形DFMN 的长时,∵矩形FMND∽矩形ABCD,∴FD DN=AD CD,即FD 1n b=a b,解得FD=1n a, ∴AF=a -1n a=(n -1)a n ,∴AG=AF m =(n -1)a n m =n -1mna, ∵矩形GABH∽矩形ABCD,∴AG AB=AB BC,即n -1mn a b=b a,得a=√mnn -1b;(ⅱ)当FM 是矩形DFMN 的长时,∵矩形DFMN∽矩形ABCD,∴FD DN=AB AD,即FD 1nb=b a,解得FD=b 2na ,∴AF=a-b 2na ,∴AG=AFm =na2-b2mna,∵矩形GABH∽矩形ABCD, ∴AG AB=AB AD,即na 2-b2mna b=b a,得a=√mn+1nb.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学一模试卷一、选择题(本大题共12小题,共48.0分)1.计算的值等于()A. 1B.C.D.2.下列计算正确的是()A. 2x2•2xy=4x3y4B. 3x2y-5xy2=-2x2yC. x-1÷x-2=x-1D. (-3a-2)(-3a+2)=9a2-43.桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为()A. 0.27809×105B. 27.809×103C. 2.7809×103D. 2.7809×1044.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B. .C. .D. .5.已知抛物线y=x2+2x-m-1与x轴没有交点,则函数y=的大致图象是()A. B.C. D.6.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m-n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A. B. C. D.7.关于x的方程的解为非正数,且关于x的不等式组无解,那么满足条件的所有整数a的和是()A. -19B. -15C. -13D. -98.甲数的2倍比乙数大3,甲数的3倍比乙数的2倍小1,若设甲数为x,乙数为y,则根据题意可列出的方程组为()A. B. C. D.9.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A. 40°B. 50°C. 60°D. 80°10.下列命题错误的是()A. 平分弦的直径垂直于弦B. 三角形一定有外接圆和内切圆C. 等弧对等弦D. 经过切点且垂直于切线的直线必经过圆心11.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac-b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠-1),其中结论正确的个数是()A. 1B. 2C. 3D. 412.如图,当四边形PABN的周长最小时,a的值为()A. B. 1 C. 2 D.二、填空题(本大题共6小题,共24.0分)13.已知一组数据:,10,x,15,7,23的平均数为10,则这组数据的中位数为______14.在Rt△ABC中,∠C=90°,AB=2,BC=,则sin=______.15.一次函数y=kx-3k+1的图象必经过一个定点,该定点的坐标是______16.如图,把n个边长为1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=,tan∠BA3C=,…按此规律,写出tan∠BA n C=______(用含n的代数式表示).17.已知x,y为实数,y=,则x-6y的值______18.如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为______cm.(结果用π表示)三、计算题(本大题共1小题,共8.0分)19.先化简,再求值:,其中a是方程-2x2-x+3=0的解.四、解答题(本大题共6小题,共70.0分)20.如图,一次函数y=ax+b的图象与反比例函数y=的图象交于C,D两点,与x,y轴交于B,A两点,CE⊥x轴于点E,且tan∠ABO=,OB=4,OE=1.(1)求一次函数的解析式和反比例函数的解析式(2)求△OCD的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.21.在我市开展的“阳光体育”跳绳活动中,为了了解中学生跳绳活动的开展情况,随机抽查了全市八年级部分同学1分钟跳绳的次数,将抽查结果进行统计,并绘制两个不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次共抽查了多少名学生?(2)请补全频数分布直方图空缺部分,直接写出扇形统计图中跳绳次数范围135≤x≤155所在扇形的圆心角度数.(3)若本次抽查中,跳绳次数在125次以上(含125次)为优秀,请你估计全市8000名八年级学生中有多少名学生的成绩为优秀?22.如图,在矩形ABCD中,E是AD上一点,PQ垂直平分BE,分别交AD、BE、BC于点P、O、Q,连接BP、EQ(1)求证:四边形BPEQ是菱形;(2)若AB=12,F为AB的中点,OF+OB=18,求PQ的长.23.A,B两地相距1200米,甲、乙两人分别从A,B两地同时出发相向而行,乙的速度是甲的2倍,已知乙到达A地15分钟后甲到达B地(1)求甲每分钟走多少米?(2)两人出发多少分钟后恰好相距240米.24.如图1,抛物线y=-[(x-2)2+n]与x轴交于点A(m-2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连结BC.(1)求m、n的值;(2)如图2,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.求△NBC面积的最大值;(3)如图3,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由.25.已知正方形ABCD的对角线AC,BD相交于点O.(1)如图1,E,G分别是OB,OC上的点,CE与DG的延长线相交于点F.若DF⊥CE,求证:OE=OG;(2)如图2,H是BC上的点,过点H作EH⊥BC,交线段OB于点E,连结DH 交CE于点F,交OC于点G.若OE=OG,①求证:∠ODG=∠OCE;②当AB=1时,求HC的长.答案和解析1.【答案】C【解析】解:原式=()6×()4=(×)4×()2=()2.故选:C.直接利用幂的乘方运算法则、积的乘方运算法则将原式变形进而得出答案.此题主要考查了幂的乘方运算以及积的乘方运算,正确将原式变形是解题关键.2.【答案】D【解析】解:A、2x2•2xy=4x3y,错误;B、不是同类项不能合并,错误;C、x-1÷x-2=x,错误;D、(-3a-2)(-3a+2)=9a2-4,正确;故选:D.根据整式的乘法、合并同类项、整式的除法以及平方差公式判断即可.此题考查整式的乘法、合并同类项、整式的除法以及平方差公式,关键是根据法则解答.3.【答案】D【解析】解:27 809=2.7809×104.故选D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:该立体图形主视图的第1列有1个正方形、第2列有1个正方形、第3列有2个正方形,故选:C.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.【答案】B【解析】解:∵抛物线y=x2+2x-m-1与x轴没有交点,∴△=4-4(-m-1)<0∴m<-2∴函数y=的图象在第二、第四象限,故选:B.由题意可求m<-2,即可求解.本题考查了反比例函数的图象,二次函数性质,求m的取值范围是本题的关键.【解析】解:画树状图如下:由树状图可知,共有16种等可能结果,其中满足|m-n|≤1的有10种结果,∴两人“心领神会”的概率是=,故选:B.画出树状图列出所有等可能结果,由树状图确定出所有等可能结果数及两人“心领神会”的结果数,根据概率公式求解可得.本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.7.【答案】C【解析】【分析】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键,分式方程去分母转化为整式方程,由分式方程的解为非正数求出a的范围,再根据不等式组无解求出a的范围,确定出满足题意整数a的值,求出之和即可.【解答】解:分式方程去分母得:ax-x-1=2,整理得:(a-1)x=3,由分式方程的解为非正数,得到≤0,且≠-1,解得:a<1且a≠-2,不等式组整理得:,由不等式组无解,得到<4,解得:a>-6,∴满足题意a的范围为-6<a<1,且a≠-2,即整数a的值为-5,-4,-3,-1,0,则满足条件的所有整数a的和是-13,故选:C.8.【答案】C【解析】解:设甲数为x,乙数为y,根据题意得:,故选:C.根据甲数的2倍比乙数大3可得2x=y+3,甲数的3倍比乙数的2倍小1可得3x=2y-1,联立两个方程即可.此题主要考查了二元一次方程组,关键是找出题目中的等量关系,列出方程.【解析】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.10.【答案】C【解析】解:A、平分弦的直径一定垂直于弦,是真命题;B、三角形一定有外接圆和内切圆,是真命题;C、在同圆或等圆中,等弧对等弦,是假命题;D、经过切点且垂直于切线的直线必经过圆心,是真命题;故选:C.根据垂径定理、三角形外接圆、圆的有关概念判断即可.本题考查了命题与定理的知识,解题的关键是根据垂径定理、三角形外接圆、圆的有关概念等知识解答,难度不大.11.【答案】C【解析】解:∵图象与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2-4ac>0,∴4ac-b2<0,①正确;∵-=-1,∴b=2a,∵a+b+c<0,∴b+b+c<0,3b+2c<0,∴②是正确;∵当x=-2时,y>0,∴4a-2b+c>0,∴4a+c>2b,③错误;∵由图象可知x=-1时该二次函数取得最大值,∴a-b+c>am2+bm+c(m≠-1).∴m(am+b)<a-b.故④正确∴正确的有①②④三个,故选:C.由抛物线与x轴有两个交点得到b2-4ac>0,可判断①;根据对称轴是x=-1,可得x=-2、0时,y的值相等,所以4a-2b+c>0,可判断③;根据-=-1,得出b=2a,再根据a+b+c <0,可得b+b+c<0,所以3b+2c<0,可判断②;x=-1时该二次函数取得最大值,据此可判断④.本题考查二次函数图象与系数的关系,解题的关键是能看懂图象,利用数形结合的思想解答.12.【答案】A【解析】解:作B关于x轴的对称点C,连结CN,作平行四边形PNCD∵AB、PN为定值∴PA+BN最小即可∵BN=CN=PD∴只要AP+PD最小作直线AD交x轴于Q,当P与Q重合时,AP+PD=AD最小∵A(1,3)、B(4,1),∴C(4,-1),∴D(2,-1)∴直线AD为:y=-4x+7当y=0时,x=,∴Q为(,0)∵P、Q重合∴a=,故选:A.作B关于x轴的对称点C,连结CN,作平行四边形PNCD,因为AB、PN为定值所以PA +BN最小即可因为BN =CN=PD所以只要AP+PD最小作直线AD交x轴于Q,当P 与Q重合时,AP+PD=AD最小.本题考查轴对称-最短问题,平行四边形的性质、一次函数的应用等知识,解题的关键是学会构建平行四边形,利用对称解决最短问题,属于中考常考题型.13.【答案】9【解析】解:∵,10,x,15,7,23的平均数为10,∴(+10+x+15+7+23)÷6=10,解得:x=8,把这些数从小到大排列为:7,23,8,10,,15,则中位数是=9;故答案为:9.根据平均数的计算公式先求出x的值,再根据中位数的定义求解即可.此题主要考查了中位数的确定方法以及平均数的求法,根据将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)找出中位数是易错点.14.【答案】【解析】解:∵sin A==,∴∠A=60°,∴sin=sin30°=.故答案为:.根据∠A的正弦求出∠A=60°,再根据30°的正弦值求解即可.本题考查了特殊角的三角函数值,熟记30°、45°、60°角的三角函数值是解题的关键.15.【答案】(3,1)【解析】解:根据题意可把直线解析式化为:y=k(x-3)+1,故函数一定过点(3,1).故答案为:(3,1).把一次函数解析式转化为y=k(x-3)+1,可知点(3,1)在直线上,且与系数无关.本题考查了一次函数图象上点的坐标特征,解决问题的关键是把一次函数进行整理变形.16.【答案】【解析】解:作CH⊥BA4于H,由勾股定理得,BA4=,A4C=,△BA4C的面积=4-2-=,∴××CH=,解得,CH=,则A4H=,∴tan∠BA4C=,1=12-1+1,3=22-2+1,7=32-3+1,∴tan∠BA n C=,故答案为:,作CH⊥BA4于H,根据正方形的性质、勾股定理以及三角形的面积公式求出CH、A4H,根据正切的概念求出tan∠BA4C,总结规律解答.本题考查的是正方形的性质、勾股定理的应用以及正切的概念,掌握正方形的性质、熟记锐角三角函数的概念是解题的关键.17.【答案】-2【解析】解:由题意得,,解得x=-3,∴y=,∴x-6y=-3-6×=-3+1=-2.故答案为:-2.根据被开方数大于等于0,分母不等于0列不等式求出x的值,再求出y的值,然后代入代数式进行计算即可得解.本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.18.【答案】12π【解析】解:设底面圆的半径为rcm,由勾股定理得:r==6cm,∴2πr=2π×6=12πcm,故答案为:12π.根据圆锥的展开图为扇形,结合圆周长公式的求解.此题考查了圆锥的计算,解答本题的关键是掌握圆锥侧面展开图是个扇形,要熟练掌握扇形与圆锥之间的联系,难度一般.19.【答案】解:====,由-2x2-x+3=0,得x1=-,x2=1,当a=1时,原分式无意义,当a=-时,原式==.【解析】根据分式的减法和除法可以化简题目中的式子,再根据a是方程-2x2-x+3=0的解,可以求得a的值,再将a的值代入化简后的式子即可解答本题,注意代入的a的值必须使得原分式有意义本题考查分式的化简求值、一元二次方程的解,解答本题的关键是明确分式化简求值的方法.20.【答案】解:(1)∵OB=4,OE=1,∴BE=1+4=5.∵CE⊥x轴于点E,tan∠ABO===,∴OA=2,CE=2.5.∴点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(-1,2.5).∵一次函数y=ax+b的图象与x,y轴交于B,A两点,∴,解得.∴直线AB的解析式为y=-x+2.∵反比例函数y=的图象过C,∴2.5=,∴k=-2.5.∴该反比例函数的解析式为y=-;(2)联立反比例函数的解析式和直线AB的解析式可得,解得点D的坐标为(5,-),则△BOD的面积=4××=1,△BOC的面积=4××=5,∴△OCD的面积为1+5=6;(3)由图象得,一次函数的值大于反比例函数的值时x的取值范围:x<-1或0<x<5.【解析】(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例函数的解析式;(2)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解;(3)根据函数的图象和交点坐标即可求解.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.21.【答案】解:(1)抽查的总人数:(8+16)÷12%=200(人);(2)范围是115≤x<145的人数是:200-8-16-71-60-16=29(人),则跳绳次数范围135≤x≤155所在扇形的圆心角度数是:360°×=81°;(3)优秀的比例是:×100%=52.5%,则估计全市8000名八年级学生中有多少名学生的成绩为优秀人数是:8000×52.5%=4200(人);【解析】(1)根据前两组共占12%解答;(2)求出跳绳次数范围在135≤x≤155的人数所占总人数的百分比,即可解答;(3)用样本估计总体.本题考查了频数分布直方图、用样本估计总体、扇形统计图,两图结合是解题的关键.22.【答案】(1)证明:∵PQ垂直平分BE,∴PB=PE,OB=OE,∵四边形ABCD是矩形,∴AD∥BC,∴∠PEO=∠QBO,在△BOQ与△EOP中,,∴△BOQ≌△EOP(ASA),∴PE=QB,又∵AD∥BC,∴四边形BPEQ是平行四边形,又∵QB=QE,∴四边形BPEQ是菱形;(2)解:∵O,F分别为PQ,AB的中点,∴AE+BE=2OF+2OB=36,设AE=x,则BE=36-x,在Rt△ABE中,122+x2=(36-x)2,解得x=16,∴BE=36-x=20,∴OB=BE=10,设PE=y,则AP=16-y,BP=PE=y,在Rt△ABP中,122+(16-y)2=y2,解得y=,在Rt△BOP中,PO==,∴PQ=2PO=15.【解析】(1)先根据线段垂直平分线的性质证明PB=PE,由ASA证明△BOQ≌△EOP,得出PE=QB,证出四边形ABGE是平行四边形,再根据菱形的判定即可得出结论;(2)根据三角形中位线的性质可得AE+BE=2OF+2OB=36,设AE=x,则BE=36-x,在Rt△ABE中,根据勾股定理可得122+x2=(36-x)2,BE=20,得到OB=BE=10,设PE=y,则AP=16-y,BP=PE=y,在Rt△ABP中,根据勾股定理得出方程,解得y=,在Rt△BOP中,根据勾股定理求出PO的长,由PQ=2PO即可求解.本题考查了菱形的判定与性质、矩形的性质,平行四边形的判定与性质、线段垂直平分线的性质、勾股定理等知识;本题综合性强,有一定难度.23.【答案】解:(1)设甲每分钟走x米,则乙每分钟走2x米,根据题意得:-=15,解得:x=40,经检验,x=40是原分式方程的解,且符合题意.答:甲每分钟走40米.(2)设两人出发y分钟后恰好相距240米,根据题意得:|1200-40y-80y|=240,解得:y1=8,y2=12.答:两人出发8或12分钟后恰好相距240米.【解析】(1)设甲每分钟走x米,则乙每分钟走2x米,根据时间=路程÷速度结合乙比甲少用15分钟,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设两人出发y分钟后恰好相距480米,根据路程=速度×时间结合两人相距240米,即可得出关于y的含绝对值的一元一次方程,解之即可得出结论.本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.24.【答案】解:(1)∵抛物线的解析式为y=-[(x-2)2+n]=-(x-2)2-n,∴抛物线的对称轴为直线x=2,∵点A和点B为对称点,∴2-(m-2)=2m+3-2,解得m=1,∴A(-1,0),B(5,0),把A(-1,0)代入y=-[(x-2)2+n]得9+n=0,解得n=-9;(2)作ND∥y轴交BC于D,如图2,抛物线解析式为y=-[(x-2)2-9]=-x2+x+3,当x=0时,y=3,则C(0,3),设直线BC的解析式为y=kx+b,把B(5,0),C(0,3)代入得,解得,∴直线BC的解析式为y=-x+3,设N(x,-x2+x+3),则D(x,-x+3),∴ND=-x2+x+3-(-x+3)=-x2+3x,∴S△NBC=S△NDC+S△NDB=•5•ND=-x2+x=-(x-)2+,当x=时,△NBC面积最大,最大值为;(3)存在.∵B(5,0),C(0,3),∴BC==,当∠PMB=90°,则∠PMC=90°,△PMC为等腰直角三角形,MP=MC,设PM=t,则CM=t,MB=-t,∵∠MBP=∠OBC,∴△BMP∽△BOC,∴==,即==,解得t=,BP=,∴OP=OB-BP=5-=,此时P点坐标为(,0);当∠MPB=90°,则MP=MC,设PM=t,则CM=t,MB=-t,∵∠MBP=∠CBO,∴△BMP∽△BCO,∴==,即==,解得t=,BP=,∴OP=OB-BP=5-=,此时P点坐标为(,0);综上所述,P点坐标为(,0)或(,0).【解析】(1)利用抛物线的解析式确定对称轴为直线x=2,再利用对称性得到2-(m-2)=2m+3-2,解方程可得m的值,从而得到A(-1,0),B(5,0),然后把A点坐标代入y=-[(x-2)2+n]可求出n的值;(2)作ND∥y轴交BC于D,如图2,利用抛物线解析式确定C(0,3),再利用待定系数法求出直线BC的解析式为y=-x+3,设N(x,-x2+x+3),则D(x,-x+3),根据三角形面积公式,利用S△NBC=S△NDC+S△NDB可得S△BCN=-x2+x,然后利用二次函数的性质求解;(3)先利用勾股定理计算出BC=,再分类讨论:当∠PMB=90°,则∠PMC=90°,△PMC 为等腰直角三角形,MP=MC,设PM=t,则CM=t,MB=-t,证明△BMP∽△BOC,利用相似比可求出BP的长,再计算OP后可得到P点坐标;当∠MPB=90°,则MP=MC,设PM=t,则CM=t,MB=-t,证明△BMP∽△BCO,利用相似比可求出BP的长,再计算OP后可得到P点坐标.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会运用待定系数法求函数解析式;理解坐标与图形的性质;掌握相似三角形的判定,能运用相似比计算线段的长或表示线段之间的关系;学会运用分类讨论的思想解决数学问题.25.【答案】(1)证明:如图1中,∵四边形ABCD是正方形,∴AC⊥BD,OD=OC,∴∠DOG=∠COE=90°,∴∠OEC+∠OCE=90°,∵DF⊥CE,∴∠OEC+∠ODG=90°,∴∠ODG=∠OCE,∴△DOG≌△COE(ASA),∴OE=OG.(2)①证明:如图2中,∵AC,BD为对角线,∴OD=OC,∵OG=OE,∠DOG=∠COE=90°,∴△ODG≌△OCE,∴∠ODG=∠OCE.②解:设CH=x,∵四边形ABCD是正方形,AB=1,∴BH=1-x,∠DBC=∠BDC=∠ACB=45°,∵EH⊥BC,∴∠BEH=∠EBH=45°,∴EH=BH=1-x,∵∠ODG=∠OCE,∴∠BDC-∠ODG=∠ACB-∠OCE,∴∠HDC=∠ECH,∵EH⊥BC,∴∠EHC=∠HCD=90°,∴△CHE∽△DCH,∴=,∴HC2=EH•CD,∴x2=(1-x)•1,解得x=或(舍弃),∴HC=.【解析】(1)欲证明OE=OG,只要证明△DOG≌△COE(ASA)即可;(2)①欲证明∠ODG=∠OCE,只要证明△ODG≌△OCE即可;②设CH=x,由△CHE∽△DCH,可得=,即HC2=EH•CD,由此构建方程即可解决问题;本题考查正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。